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Introduction

Active Ankle is a novel parallel manipulator with three
degrees of freedom that operates in an almost-spherical
manner [1, 2]. The almost-spherical parallel manipulator
(ASPM) is primarily intended as an actuated ankle joint in a
full-body exoskeleton for rehabilitation application (Fig. 3).

Design features

1. lightweight and robust construction

2. modular design leading to low link diversity

3. high stiffness and orientation accuracy

4. high payload capacity

5. no torques required for loads along torsional axis

Fig.1: Active Ankle prototype
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Fig.2: Sketch of the Active Ankle

Fig.3: Active Ankle with foot unit Fig.4: Scheme, r = d = 35, l = 100.

Control challenge

Due to spatial behaviour but spherical use case of the
Active Ankle, the task space control of this mechanism
asks for a joint configuration for a given orientation from
SO(3), instead of a pose from SE (3) [3].

Inverse Geometric Model (IGM)

The Inverse Geometric Model (igm) is a solution to the
problem of finding input joint angles [qx, qy , qz] for a specific

end-effector pose PE =

[
s n a e
0 0 0 1

]
∈ SE (3), denoted as

[qx, qy , qz] = igm(PE), PE ∈ SE (3) .

Crank & endeffector points

The crank points (c1, c2, c3, c4, c5, c6) are allowed to move
on the circles defined by the motion of three actuators.
The end effector points (e1, e2, e3, e4, e5, e6) lie on a
sphere of radius d and center e.

The point parametrizations (CPL & EPL) are:

c1 = [0, r cos(qx), l + r sin(qx)]T e1 = e + d · n
c2 = [0, r cos(qx), l − r sin(qx)]T e2 = e− d · n
c3 = [l + r sin(qy), 0, r cos(qy)]T e3 = e + d · s
c4 = [l − r sin(qy), 0, r cos(qy)]T e4 = e− d · s
c5 = [r cos(qz), l + r sin(qz), 0]T e5 = e + d · a
c6 = [r cos(qz), l − r sin(qz), 0]T e6 = e− d · a .

Constraint equations

Expansion of contraint equations ‖ei − ci‖ = l yields

(ex + d · nx)2 + (ey + d · ny − r · cos qx)2

+ (ez + d · nz − l − r · sin qx)2 = l 2 (1)

(ex − d · nx)2 + (ey − d · ny + r · cos qx)2

+ (ez − d · nz − l + r · sin qx)2 = l 2 (2)

(ex + d · ax − l − r · sin qy)2 + (ey + d · ay)2

+ (ez + d · az − r · cos qy)2 = l 2 (3)

(ex − d · ax − l + r · sin qy)2 + (ey − d · ay)2

+ (ez − d · az + r · cos qy)2 = l 2 (4)

(ex + d · sx − r · cos qz)
2 + (ey + d · sy − l

− r · sin qz)
2 + (ez + d · sz)2 = l 2 (5)

(ex − d · sx + r · cos qz)
2 + (ey − d · sy − l

+ r · sin qz)
2 + (ez − d · sz)2 = l 2 (6)

Three virtual leg equations

By subtracting (2) from (1), (4) from (3), (6) from (5),
three virtual leg equations are derived

rey cos(qx) + r(ez − l) sin(qx) + d(lnz − e ∗ n) = 0

rez cos(qy) + r(ex − l) sin(qy) + d(lax − e ∗ a) = 0

rex cos(qz) + r(ey − l) sin(qz) + d(lsy − e ∗ s) = 0 .

With leg index j ∈ {1, 2, 3}, they are of the form

Ej · cos(qj) + Fj · sin(qj) + Gj = 0 . (7)

IGM Solution

By tangent half angle substitution tj = tan(qj/2), cos qj =
(1− t2

j )/(1 + t2
j ), sin qj = 2tj/(1 + t2

j ), the equation

(Gj − Ej) · t2
j + 2 · Fj · tj + (Gj + Ej) = 0

in t is obtained. The two solutions for qj are given by

qj+, qj− = 2 · atan2(−Fj ± Hj,Gj − Ej)

with Hj =
√

E 2
j + F 2

j − G 2
j , see [3].

Rotative Inverse Geometric Model (RIGM)

Rotative Inverse Geometric Model (rigm) is to find input
joint angles for a desired orientation of the endeffector RE

without knowledge of the end-effector position as

[qx, qy , qz] = rigm(RE), RE ∈ SO(3) .

RIGM solution

Equations (1) - (6) are highly coupled. A novel iterative
algorithm has been developed which can be explained by the
concept of virtual joints. The method tfgm implements a
three-sphere intersection to solve for e [3].

Algorithm 1 Rotative Inverse Geometric Model (rigm)

(in) Desired orientation of the end effector, RE

(out) Input joint angles [qx, qy , qz] and EE shift [ex, ey , ez]
1: function rigm(RE , ε)

2: P̃E ←
[

RE 03×1

01×3 1

]
. Initialization

3: while ELS <ε do
4: (ẽ1 . . . ẽ6)← epl(P̃E)
5: [q̃x, q̃y , q̃z]← igm(P̃E)
6: (c̃1 . . . c̃6)← cpl(q̃x, q̃y , q̃z)
7: ELS ←

∑6
i (‖ẽi − c̃i‖ − l)2 . Error

8: ẽ← tfgm(q̃x, q̃y , q̃z,RE)

9: P̃E ←
[

RE ẽ3×1

01×3 1

]
. Update

10: [qx, qy , qz]← [q̃x, q̃y , q̃z]
11: [ex, ey , ez]← [ẽx, ẽy , ẽz]
12: return [qx, qy , qz, ex, ey , ez]

Range of motion (ROM) comparison

During most activities of daily living, only partial ranges of
motion required [4], e.g, 10◦ − 15◦ plantar flexion and 10◦

dorsiflexion for walking on even surfaces, walking upstairs
(37◦ total ROM), walking downstairs (56◦ total ROM).

Fig.1: Comparison of ROM between human and Active Ankle.

Motion type
Human Ankle Active Ankle

min. max. abs. min. max. abs.

DF – PF −20◦ 50◦ 70◦ −19.83◦ 37.23◦ 57.06◦

EV – IV −15◦ 35◦ 50◦ −14.62◦ 34.84◦ 49.46◦

AD – AB −30◦ 45◦ 75◦ −29.20◦ 36.96◦ 66.16◦

Experimental results

rigm has been implemented for a task space control of
the Active Ankle. For ε = 1.e−06 mm, the algorithm
can be realized at a control frequency of 10 kHz [3].
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Fig.5: Active joint angles during the

dorsiflexion – plantarflexion motion.
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Fig.6: End effector shift during the

dorsiflexion – plantarflexion motion.

Inverse Kinematics

The three virtual leg equations (7) can be differentiated
with respect to time and can be rearranged as a relation
between twist (t) and actuated joint velocities (q̇) through
serial (B) and parallel (A) Jacobian matrices:

A · t = B · q̇
The solution of the Inverse Kinematics problem requires:

q̇ = B−1 · A · t
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Fig.7: Cascaded task-space position and velocity control using rigm and ik

Task-space cascaded control

The joint-based FPGA stacks implement cascaded position,
velocity and torque control. An equivalent control frame-
work is envisioned in 3-DoF spherical task space which
makes it a compact and versatile rehabilitation device.

PositionControl VelocityControl TorqueControl 3 DoF Active Ankle
Fig.8: Cascaded task-space control scheme: a combination of desired orientation

(RE), angular velocity (ω) and moments (m) in SO(3) can be the inputs.

Conclusions

The novel Active Ankle mechanism is briefly presented
along with relevant geometric and kinematic models for its
control in task-space. In the future, the cascaded task-space
control framework will be equipped with torque control.
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