
To appear in EPTCS. c© M. Ring & C. Lüth

Interactive Proof Presentations with Cobra

Martin Ring
DFKI

Bremen, Germany
martin.ring@dfki.de

Christoph Lüth
DFKI and Universität Bremen

Bremen, Germany
christoph.lueth@dfki.de

We present Cobra, a modern code and proof presentation framework, leveraging cutting-edge pre-
sentation technology together with a state of the art interactive theorem prover to present formalized
mathematics as active documents. Cobra provides both an easy way to present proofs and a novel
approach to auditorium interaction. The presentation is checked live by the theorem prover, and
moreover allows live changes both by the presenter as well as the audience.

1 Introduction

Presenting formalized mathematical proofs is a challenge unto itself. Formalized proofs, by their very
nature, tend to be lengthy, as every possible side condition and assumption has to be tackled, and often the
amount of proof text devoted to the main argument is small in relation to those necessary but tedious side
issues. Further, the actual proof usually contains technical information such as setting up the syntactic
machinery and automatic proof assistance of the prover, which is not necessary for the comprehension
of the mathematical argument, but necessary if the audience wants to rerun the proof in the actual prover.
Thus, when presenting formalized proofs to students, fellow researchers, or other audiences, we only
present a view on the actual proof text. This view only contains excerpts of the original proof, and it is left
to the punctiliousness of the presenter to not introduce errors. The correlation between the presentation
and the actual proof text is left to the critical audience to verify. Further, when made with traditional
presentation aids (such as PowerPoint, LATEX, or writing on plain old blackboards) these presentations
are not interactive — we cannot easily change them during the presentation, e.g. to demonstrate why a
particular approach will not prove the desired goal. However, a proof made with an interactive theorem
prover is an active document and should be treated, and presented, as such. The stop-gap measure
often used up to now has been to switch back and forth between the presentation and the actual running
prover, but the resulting change of focus makes it hard to follow the proof. Another fix is to animate
the presentation manually by means of PDF overlays or PowerPoint animations, but this is inflexible,
error-prone and cumbersome.

Fortunately, the advances of modern web technologies have opened up new ways of presentation,
which allow us to treat a proof as an active document rather than an inanimate piece of PDF. Tools such
as reveal.js implement presentations as active documents, and thus it seems logical to leverage this tech-
nology for interactive provers. In this paper, we present Cobra, an integrated presentation environment
for interactive proofs and code. Cobra allows to declaratively define interactive slides containing Isabelle
theories (or snippets from a theory), LATEX-style formulae and program code. The intriguing aspect about
these slides is that they can not only be presented with annotated semantic information provided by the
underlying prover (or compiler in the case of code), but also the content can be altered (or completed),
resulting in updated semantic annotations. This way, the presenter can develop the proof in front of, and
even in interaction with, the audience, instead of following a strict predetermined path.

2 Interactive Proof Presentations with Cobra

The paper is structured as follows: Section 2 describes how to work with Cobra from a users perspec-
tive. Section 3 briefly sketches the architecture of the project. We conclude in Section 4 by describing
proposed use cases and providing an outlook onto future work.

2 Presenting with Cobra

Creating slides is one of the most time consuming tasks in the preparation of a lecture or a talk. Thus
it should involve no additional overhead, to allow the speaker to focus on content rather then technical
details. Cobra aims to be even simpler than presenting with the LATEX beamer class but a lot more
powerful. It comes as a self-contained command-line tool for all major operating systems, and supports
Isabelle/HOL, Scala and Haskell as well as LATEX-style formulae out of the box, and furthermore can be
extended to suit individual needs.

Creating an empty Cobra presentation is as easy as running cobra new <name> on the command
line. This creates a directory <name> containing two files: cobra.conf and slides.html. The former
contains meta information and environment configurations, while the latter contains the actual content
of the presentation. The user may add other files into the directory, which will then be served by Cobra.
This allows to include graphics, videos, custom style sheets and other arbitrary files, which can then be
included in the slides.html file. During presentation, Cobra will run an embedded web server, and
serve the slides as HTML pages (see Section 2.5).

2.1 Configuration

The cobra.conf file is a HOCON (Human-Optimised Config Object Notation) configuration file. There
is a reference.conf included in the distribution which contains all available settings together with
default values and short descriptions. There is no need to change the cobra.conf for most presentations.
However, among others, the customisations shown in Table 1 are available. Other available settings
include configuration of the underlying presentation framework reveal.js, the math engine MathJax as
well as Isabelle. All settings provide reasonable default values (“convention over configuration”).

title display title of the presentation
language main language of the presentation
theme.slides main style sheet that should be used to render the slides.
theme.code main style sheet that should be used to render code snippets.
binding.interface network interface to bind the server on (default localhost)
binding.port port under which the server will be available (default 8080)

Table 1: Some of the settings available through cobra.conf

2.2 Adding slides

Cobra is based on the reveal.js framework [2]. However, in Cobra the slides.html file is not structured
like a common web page: it does not contain a top level html tag or any header tags. All boilerplate
is automatically generated by Cobra. Slides are represented by top-level section tags and behave the
same as reveal.js slides with the exception of code tags, which are described in section 2.4.

M. Ring & C. Lüth 3

<code class="hidden"

src="src/Seq.thy"></code>

<section>

<h2>Lemma</h2>

<code class="state-fragments"

src="#lemma-reverse"></code>

<p class="fragment">

Note: $$reverse_conc$$ is required here

</p>

</section>

(a) slides.html

theory Seq
import Main
begin
...

(∗ begin #lemma−reverse ∗)
lemma reverse reverse: ”reverse (reverse xs) = xs”
by (induct xs) (simp all add: reverse conc)

(∗ end #lemma−reverse ∗)

end

(b) Seq.thy

Figure 1: Simple example with just one slide and external Isabelle source

reveal.js has a two dimensional slide layout: It is possible to nest section tags by one level, which
results in vertically arranged slides. This can be used to group slides together. The content of the
section tags can be arbitrary HTML, allowing for rich presentations. However, typically a small subset
will suffice. Particularly interesting HTML Tags are headers (h1, h2, . . .) for the title of a slide; img
tags to include vector or raster graphics; unordered and ordered lists (ul, ol) for bullet lists. reveal.js
supports so called fragments, which allow to unhide or emphasise certain parts of the slide. Fragments
are added through class tags. Listing 1a contains a small example with just one slide.

2.3 Integrating LATEX-style formulae

By surrounding text with double dollar signs (i.e. $$...$$) it is interpreted as LATEX and rendered by
MathJax, a JavaScript library that can render MathML and a large subset of TEX/ LATEXand is compatible
with all modern browsers [4]. The MathJax configuration can be altered through the cobra.conf file.

2.4 Including Proofs and Code

As mentioned above code tags are treated specially by Cobra. By default, every code tag induces an
editable code snippet. By adding certain classes to the tag, the behaviour can be altered: The language
mode can be defined by adding either scala, haskell or isabelle as a class tag. When such a tag is
added, the a rich semantic assistance engine is automatically initialised to provide information about the
snippet, that will be visualised during the presentation.

The simplest way to include code is to add it as content of a code element. However, it is often
desirable to include only certain snippets of a larger code example. For these situations, Cobra allows
to include hidden code elements and then reference snippets. Snippets are marked by special comments
within the target language, which is more robust than referencing lines. Snippets may overlap. When
dealing with large code examples it also possible to include just a reference to an external source file. In
this case, the language does not have to be specified as it can be derived from the file ending.

4 Interactive Proof Presentations with Cobra

Figure 2: The rendered result of Listing 1a

2.5 Interactive Presentations

To start a presentation, the user calls cobra <dir> in the command line to start a presentation server
within the specified directory. After a short while Cobra will be initialised and display the bound address
under which the presentation is available. It can now be opened with any modern web browser. When
open, the user will see the first slide. It is possible to navigate through the slides with the arrow keys
or a presenter just like with any other presentation tool. reveal.js provides controls similar to those of
PowerPoint; an overview of the available key bindings can be displayed by pressing "?".

When a slide includes a code snippet, the viewer will find it augmented with annotated semantic
information. The syntax highlighting will reflect the semantic meaning of tokens, just like in Isabelle/-
jEdit or Clide. For Isabelle theories, the proof states can be iterated (just like other fragments) if the
class state-fragments is added. It is also possible to mark certain fractions of the code as fragments
which will behave like any other reveal.js fragment but also affect the semantic annotations. Errors are
prominently rendered as red sketchy circles around the affected part of the snippet, which is useful when
presenting a situation where an error is of importance. It is also possible to view additional information
about entities by hovering with the mouse (or a finger when using a touch enabled device). The dis-
played tool-tips are displayed in a way that is suitable for presentations, and contain similar information
to the tool tips in Isabelle/jEdit. Since manually hovering can be cumbersome it is also possible to define
hover-fragments, which automate this by allowing to step through predefined hover locations.

Furthermore, it is possible to alter the content of snippets just like in a text editor1. When snippets

1Note that, for security reasons, the Safari web browser does not allow keystrokes in full screen mode, which unfortunately
makes the browser unsuitable for presenting interactive proofs

M. Ring & C. Lüth 5

are changed, the content is synchronised across all connected devices as well as the underlying assistant,
which then annotates the code with updated semantic annotations, similar to the non-human collabora-
tors in Clide. It is also possible, that someone from the audience alters the code with his own device.
The changes will then be synchronised to everybody else and become visible in the main presentation.
Of course, this is only possible if the speaker allows access to the presentation server. Snippets are syn-
chronised continuously; e.g. if there is one running code example that is referenced across various slides,
changes made in one slide might affect the others. Overlapping snippets will always display consistent
information. If this is not desired, the snippets have to be separated into different origins.

2.6 Publishing and Distribution

There are three intended ways of publishing slides. All three have unique advantages and disadvantages.
Thus, it is desirable to provide at least two different ways to access slides for the audience.
Central Presentation Server: The presentation can be provided on a central presentation server which
then also runs the Isabelle process. Viewers can access the presentation and play around with proofs
through their web browser. This approach requires a lot of resources on the presentation server when
many viewers access different presentations at the same time.
Local Presentation Servers: It is possible to distribute a Cobra presentation as an archive file. This
will require the viewers to install the Cobra command line tool as described above, and install Isabelle
locally.
PDF Export: Having active slides is not always desirable, especially when it comes to just viewing and
printing. In this case it is possible to export PDF. This can be done the same way as in reveal.js; Cobra
then takes care of the rendering of snippets for print.

3 Cobra internals

The PIDE framework which was developed together with the Isabelle/jEdit integration [10] has already
been successfully integrated into the collaborative web environment Clide in previous work [7]. We
were able to reuse significant portions of the code to implement Cobra. However, due to the limitations
at the time, the Clide server is implemented in Scala, a strongly typed and reasonably well specified
language, while the client was implemented in CoffeeScript, a thin wrapper language compiling directly
to JavaScript. Both are dynamically typed languages, with an object system based on prototyping, and
lacking a module system. While this makes these languages suited for “quick and dirty” solutions,
complex projects like Clide or Cobra become hard to maintain and reason about. Due to the recent leaps
in the complexity of average web applications, several independent approaches, like TypeScript [3],
arose to remedy these shortcomings. A particularly interesting solution in our context is ScalaJS [5], a
JavaScript back-end for the Scala compiler, which compiles Scala code to JavaScript which can run in a
web browser; it has officially been labelled “ready for production” by the creators of Scala in 2015.

Thanks to ScalaJS the Cobra code base does not include a single line of JavaScript. We do depend
on JavaScript libraries like CodeMirror (the editor component) or reveal.js (the underlying presentation
framework), but were able to create Scala facade types from existing TypeScript types. Especially the
basis of Clide, the collaboration algorithm, is now identical on the JVM and all connected browsers.

System Architecture. Cobra is designed as a client-server architecture. Unlike Clide which is based
on the Play! framework, the Cobra server is built around akka-http [8], a minimal HTTP library based

6 Interactive Proof Presentations with Cobra

on the Akka implementation of reactive streams [1]. This results in a reduced size and better speed
of the application. Upon connection, web clients load all static assets from the Cobra server through
plain HTTP, these include the compiled JavaScript of the client. After that, a WebSocket connection
is established which handles all further communication. The protocol is a very fast and size-efficient
binary protocol based on the boopickle library, which is itself derived from the Scala Pickling project [6].
This allows to pass Scala defined algebraic data types around between client and server, both of which
are implemented in Scala. Since the PIDE framework is also implemented in Scala, the integration
is straightforward. The same holds for the Scala compiler. Haskell is integrated by calling ghc-mod
as an external command. To synchronise document states across clients and assistants, the universal
collaboration approach from Clide is used (as described in [7]).

4 Conclusion

We have presented Cobra, a framework which allows source code and interactive proof scripts to be
presented as active documents, with which the viewer can interact. We believe, that our tool is ready for
use in production. Version 1.0 will be released prior to the workshop and made available on the GitHub
project page (https://github.com/flatmap/cobra).

We envisage the following usages scenarios for Cobra: Firstly, classroom teaching where a prepared
proof is presented to a group of students. Here, the advantages of Cobra are that the teacher can select
those parts of the proof to be presented, so the presentation remains compact and convenient to follow,
avoiding cognitive overload with lots of unnecessary details. The teacher can further build up the proof
gradually, like one a blackboard, but with the safety net of the Isabelle proof checker in the background.
Secondly, teaching in small groups where the teacher develops a proof together with a group of students.
Here, the proof can be developed collaboratively, with everybody contributing while the presentation
serves as the focus of attention for all participants. Thirdly, self-study when readers (students, fellow
researchers, or reviewers) can interact with the presentation, exploring the effects of changes. Finally,
research talks at a workshop such as UITP, where researchers can present their work with greater confi-
dence, and can pick up questions from the audience by demonstrating effects of changes as they might
be suggested from the floor. In all of these scenarios, Cobra brings added value over the current state of
the art, where interactive proofs are presented as passive documents.

In future work, we plan to include other proof assistants. The canonical way to connect other proof
assistants is via the PIDE framework. As a PIDE integration exists [9], it should be feasible to integrate
Coq. In addition, it would be beneficial to reduce the overhead further by introducing a simplified syntax
to describe slides, possibly based on Markdown. Further, we plan to explore if more inter-dependencies
between the snippets and the presentation itself could be allowed. This would allow for even richer pre-
sentations, where the structure of a presentation depends on the contained proofs or generated graphics
visualise dynamic aspects of a proof.

References

[1] Reactive Streams. http://www.reactive-streams.org/. Accessed: 2016-05-16.

[2] reveal.js website. http://lab.hakim.se/reveal-js. Accessed: 2016-05-16.

[3] Gavin Bierman, Martin Abadi & Mads Torgersen (2014): Understanding typescript. In: ECOOP 2014–
Object-Oriented Programming, Springer, pp. 257–281.

https://github.com/flatmap/cobra
http://www.reactive-streams.org/
http://lab.hakim.se/reveal-js

M. Ring & C. Lüth 7

[4] Davide Cervone (2012): MathJax: a platform for mathematics on the Web. Notices of the AMS 59(2), pp.
312–316.

[5] Sébastien Doeraene (2013): Scala.js: Type-directed interoperability with dynamically typed languages. Tech-
nical Report.

[6] Heather Miller, Philipp Haller, Eugene Burmako & Martin Odersky (2013): Instant pickles: Generating
object-oriented pickler combinators for fast and extensible serialization. In: Acm Sigplan Notices, 48,
ACM, pp. 183–202.

[7] Martin Ring & Christoph Lüth (2014): Collaborative interactive theorem proving with Clide. In: Interactive
Theorem Proving, Springer, pp. 467–482.

[8] Raymond Roestenburg, Rob Bakker & Rob Williams (2015): Akka in action. Manning Publications Co.
[9] Carst Tankink (2014): PIDE for Asynchronous Interaction with Coq. In: Proceedings Eleventh Workshop on

User Interfaces for Theorem Provers, Vienna, Austria, 17th July 2014, EPTCS 167, pp. 73–83.
[10] Makarius Wenzel (2014): System description: Isabelle/jEdit in 2014. In: Proceedings Eleventh Workshop

on User Interfaces for Theorem Provers, Vienna, Austria, 17th July 2014, EPTCS 167, pp. 84–94.

	Introduction
	Presenting with Cobra
	Configuration
	Adding slides
	Integrating LaTeX-style formulae
	Including Proofs and Code
	Interactive Presentations
	Publishing and Distribution

	Cobra internals
	Conclusion

