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Abstract

In this paper we present TSSort, a probabilistic, noise resistant, quickly
converging comparison sort algorithm based on Microsoft TrueSkill. The
algorithm combines TrueSkill’s updating rules with a newly developed
next item pair selection strategy, enabling it to beat standard sorting
algorithms w.r.t. convergence speed and noise resistance, as shown in
simulations. TSSort is useful if comparisons of items are expensive or
noisy, or if intermediate results shall be approximately ordered.

1 Introduction

Comparison sorts order lists of items based on an underlying binary operator
(e.g., ≤). Traditionally this comparison operator is assumed to be noiseless.
Nevertheless, there are many sorting scenarios in which this is not the case.

One such area is the ranking of players (or teams) of a game. In this area
players are the items to sort according to their skill. As skill usually is not
directly observable, it can only be deduced from individual performances of
players in competition with other players. A well known sub-area is the ranking
of chess players. In the case of pairwise competitions, the outcome of a single
match between two players can be interpreted as the result of a noisy comparison
between both.

Another area benefiting from noise resistant sorting algorithms is the field
of Human Computation. Human Computation (HC) is a design methodology
which solves complex problems by division into (atomic) sub-problems which are
easily solvable by humans and then computes a solution of the complex problem
by merging the sub-results. A common HC scenario is the collaborative sorting
of a list of items according to a specified property by dividing the problem down
to pairwise comparisons which are then outsourced to humans. One subclass of
HC are Games with a Purpose (GWAPs) [1]. For example, Matchin [2] orders
pictures according to niceness or BetterRelations [3] ranks facts according to
importance, both by eliciting pairwise user preferences.
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In the mentioned areas, individual comparisons are noisy. This means, that
for example an item i can be “smaller” ≺ than another item j in 90 %, i ≈ j in
1 % and i � j in 9 % of the performed comparisons. Such varying results of the
same comparison operation impose a large problem for traditional comparison
sorts, as they would in most cases lead to poor sorting results.

After presenting foundations from the related field of rating algorithms in
the next section, we will discuss desired properties of our sorting algorithm in
Section 3. In the following sections we will describe TSSort and the newly
developed next item pair selection strategy before presenting simulation results
and a discussion thereof.

2 Foundations

As mentioned in the introduction, the sorting of items according to a noisy
comparison operator is related to (chess) rating algorithms.

One of the most famous chess rating systems is the so called Elo rating [4]. In
its original version1, the idea behind Arpad Elo’s rating system is to distinguish
between the unobservable true skill si of a player and the player’s observable
performances pi. While the true skill is assumed to only change slowly over
time, the observed performances can vary from one chess match to the next
(e.g., a player might have a good or bad day). Elo assumed that the observable
performances of a player i are normally distributed around the players true skill:
pi ∼ N (si, β

2). Furthermore, Elo simplified his model by assuming that each
player had the same variance β2 of performances.

With these considerations we can calculate the probability that a player i
wins against an opponent j if their true skills si and sj are known [4]. The Elo
rating system specifies an updating rule (linearized) based on the comparison
of the probability of a win of player i over j and the true outcome of the game:

∆ = αβ
√
π︸ ︷︷ ︸

K-factor

(
y + 1

2
− P (pi > pj |si, sj)

)
= αβ

√
π

(
y + 1

2
− Φ

(
si − sj√

2β2

))
,

where y = 1 if player i wins, y = 0 in case of a draw and y = −1 in case
player i looses against j. After the game, si is updated by adding ∆ and sj by
subtracting ∆.

The reason behind this updating rule is to compare the expectation of the
outcome to the actual result. If player i outperforms the expectation, the bracket
term is larger than 0, and si will rise. If i performs as good as expected, the
bracket term is close to 0, hence si remains nearly unchanged. If i performs
worse than expected, the bracket term is less than 0, and si decreases.

It is easy to apply the Elo rating system to arbitrary sorting problems. Each
item in a given list is assigned a rating si, which is updated depending on the
outcome of comparisons. Afterwards, the items are sorted according to their
score. The underlying idea of modeling individual performances of one item as

1Nowadays the United States Chess Federation (USCF) and Fédération Internationale des

Échecs (FIDE) both use variants of the original version using a logistic distribution which was
found to better fit the winning chances of weaker players. Nevertheless, the underlying ideas
and problems for this work remain the same.
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observances of a random variable which is normally distributed around the true
rating si of the item, accounts for noisy comparison operations.

Nevertheless, the Elo rating system itself does not include a selection strategy
for the next best item pair to compare, especially none, which fulfills the desired
properties mentioned in Seciton 3. In the case of chess, the next match is usually
determined by tournament rules or the players themselves. Furthermore, the
Elo rating system uses some simplifications which have a negative impact when
being used as a sorting algorithm, as we will see in the comparison in Section 5.

In order to overcome the problems of the Elo rating system, a rating algo-
rithm is needed which also models the remaining uncertainty of each item’s true
rating. One such universal rating algorithm is TrueSkill [5]. Developed by Mi-
crosoft Research, it currently is the standard rating algorithm for ranking online
players using Microsoft’s Xbox Live console. TrueSkill includes many features
which are out of the scope of this paper (such as calculating individual player
ratings from multi-player games possibly including multiple teams). Hence, in
this work we only use the innermost part of TrueSkill, namely the its updating
rules without the factor graph.

Similar to the original version of the Elo rating system, individual perfor-
mances pi of a chess player i (or in our case of a game item2) are interpreted to
be observations of a normally distributed random variable. In contrast to the
Elo rating system, TrueSkill does not simplify by assuming that all players’ per-
formance variances are the same, but instead models a player’s performance to
be normally distributed around µi with standard deviation σi: pi ∼ N (µi, σ

2
i ).

One main idea behind TrueSkill is that if two players i, j with (µi, σi)
and (µj , σj) play against each other, we can calculate the probability P (pi >
pj |(µi, σi), (µji, σj)) that i wins against j. After the game we can compare the
real result to our expectation. If our expectation is violated we should up-
date our parameter estimates to better model the observation. In contrast to
the Elo rating system, updating the estimates consists of updating 4 values:
(µi, σi), (µj , σj). Updating the µi estimate component takes the former uncer-
tainty σi into account (analog for j): If the system was already very certain
about player i’s rating (small σi), the value µi is only changed a bit. If the
system was unsure about its former estimate of the player rating (large σi), the
µi update can be much larger (for example for new players). As the system
learns most from surprises, updates (decreases) of the σ values in such a cases
are stronger, but also depend on the uncertainty of the other player’s estimate.

In order to summarize both parameters of the player rating’s estimate into
one rating score value, TrueSkill chooses a pessimistic estimate of the true
player’s rating: si = µi − 3σi. In terms of probabilities this means that with a
99 % (1− Φ(−3)) probability the true rating score of the player will be higher
than si. For players with high uncertainty this means that si is much lower
than µi, while for players with small uncertainty they can roughly be the same.

Similar to the Elo rating system, TrueSkill can be used to order arbitrary
lists of items, just that in this case each item is assigned two values. After
each updating step the items are sorted according to their pessimistic rating
estimate.

Whenever the Elo rating system or TrueSkill are combined with a next best

2In the following we will stick to the chess player example as it is more intuitive to under-
stand. In the end we will switch back to the interpretation of items.
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item pair selection strategy, we will call the resulting sorting algorithm EloSort
and TSSort respectively. TrueSkill itself provides one such strategy, namely
its matchmaking heuristic. Given the rating estimates of two players, we can
calculate their draw probability [5]:

qdraw(β2, µi, µj , σi, σj) =

√
2β2

2β2 + σ2
i + σ2

j

· exp

(
− (µi − µj)

2

2(2β2 + σ2
i + σ2

j )

)

As we will see in Section 4.1, maximizing the draw probability is just one se-
lection strategy, which especially focuses on balanced matches between players.
It tries to maximize fun, but as we will see in Section 5 does not completely
account for the desired properties as listed in the next section.

3 Desired Properties

As mentioned in the introduction, the proposed algorithm is useful in the field
of Human Computation. The listed properties are motivated by an online col-
laborative sorting scenario, in which a server tries to order a list of items by
outsourcing the atomic pairwise comparisons “i ≺ j” to humans.

3.1 Minimized Waste of Comparisons

It is easy to imagine that a poor selection strategy of the next item pair to
compare can lead to many unnecessary comparisons. This is similar to the dif-
ferent strategies in comparison sorts, ranging from simple ideas as in BubbleSort
(O(n2)) to more sophisticated algorithms such as QuickSort (avg. O(n log(n)))
or MergeSort (O(n log(n))). As in Human Computation each wasted decision is
a wasted moment of human time, the goal is to find a rating algorithm which,
compared to a state of the art sorting algorithm, can rate facts without wasting
a lot of comparisons.

3.2 Noise Resistance

Obviously the first property is contradictory to our second goal of sorting despite
noise. Many modern comparison sorts are parsimonious [6, pp. 61ff], which
means they will not perform unnecessary comparisons. Put in another way, such
algorithms will not even notice that something is wrong with the comparison
operator. This is nice as it does not lead to contradictions within the algorithm,
but is bad as the resulting order will most likely be incorrect.

Hence we would like to have an algorithm which can cope with at least
moderate noise levels.

3.3 Quick Convergence and Partial Sorting

Another desired property of a noise resistant sorting algorithm is quick conver-
gence towards a well sorted list.

This is a distinction from our first property and standard sorting algorithms
as they optimize the final (overall) number of comparisons, so the number of
comparisons until the list is perfectly sorted.
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In between, standard algorithms might have very different states such as
MergeSort which merges a decreasing number of smaller sorted temporary lists.
Would MergeSort be interrupted or stopped before it has finished its work, there
would be a high chance that a top item is located somewhere on top of the second
temporary list, which could be somewhere in “the middle” just before the last
merge run.

As humans suddenly might stop sorting a list or often want to use inter-
mediate results as early as possible, it is desirable to have an intermediate list
which is sorted as good as possible after each step.

4 Probabilistic Sorting Algorithms

Especially the desired noise resistance listed in the previous section indicates
that standard comparison sorts are insufficient for our kind of problem. As
mentioned in Section 2 sorting under noise is very related to (chess) rating
systems.

Nevertheless, not all of such rating systems are directly usable as what we
call probabilistic sorting algorithms, as some lack a strategy on how to select
the next best item pair. Even if such a strategy is present, as is the case with
TrueSkill, it might not lead to the best results w.r.t. the aforementioned desired
properties.

4.1 Next Item Pair Selection Strategies

As TrueSkill allows to calculate the draw probability qdraw of a match between
two items i, j (see Section 2), one idea is to select the item pair, which maximizes
qdraw. This is TrueSkill’s matchmaking heuristic, trying to achieve balanced
games, matching players together who are likely to have a neck-and-neck race.
Hence, one idea is to select the item pair with the maximum draw probability :

(i, j) = arg max
(i,j)

qdraw(β2, µi, µj , σi, σj)

Aside from the fact that calculating the maximum draw probability for all
pairs is computationally costly, it is doubtful whether this minimizes the amount
of matches required for sorting. For example two items with equal µ and very
low σ are likely to have a high draw probability, but preferring their selection
over those of items with high σ which still need to be ordered will most certainly
not lead to a minimal amount of decisions.

Following our own argumentation in this example, we propose another ap-
proach: Select those two items whose Gaussians N (µi, σi),N (µj , σj) overlap
most, preferring wide overlaps.

Expressing this idea in terms of 2σ-intervals (corresponding to the 95 %
confidence interval) greatly reduces its computational complexity. Let a, b be
the lower and upper boundary of i’s 2σ interval, and c, d those of j:

a, b := µi ∓ 2σi

c, d := µj ∓ 2σj

wOveri,j :=
min(b, d)−max(a, c)

max(b, d)−min(a, c)
·max(b− a, d− c)
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Intuitively speaking, we divide the length of the scoring interval overlapped by
both 2σ intervals by the length of the scoring interval overlapped by at least
one and then weight the result with the length of the longer 2σ interval. Non
overlapping 2σ intervals will lead to negative values, which is acceptable for our
purpose.

We can then calculate the next best item pair to be the one with the maxi-
mum weighted overlap:

(i, j) = arg max
(i,j)

wOveri,j

Another simplification which greatly reduces the computation costs of this
selection strategy consists of not considering all possible pairs but just such pairs
of successive partners of items, when sorted by their rating scores si. We will
call this selection strategy of a best next game item pair the maximum partner
weighted overlap.

All of the above can also be applied to the Elo rating system, but degenerate
to the maximum partner weighted overlap selection strategy. Additionally as in
this case the intervals all are of the same width, weighting is unnecessary, which
is why we call it maximum partner overlap selection strategy in the following.

A comparison of the proposed best next game item pair selection strategy is
part of the next section.

5 Comparison of Different Approaches

In order to assess the qualities of the investigated sorting algorithms, we ran
simulations for lists of several lengths as shown in Figures 1 and 2.

Each of the graphics shows the sorting process of a list consisting of numbers
from 0 to n− 1, where n is the length denoted in the title of each graphic (len).
The left column of graphics shows results for noise level 0 %. In the right
columns we simulated a noise level of 10 % (i.e., with a probability of 10 % the
result of a comparison if i < j was inverted).

All lists were randomly shuffled then sorted with each of the approaches
(each starting from the same randomly shuffled list). This process of shuffling
and sorting was repeated 128 times for lists with n ≤ 64 and 64 times for
longer lists. During each sorting run, the intermediate lists were recorded after
each comparison of two items. For each intermediate step the Mean Square
Error (MSE) of the list’s items was calculated. Over all runs of one sorting
algorithm the averages of the MSEs and their respective standard deviations
were computed and plotted (y-Axis) after each comparison (x-Axis); the line
indicating the average is surrounded by an area showing the standard deviation.

The compared sorting algorithms include standard comparison based sorting
algorithms, such as bubble-sort (as worst case reference), merge-sort and quick-
sort as references. Furthermore, the Elo and TrueSkill rating algorithms were
converted into one (EloSort) and three (TSSort) different sorting algorithms by
combining them with best next item pair selection strategies mentioned in the
previous section.

In the noiseless graphics we can find merge-sort to always be the fastest
algorithm when it comes to the final sorting time. While, as mentioned before,
merge-sort shows a rather slow convergence to a sorted list in the beginning, it
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is unbeatable in the end. Quick-sort on the other hand shows faster convergence
towards a sorted list in the beginning. As expected, all of the traditional sorting
algorithms run into problems as soon as the comparison operator gets noisy.

As mentioned in Section 2, we can see that the Elo rating system with the
suggested maximum partner overlap selection strategy does not perform well.
Even in noiseless cases it is not able to sort the generated lists by comparing
selected item pairs. The main reason for this is its simplification that all items
have the same variance β2 of individual performances. Also the Elo’s updating
rule does not seem to be designed for a cold starting phase where all items are
set to a rating of 1000. After the start, the item ratings subdivide into two
concentration points of rating scores (1000 ± ∆). If two items with si, sj =
1000 + ∆ are selected in the next step, the loser’s s will afterwards be 1000
again, which causes many unnecessary repetitions. Additionally, the Elo rating
system does not include a per item damping term, but instead all items depend
on the item independent K-factor.

It is interesting to see that all of the tested TrueSkill based sorting ap-
proaches work very well. All of them outperform the above mentioned standard
approaches when it comes to quick convergence of the intermediate lists. Also
the TSSort approaches seem to be able to handle noise quite well in contrast to
all other approaches. A closer look to the approach using the original maximum
draw probability selection strategy shows that while being a lot worse than the
other proposed selection strategies in the beginning, it catches up in the end
in most cases. The suggested maximum weighted overlap and the maximum
partner weighted overlap strategies show little if any differences allowing us to
save a lot computation time by just calculating the maximum partner weighted
overlaps for successive pairs.

Excluding computationally expensive algorithms, we can see that the TrueSkill
based probabilistic sorting algorithm with the maximum partner weighted over-
lap selection strategy for the best next game item pair also performs nicely when
it comes to lists of larger size (256 or 512) elements.

Sadly, aside from its good performance and ability to cope with noise, it was
not possible to find a TrueSkill inherent stopping condition, which would allow
to dynamically stop sorting the an item list as soon as the algorithm notices
that the ordering is sufficient (not necessarily perfect). Hence, in the current
implementation we propose a limit of n·log2(n) updates based on the simulation
results. After this amount of updates, an item list with n items is assumed to
be sufficiently sorted. Nevertheless, it remains as future work to investigate if
we can find such a dynamic stopping condition.

6 Conclusion

In this paper we presented our approaches to create a probabilistic, noise re-
sistant sorting algorithm which converges very quickly towards a well ordered
list. We defined desired properties for such an algorithm: Minimized waste of
decisions, noise resistance and quick convergence.

In our simulations we compared EloSort and TSSort with standard com-
parison sorts and found TSSort combined with our newly developed Maximum
Partner Weighted Overlap selection strategy to be superior to the other algo-
rithms w.r.t. our defined properties.
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Figure 1: Comparison of sorting algorithms (Lists of length 8,16,32,64)
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Figure 2: Comparison of sorting algorithms (Lists of length 128,256,512)
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Even though TSSort shows very good performances, a lot of open questions
remain. Besides evaluating other rating algorithms and tuning TSSort’s param-
eters, it would be interesting to investigate if there is a TSSort inherent stopping
condition which allows the algorithm to stop sorting as soon as it considers the
list sufficiently ordered. Apart from this there are many application scenarios
which have slightly different requirements than our desired properties. For ex-
ample, one might be interested in selection strategies which lead to very precise
sortings at the top or bottom end of a list, while being imprecise elsewhere.
Last but not least, in this paper we assumed noise to occur uniformly over all
comparisons, but it would also be interesting to model noise to occur more often,
the closer the items we compare are together.
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