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Abstract. Medical natural language statements uttered by physicians
are usually graded , i.e., are associated with a degree of uncertainty about
the validity of a medical assessment. This uncertainty is often expressed
through specific verbs, adverbs, or adjectives in natural language. In
this paper, we look into a representation of such graded statements by
presenting a simple non-standard modal logic which comes with a set of
modal operators, directly associated with the words indicating the uncer-
tainty and interpreted through confidence intervals in the model theory.
We complement the model by a set of RDFS-/OWL 2 RL-like entail-
ment (if-then) rules, acting on the syntactic representation of modalized
statements. Our interest in such a formalization is related to the use
of OWL as the de facto standard in (medical) ontologies today and its
weakness to represent and reason about assertional knowledge that is
uncertain or that changes over time. The approach is not restricted to
medical statements, but is applicable to other graded statements as well.

1 Introduction & Background

Medical natural language statements uttered by physicians or other health pro-
fessionals and found in medical examination letters are usually graded , i.e., are
associated with a degree of uncertainty about the validity of a medical assess-
ment. This uncertainty is often expressed through specific verbs, adverbs, or
adjectives in natural language (which we will call gradation words). E.g., Dr. X
suspects that Y suffers from Hepatitis or The patient probably has Hepatitis or
(The diagnosis of) Hepatitis is confirmed.
In this paper, we look into a representation of such graded statements by pre-
senting a simple non-standard modal logic which comes with a small set of
partially-ordered modal operators, directly associated with the words indicating
the uncertainty and interpreted through confidence intervals in the model the-
ory. The approach currently only addresses modalized propositional formulae in
negation normal form which can be seen as a canonical representation of natural
language sentences of the above form (a kind of a controlled natural language).
Our interest in such a formalization is related to the use of OWL in our projects
as the de facto standard for (medical) ontologies today and its weakness to rep-
resent and reason about assertional knowledge that is uncertain [17] or that



changes over time [14]. There are two principled ways to address such a restric-
tion: either by sticking with the existing formalism (viz., OWL) and trying to
find an encoding that still enables some useful forms of reasoning [17]; or by
deviating from a defined standard in order to arrive at an easier, intuitive, and
less error-prone representation [14].
Here, we follow the latter avenue, but employ and extend the standard entail-
ment rules from [8] and [21] for positive binary relation instances in RDFS and
OWL towards modalized n-ary relation instances, including negation. These en-
tailment rules talk about, e.g., subsumption, class membership, or transitivity,
and have been found useful in many applications. The proposed solution has
been implemented in HFC [15], a forward chaining engine that builds Herbrand
models which are compatible with the open-world view underlying OWL. The
approach presented in this paper is clearly not restricted to medical statements,
but is applicable to other graded statements as well (including trust), e.g., tech-
nical diagnosis (the engine is probably overheated) or more general in everyday
conversation (I’m pretty sure that X has signed a contract with Y ) which can be
seen as the common case (contrary to true universal statements).

2 Graded Medical Statements: OWL vs. Modalized
Representation

We note here that our initial modal operators were inspired by the qualitative
information parts of diagnostic statements from [17] shown in Figure 1, but
we might have chosen other operators, capturing the meaning of the gradation
words used in the examples at the beginning of Section 1 (e.g., probably).

Fig. 1. Vague schematic mappings of the qualitative information parts excluded (E),
unlikely (U), not excluded (N), likely (L), and confirmed (C) to confidence intervals,
as used in this paper. Figure taken from [17].

These qualitative parts were used in statements about, e.g., liver inflammation
with varying levels of detail. From this, we want to infer that, e.g., if Hepatitis
is confirmed then Hepatitis is likely but not Hepatitis is unlikely . And if Viral
Hepatitis B is confirmed , then both Viral Hepatitis is confirmed and Hepatitis
is confirmed (generalization). Things “turn around” when we look at the adjec-
tival modifiers excluded and unlikely : if Hepatitis is excluded then Hepatitis is
unlikely , but not Hepatitis is not excluded . Furthermore, if Hepatitis is excluded ,



then both Viral Hepatitis is excluded and Viral Hepatitis B is excluded (spe-
cialization). The set of plausible entailments for this kind of graded reasoning is
depicted in Figure 2.

Fig. 2. Statements about liver inflammation with varying levels of detail: Viral Hep-
atitis B (vHB) implies Viral Hepatitis (vH) which implies Hepatitis (H). The ma-
trix depicts entailments considered plausible, based on the inferences that follow from
Figure 1. Hepatitis and its subclasses can be easily replaced by other medical situa-
tions/diseases. Figure taken from [17].

[17] consider five encodings (one outside the expressivity of OWL), from which
only two were able to fully reproduce the inferences from Figure 2. Let us quickly
look on approach 1, called existential restriction, before we informally present
its modal counterpart (we will use abstract description logic syntax here [2]):

HepatitisSituation ≡ ClinicalSituation u ∃hasCondition.Hepatitis

% Hepatitis subclass hierarchy
ViralHepatitisB v ViralHepatitis v Hepatitis

% vagueness via two subclass hierarchies
IsConfirmed v IsLikely v IsNotExcluded IsExcluded v IsUnlikely

% a diagnostic statement about Hepatitis
BeingSaidToHaveHepatitisIsConfirmed ≡ DiagnosticStatement u
∀hasCertainty.IsConfirmed u ∃isAboutSituation.HepatitisSituation

Standard OWL reasoning under this representation then ensures that, for in-
stance,

BeingSaidToHaveHepatitsIsConfirmed v BeingSaidToHaveHepatitisIsLikely

is the case, exactly one of the plausible inferences from Figure 2.
The encodings in [17] were quite cumbersome as the primary interest was to
stay within the limits of the underlying calculus (OWL). Besides coming up
with complex encodings, only minor forms of reasoning were possible, viz., sub-
sumption reasoning. These disadvantages are a result of two conscious decisions:



OWL only provides unary and binary relations (concepts and roles) and comes
up with a (mostly) fixed set of entailment/tableaux rules.
In our approach, however, the qualitative information parts from Figure 1 are
first class citizens of the object language (the modal operators) and diagnos-
tic statements from the Hepatitis use case are expressed through the binary
property suffersForm between p (patients, people) and d (diseases, diagnoses).
The plausible inferences are then simply a byproduct of the instantiation of the
entailment rule schemas (G) from Section 5.1, and (S1) and (S0) from Section
5.2 for property suffersForm (the rule variables are universally quantified; > =
universal truth; C = confirmed ; L = likely), e.g.,

(S1)>ViralHepatitisB(d)∧ViralHepatitisB v ViralHepatitis→ >ViralHepatitis(d)
(G) CsuffersFrom(p, d)→ LsuffersFrom(p, d)

Two things are worth to be mentioned here. Firstly , not only OWL-like prop-
erties (binary relations) can be graded, such as CsuffersFrom(p, d) (= it is con-
firmed that p suffers from d), but also class membership (unary relations), e.g.,
CViralHepatitisB(d) (= it is confirmed that d is Viral Hepatitis B). However,
as the original OWL example above is unable to make use of any modals, we
employ a special modal > here:>ViralHepatitisB(d). Secondly , modal operators
are only applied to assertional knowledge, involving individuals (the ABox in
OWL)—neither axioms about classes (TBox) nor properties (RBox) are being
affected by modals, as they are supposed to express universal truth.

3 Confidence of Statements and Confidence Intervals

We address the confidence of an asserted medical statement [17] through graded
modalities applied to propositional formulae: E (excluded), U (unlikely), N (not
excluded), L (likely), and C (confirmed). For various (technical) reasons, we add
a wildcard modality ? (unknown), a complementary failure modality ! (error),
plus two further modalities to syntactically state definite truth and falsity: >
(true) and ⊥ (false). Let 4 now denotes the set of all modalities:

4 = {?, !,>,⊥, E, U,N,L,C}
A measure function

µ : 4 7→ [0, 1]× [0, 1]

is a mapping which returns the associated confidence interval [l, h] for a modality
from 4 (l ≤ h). We presuppose that

• µ(?) = [0, 1] • µ(!) = ∅3 • µ(>) = [1, 1] • µ(⊥) = [0, 0]

In addition, we define two disjoint subsets of 4, called

• 1 = {>, C, L,N} • 0 = {⊥, E, U}
3 Recall that an interval is a set of real numbers, together with a total ordering relation

(e.g., ≤) over the elements, thus ∅ is a perfect, although degraded interval.



and again make a presupposition: the confidence intervals for modals from 1 end
in 1, whereas the confidence intervals for 0 modals always start with 0. It is
worth noting that we do not make use of µ in the syntax of the modal language
(for which we employ the modalities from 4), but in the semantics when dealing
with the satisfaction relation of the model theory (see Section 4).
We have talked about confidence intervals now several times without saying what
we actually mean by this. Suppose that a physician says that it is confirmed (=
C) that patient p suffers from disease d, given a set of recognized symptoms
S = {s1, . . . , sk}: CsuffersFrom(p, d).
Assuming that a different patient p′ shows the same symptoms S (and only S,
and perhaps further symptoms which are, however, independent from S), we
would assume that the same doctor would diagnose CsuffersFrom(p′, d).
Even an other, but similar trained physician is supposed to grade the two pa-
tients similarly . This similarity which originates from patients showing the same
symptoms and from physicians being taught at the same medical school is ad-
dressed by confidence intervals and not through a single (posterior) probability,
as there are still variations in diagnostic capacity and daily mental state of the
physician. By using intervals (instead of single values), we can usually reach a
consensus among people upon the meaning of gradation words, even though the
low/high values of the confidence interval for, e.g., confirmed might depend on
the context.
Being a bit more theoretic, we define a confidence interval as follows. Assume
a Bernoulli experiment [13] that involves a large set of n patients P sharing
the same symptoms S. W.r.t. our example, we would like to know whether
suffersFrom(p, d) or ¬suffersFrom(p, d) is the case for every patient p ∈ P , shar-
ing S. Given a Bernoulli trials sequence X = 〈x1, . . . , xn〉 with indicator random
variables xi ∈ {0, 1} for a patient sequence 〈p1, . . . , pn〉, we can approximate the
expected value E for suffersFrom being true, given disease d and background
symptoms S by the arithmetic mean A:

E[X] ≈ A[X] =

∑n
i=1 xi
n

Due to the law of large numbers, we expect that if the number of elements in
a trials sequence goes to infinity, the arithmetic mean will coincide with the
expected value:

E[X] = lim
n→∞

∑n
i=1 xi
n

Clearly, the arithmetic mean for each new finite trials sequence is different, but
we can try to locate the expected value within an interval around the arithmetic
mean:

E[X] ∈ [A[X]− ε1,A[X] + ε2]

For the moment, we assume ε1 = ε2, so that A[X] is in the center of this interval
which we will call from now on confidence interval .
Coming back to our example and assuming µ(C) = [0.9, 1], CsuffersFrom(p, d)
can be read as being true in 95% of all cases known to the physician, involving



patients p potentially having disease d and sharing the same prior symptoms
(evidence) s1, . . . , sk:∑

p∈P Prob(suffersFrom(p, d)|s1, . . . , sk)

n
≈ 0.95

The variance of ±5% is related to varying diagnostic capabilities between (com-
parative) physicians, daily mental form, undiscovered important symptoms or
examinations which have not been carried out (e.g., lab values), or perhaps even
the physical stature of the patient which unconsciously affects the final diagno-
sis, etc, as elaborated above. Thus the individual modals from 4 express (via
µ) different forms of the physician’s confidence, depending on the set of already
acquired symptoms as (potential) explanations for a specific disease.

4 Model Theory and Negation Normal Form

Let C denote the set of constants that serve as the arguments of a relation in-
stance. In order to define basic n-ary propositional formulae (ground atoms,
propositional letters), let p(c) abbreviates p(c1, . . . , cn), for some c1, . . . , cn ∈ C,
given length(c) = n. In case the number of arguments do not matter, we some-
times simply write p, instead of, e.g., p(c, d) or p(c). As before, we assume
4 = {?, !,>,⊥, E, U,N,L,C}. We inductively define the set of well-formed for-
mulae φ of our modal language as follows:

φ ::= p(c) | ¬φ | φ ∧ φ′ | φ ∨ φ′ | 4φ

4.1 Simplification and Normal Form

We now syntactically simplify the set of well-formed formulae φ by restricting
the uses of negation and modalities to the level of propositional letters p and
call the resulting language Λ:

π ::= p(c) | ¬p(c)

φ ::= π | 4π | φ ∧ φ′ | φ ∨ φ′ |
To do so, we need the notion of a complement modal δC for every δ ∈ 4, where

µ(δC) := µ(δ)
C

= µ(?) \ µ(δ) = [0, 1] \ µ(δ)

I.e., µ(δC) is defined as the complementary interval of µ(δ) (within the bounds
of [0, 1], of course). For example, E and N (excluded, not excluded) or ? and !
(unknown, error) are already existing complementary modals. We also require
mirror modals δM for every δ ∈ 4 whose confidence interval µ(δM) is derived
by “mirroring” µ(δ) to the opposite site of the confidence interval, either to the
left or to the right:

if µ(δ) = [l, h] then µ(δM) := [1− h, 1− l]
For example, E and C (excluded, confirmed) or > and ⊥ (top, bottom) are
mirror modals. In order to transform φ into its negation normal form, we need
to apply simplification rules a finite number of times (until rules are no longer
applicable). We depict those rules by using the ` relation, read as formula `
simplified formula:



1. ?φ ` ε % ?φ is not informative at all, but its existence should alarm us

2. ¬¬φ ` φ
3. ¬(φ ∧ φ′) ` ¬φ ∨ ¬φ′
4. ¬(φ ∨ φ′) ` ¬φ ∧ ¬φ′
5. ¬4φ ` 4Cφ (example: ¬Eφ = Nφ)

6. 4¬φ ` 4Mφ (example: E¬φ = Cφ)

Clearly, the mirror modals δM are not necessary as long as we explicitly allow
for negated statements, and thus case 6 can, in principle, be dropped.
What is the result of simplifying 4(φ ∧ φ′) and 4(φ ∨ φ′)? Let us start with
the former case and consider as an example the statement about an engine that
a mechanical failure m and an electrical failure e is confirmed: C(m ∧ e). It
seems plausible to simplify this expression to Cm ∧ Ce. Commonsense tells us
furthermore that neither Em nor Ee is compatible with this description.
Now consider the “opposite” statement E(m ∧ e) which must not be rewritten
to Em ∧Ee, as either Cm or Ce is well compatible with E(m ∧ e). Instead, we
rewrite this kind of “negated” statement as Em ∨ Ee, and this works fine with
either Cm or Ce.
In order to address the other modal operators, we generalize these plausible
inferences by making a distinction between 0 and 1 modals (see Section 3):

7a. 0(φ ∧ φ′) ` 0φ ∨ 0φ′

7b. 1(φ ∧ φ′) ` 1φ ∧ 1φ′

Now let us consider disjunction inside the scope of a modal operator. As we do
allow for the full set of Boolean operators, we are allowed to deduce

8. 4(φ ∨ φ′) ` 4(¬(¬(φ ∨ φ′))) ` 4(¬(¬φ ∧ ¬φ′)) ` 4M(¬φ ∧ ¬φ′)

This is, again, a conjunction, so we apply schemas 7a and 7b, giving us

8a. 0(φ∨φ′) ` 0M(¬φ∧¬φ′) ` 1(¬φ∧¬φ′) ` 1¬φ∧1¬φ′ ` 1Mφ∧1Mφ′ ` 0φ∧0φ′

8b. 1(φ∨φ′) ` 1M(¬φ∧¬φ′) ` 0(¬φ∧¬φ′) ` 0¬φ∨0¬φ′ ` 0Mφ∨0Mφ′ ` 1φ∨1φ′

Note how the modals from 0 in 7a and 8a act as a kind of negation to turn the
logical operators into their counterparts, similar to de Morgan’s law.

4.2 Model Theory

In the following, we extend the standard definition of modal (Kripke) frames and
models [3] for the graded modal operators from 4 by employing the measure
function µ and focussing on the minimal definition for φ in Λ. A frame F for
the probabilistic modal language Λ is a pair

F = 〈W,4〉
whereW is a non-empty set of worlds (or situations, states, points, vertices) and
4 a family of binary relations over W ×W, called accessibility relations. Note
that we have overloaded 4 (and each δ ∈ 4) in that it refers to the modals used
in the syntax of Λ, but also to depict the binary relations, connecting worlds.



A model M for the probabilistic modal language Λ is a triple

M = 〈F ,V, µ〉
such that F is a frame, V a valuation, assigning each proposition φ a subset
of W, viz., the set of worlds in which φ holds, and µ a mapping, returning the
confidence interval for a given modality from 4. Note that we only require a
definition for µ in M (the model, but not in the frame), as F represent the
relational structure without interpreting the edge labeling (the modal names) of
the graph.

The satisfaction relation |=, given a model M and a specific world w is induc-
tively defined over the set of well-formed formulae of Λ in negation normal form
(remember π ::= p(c) | ¬p(c)):

1. M, w |= p(c) iff w ∈ V(p(c)) and w 6∈ V(¬p(c))

2. M, w |= ¬p(c) iff w ∈ V(¬p(c)) and w 6∈ V(p(c))

3. M, w |= φ ∧ φ′ iff M, w |= φ and M, w |= φ′

4. M, w |= φ ∨ φ′ iff M, w |= φ or M, w |= φ′

5. for all δ ∈ 4: M, w |= δπ iff #{u|(w,u)∈δ andM,u|=π}
#{u|(w,u)∈δ′ and δ′∈4} ∈ µ(δ)

The last case of the satisfaction relation addresses the modals: for a world w,
we look for the successor states u that are directly reachable via δ and in which
π holds, and divide the number of such states by the number of all worlds that
are directly reachable from w. This number between 0 and 1 must lie in the
confidence interval µ(δ) of δ in order to satisfy δπ, given M, w.

It is worth noting that the satisfaction relation above differs in its handling
of M, w |= ¬p(c), as negation is not interpreted through the absence of p(c)
(M, w 6|= p(c)), but through the existence of ¬p(c). This treatment addresses
the open-world nature in OWL and the evolvement of a (medical) domain over
time.

We also note that the definition of the satisfaction relation for modalities (last
clause) is related to the possibility operators Mk· (= ♦≥k·; k ∈ N) [6] and counting
modalities · ≥ n [1], used in modal logic characterizations of description logics
with cardinality restrictions.

4.3 Well-Behaved Frames

As we will see later, it is handy to assume that the graded modals are arranged
in a kind of hierarchy—the more we move “upwards” in the hierarchy, the more
a statement in the scope of a modal becomes uncertain. In order to address this,
we slightly extend the notion of a frame by a third component � ⊆ 4 ×4, a
partial order between modalities:

F = 〈W,4,�〉

Let us consider the following modal hierarchy that we build from the set 4 of
already introduced modals:
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This graphical representation is just a compact way to specify a set of 33 binary
relation instances over 4, such as, e.g., > � >, > � N , C � N , ⊥ � ?, or ! � ?.
The above mentioned form of uncertainty is expressed by the measure function
µ in that the associated confidence intervals become larger:

if δ � δ′ then µ(δ) ⊆ µ(δ′)

In order to arrive at a proper and intuitive model-theoretic semantics which
mirrors intuitions such as if φ is confirmed (Cφ) then φ is likely (Lφ), we will
focus here on well-behaved frames F which enforce the existence of edges in W,
given � and δ, δ↑ ∈ 4:

if (w, u) ∈ δ and δ � δ↑ then (w, u) ∈ δ↑

However, by imposing this constraint, we also need to adapt the last case of the
satisfiability relation:

5. for all δ ∈ 4: M, w |= δπ iff #{u|(w,u)∈δ↑,δ�δ↑, andM,u|=π}
#{u|(w,u)∈δ′ and δ′∈4} ∈ µ(δ)

Not only are we scanning for edges (w, u) labeled with δ and for successor states u
of w in which π holds in the denominator (original definition), but also take into
account edges marked with more general modals δ↑, s.t. δ↑ � δ. This mechanism
implements a kind of built-in model completion that is not necessary in ordinary
modal logics as they deal with only a single relation (viz., unlabeled arcs) that
connects elements from W and the two modals ♦ and � are defined in the usual
dual way: �φ ≡ ¬♦¬φ.

5 Entailment Rules

This section addresses a restricted subset of entailment rules which will unveil
new (or implicit) knowledge from graded medical statements. Recall that these
kind of statements (in negation normal form) are a consequence of the applica-
tion of simplification rules as depicted in Section 4.1. Thus, we assume a pre-
processing step here that “massages” more complex statements that arise from
a representation of graded (medical) statements in natural language. The entail-
ments which we will present in a moment can either be directly implemented
in a tuple-based reasoner, such as HFC, or in triple-based engines (e.g., Jena,
OWLIM) which need to reify the medical statements in order to be compliant
with the RDF triple model.

5.1 Modal Entailments

The entailments presented in this section deal with plausible inference centered
around modals δ, δ′ ∈ 4, some of them partly addressed in [17] in a pure OWL
setting. We use the implication sign → to depict the entailment rules



lhs → rhs
which act as completion (or materialization) rules the way as described in, e.g.,
[8] and [21], and used in today’s semantic repositories. We sometimes even use
the bi-conditional ↔ to address that the LHS and the RHS are semantically
equivalent, but will indicate the direction that should be used in a practical
setting. As before, we define π ::= p(c) | ¬p(c).
We furthermore assume that for every modal δ ∈ 4, a complement modal δC

and a mirror modal δM exist (see Section 4.1).

Lift

(L) π ↔ >π
This rule interprets propositional statements as special modal formulae. It might
be dropped and can be seen as a pre-processing step. We have used it in the
Hepatitis example above. Usage: left-to-right direction.

Generalize

(G) δπ ∧ δ � δ′ → δ′π

This rule schema can be instantiated in various ways, using the modal hierarchy
from Section 4.3; e.g., >π → Cπ, Cπ → Lπ, or Eπ → Uπ. It has been used in
the Hepatitis example.

Complement

(C) ¬δπ ↔ δCπ

In principle, (C) is not needed in case the statement is already in negation
normal form. This schema might be useful for natural language paraphrasing
(explanation). Given 4, there are two possible instantiations, viz., Eπ ↔ ¬Nπ
and Nπ ↔ ¬Eπ (note: µ(E) ∪ µ(N) = [0, 1]).

Mirror

(M) δ¬π ↔ δMπ

Again, (M) is in principle not needed as long as the modal proposition is in
negation normal form, since we do allow for negated propositional statements
¬p(c). This schema might be useful for natural language paraphrasing (explana-
tion). For 4, there are six possible instantiations, viz., Eπ ↔ C¬π, Cπ ↔ E¬π,
Lπ ↔ U¬π, Uπ ↔ L¬π, >π ↔ ⊥¬π, and ⊥π ↔ >¬π.

Uncertainty

(U) δπ ∧ ¬δπ ↔ δπ ∧ δCπ ↔?π

The co-occurrence of δπ and ¬δπ does not imply logical inconsistency (proposi-
tional case: π ∧ ¬π), but leads to complete uncertainty about the validity of π.
Remember that µ(?) = µ(δ) ∪ µ(δC) = [0, 1] (usage: left-to-right direction):

0 1

µ : |—δC—|——δ——|
π π



Negation

(N) δ(π ∧ ¬π)↔ δπ ∧ δ¬π ↔ δπ ∧ δMπ ↔ δM¬π ∧ δMπ ↔ δM(π ∧ ¬π)

(N) shows that δ(π∧¬π) can be formulated equivalently using the mirror modal:
0 1

µ : |—δM—|——|— δ—|
π ∧ ¬π π ∧ ¬π

In general, (N) is not the modal counterpart of the law of non-contradiction, as
π ∧ ¬π is usually afflicted by vagueness, meaning that from δ(π ∧ ¬π), we can
not infer that π ∧ ¬π is the case for the concrete example in question (recall
the intention behind the confidence intervals; see Section 3). There is one no-
table exception, involving the > and ⊥ modals. This is formulated by the next
entailment rule.

Error

(E) >(π ∧ ¬π)↔ ⊥(π ∧ ¬π)→ !(π ∧ ¬π)

(E) is the modal counterpart of the law of non-contradiction (recall: > = ⊥M

and ⊥ = >M). For this reason and by definition, the error (or failure) modal !
from Section 3 comes into play here. The modal ! can serve as a hint to either
stop a computation the first time it occurs or to continue reasoning, but to
syntactically memorize the ground atoms (viz., π and ¬π) which have led to an
inconsistency. Usage: left-to-right direction.

5.2 Subsumption Entailments

As before, we define two subsets of4, called 1 = {>, C, L,N} and 0 = {⊥, E, U},
thus 1 and 0 effectively become

1 = {>, C, L,N,UC} 0 = {⊥, U,E,CC, LC, NM}
due to the use of complement modals δC and mirror modals δM for every base
modal δ ∈ 4 and by assuming that E = NC, E = CM, U = LM, and ⊥ = >M,
together with the four “opposite” cases.
Now let v abbreviate relation subsumption as known from description log-
ics and realized in OWL through rdfs:subClassOf (class subsumption) and
rdfs:subPropertyOf (property subsumption). Given these remarks, we define
two further very practical and plausible modal entailments which can be seen as
the modal extension of the entailment rules (rdfs9) (for classes) and (rdfs7) (for
properties) in RDFS; see [8].

(S1) 1p(c) ∧ p v q → 1q(c) (S0) 0q(c) ∧ p v q → 0p(c)

Note how the use of p and q switches in the antecedent and the consequent, even
though p v q holds in both cases. Note further that propositional statements
π are restricted to the positive case p(c) and q(c), as their negation in the
antecedent will not lead to any valid entailments. Here are four instantiations of
(S0) and (S1) (remember, C ∈ 1 and E ∈ 0):



CViralHepatitisB(x) ∧ ViralHepatitisB v ViralHepatitis→ CViralHepatitis(x)
EHepatitis(x) ∧ ViralHepatitis v Hepatitis→ EViralHepatitis(x)

CdeeplyEnclosedIn(x, y)∧deeplyEnclosedIn v containedIn→ CcontainedIn(x, y)
EcontainedIn(x, y) ∧ superficiallyLocatedIn v containedIn
→ EsuperficiallyLocatedIn(x, y)

5.3 Extended RDFS & OWL Entailments

In this section, we will consider some of the entailment rules for RDFS [8] and
a restricted subset of OWL [21]. Remember that modals only head literals π,
neither TBox nor RBox axioms. Concerning the original entailment rules, we will
distinguish four principal cases to which the extended rules belong (we will only
consider the unary and binary case here as used in description logics/OWL):

1. TBox and RBox axiom schemas will not undergo a modal extension;
2. rules get extended in the antecedent;
3. rules take over the modal from the antecedent to the consequent;
4. rules aggregate several modals from the antecedent in the consequent.

We will illustrate the individual cases in the following subsections with exam-
ples by using a kind of description logic syntax. Clearly, the set of extended
entailments depicted here is not complete.

Case-1 Rules: No Modals Entailment rule rdfs11 from [8] deals with class
subsumption: C v D ∧ D v E→ C v E. As this is a terminological axiom schema,
the rule stays constant in the modal domain. Example:

ViralHepatitisB v ViralHepatitis ∧ ViralHepatitis v Hepatitis
→ ViralHepatitisB v Hepatitis

Case-2 Rules: Modals on LHS, No or > Modals on RHS The following
original rule rdfs3 from [8] imposes a range restriction on objects of binary ABox
relation instances: ∀P.C ∧ P(x, y)→ C(y).
The extended version (which we call Mrdfs3) needs to address the proposition
in the antecedent, but must not change the consequent (even though we always
use the > modality here for typing; see Section 2):

(Mrdfs3) ∀P.C ∧ δP(x, y)→ >C(y)

Example: ∀suffersFrom.Disease ∧ LsuffersFrom(x, y) → >Disease(y)

Case-3 Rules: Keeping LHS Modals on RHS Inverse properties switch
their arguments [21]: P ≡ Q− ∧ P(x, y)→ Q(y, x).
The extended version of rdfp8 simply keeps the modal operator:

(Mrdfp8) P ≡ Q− ∧ δP(x, y)→ δQ(y, x)

Example: containedIn ≡ contains− ∧ CcontainedIn(x, y) → Ccontains(y, x)



Case-4 Rules: Aggregating LHS Modals on RHS Now comes the most
interesting case of modalized RDFS/OWL entailment rules that offers several
possibilities on a varying scale between skeptical and credulous entailments, de-
pending on the degree of uncertainty, as expressed by the measuring function µ
of the modal operator. Consider the original rule rdfp4 from [21] for transitive
properties P: P+ v P ∧ P(x, y) ∧ P(y, z)→ P(x, z).
How does the modal on the RHS of the extended rule look like, depending on
the two LHS modals? There are several possibilities. By operating directly on
the modal hierarchy , we are allowed to talk about, e.g., the least upper bound
or the greatest lower bound of δ and δ′. When taking the associated confidence
intervals into account, we might even play with the low and high number of
the intervals, say, by applying the arithmetic mean or simply by multiplying the
corresponding numbers.
Let us first consider the general rule from which more specialized versions can
be derived, simply by instantiating the combination operator �:

(Mrdfp4) P+ v P ∧ δP(x, y) ∧ δ′P(y, z)→ (δ � δ′)P(x, z)

Here is an instantiation of Mrdfp4 dealing with the transitive relation contains
from above: Ccontains(x, y) ∧ Lcontains(y, z) → (C � L)contains(x, z)

What is the result of C � L here? It depends. Probably both on the applica-
tion domain and the epistemic commitment one is willing to accept about the
“meaning” of gradation words/modal operators. To enforce that � is at least
both commutative and associative is probably a good idea, making the sequence
of modal clauses order-independent.

5.4 Custom Entailments

Custom entailments are inference rules that are not derived from universal non-
modalized RDFS and OWL entailment rules (Section 5.3), but have been for-
mulated to capture the domain knowledge of experts (e.g., physicians). Here is
an example. Consider that Hepatitis B is an infectious disease

ViralHepatitisB v InfectiousDisease v Disease

and note that there exist vaccines against it. Assume that the liver l of patient p
quite hurts (modal C), but p has been definitely vaccinated (modal >) against
Hepatitis B before:

ChasPain(p, l) ∧ >vaccinatedAgainst(p,ViralHepatitisB)

Given that p received a vaccination, the following custom rule will not fire (x
and y below are now universally-quantified variables; z an existentially-quantified
RHS-only variable):

>Patient(x) ∧ >Liver(y) ∧ ChasPain(x, y) ∧ UvaccinatedAgainst(x,ViralHepatitisB)
→ NViralHepatitisB(z) ∧ NsuffersFrom(x, z)

Now assume another person p′ that is pretty sure (s)he was never vaccinated:

EvaccinatedAgainst(p′,ViralHepatitisB)

Given the above custom rule, we are allowed to infer that (h instantiation of z)



NViralHepatitisB(h) ∧ NsuffersFrom(p′, h)

The subclass axiom from above thus assigns

N InfectiousDisease(h)

so that we can query for patients for whom an infectious disease is not unlikely ,
in order to initiate appropriate methods (e.g., further medical investigations).

6 Related Approaches and Remarks

It is worth noting to state that this paper is interested in the representation of
and reasoning with uncertain assertional knowledge, and neither in dealing with
vagueness found in natural language (very small), nor in handling defaults and
exceptions in terminological knowledge (penguins can’t fly).
To the best of our knowledge, the modal logic presented in this paper uses
for the first time modal operators for expressing the degree of (un)certainty of
propositions. These modal operators are interpreted in the model theory through
confidence intervals, by using a measure function µ. From a model point of view,
our modal operators are related to counting modalities ♦≥k [6, 1]—however, we
do not require a fixed number k ∈ N of reachable successor states (absolute
frequency), but instead divide the number of worlds v reached through label
δ ∈ 4 by the number of all reachable worlds, given current state w, yielding
0 ≤ p ≤ 1. This fraction then is further constrained by requiring p ∈ µ(δ)
(relative frequency), as defined in case 5. of the satisfaction relation in Sections
4.2 and 4.3.

As [23] precisely put it: “... what axioms and rules must be added to the proposi-
tional calculus to create a usable system of modal logic is a matter of philosoph-
ical opinion, often driven by the theorems one wishes to prove ...”. Clearly, the
logic Λ is no exception and its design is driven by commonsense knowledge and
plausible inferences, we try to capture.
Our modal logic can be regarded as an instance of the normal modal logic
K := (N) + (K) when identifying the basic modal operator � with the modal
> (and only with >) and by enforcing the well-behaved frame condition from
Section 4.3. Given � ≡ >, Λ then includes the necessitation rule (N) p → >p
and the distribution axiom (K) >(p→ q)→ (>p→ >q) where p, q being special
theorems in Λ, viz., positive and negative propositional letters.
(N) can be seen as a special case of (L), the Lift modal entailment (left-to-
right direction) from Section 5.1. (K) can be proven in Λ by choosing > ∈ 1
in simplification rule 8b (Section 4.1) and by instantiating (G), the Generalize
modal entailment (Section 5.1), together with the application of the tautology
(p→ q)⇔ (¬p ∨ q):

>(p→ q)→ (>p→ >q)
>(¬p ∨ q)→ (¬>p ∨ >q)

(>¬p ∨ >q)→ (¬>p ∨ >q)
>¬p→ ¬>p
⊥p→ >Cp



The final simplification at which we arrive is valid, since ⊥ � >C:

µ(⊥) = [0, 0] ⊆ [0, 1) = µ(>C)

Again, through (L) (right-to-left direction), Λ also incorporates the reflexivity
axiom (T ) >p → p making Λ (at least) an instance of the system T. However,
this investigation is in a certain sense useless as it does not address the other
modals: almost always, neither (N), (K), nor (T ) hold for modals from 4. Thus,
we can not view Λ as an instance of a poly-modal logic.

Several approaches to representing and reasoning with uncertainty have been in-
vestigated in Artificial Intelligence (see [16, 7] for two comprehensive overviews).
Very less so has been researched in the Description Logic community, and lit-
tle or nothing of this research has find its way into implemented systems. [9]
and [10] consider uncertainty in ALC concept hierarchies, plus concept typing of
individuals (unary relations) in different ways (probability values vs. intervals;
conditional probabilities in TBox vs. ABox). They do not address uncertain
binary (or even n-ary) relations. [22] investigates vagueness in ALC concept
descriptions to address statements, such as the patient’s temperature is high,
but also for determining membership degree (38.5 ℃ ). This is achieved through
membership manipulators which are functions, returning a truth value between
0 and 1, thus deviating from a two-valued logic. [20] defines a fuzzy extension
of ALC, based on Zadeh’s fuzzy logic. As in [22], the truth value of an asser-
tion is replaced by a membership value from [0, 1]. ALC assertions α in [20] are
made fuzzy by writing, e.g., 〈α ≥ n〉, thus taking a single truth value from [0, 1].
An even more expressive description logic, Fuzzy OWL, based on OWL DL, is
investigated in [19].
Our work might be viewed as a modalized version of a restricted fragment of
Subjective Logic [11, 12], a probabilistic logic that can be seen as an extension of
Dempster-Shafer belief theory. Subjective Logic addresses subjective believes by
requiring numerical values for believe b, disbelieve d, and uncertainty u, called
(subjective) opinions. For each proposition, it is required that b + d + u = 1.
The translation from modals δ to 〈b, d, u〉 is determined by the length of the
confidence interval µ(δ) = [l, h] and its starting/ending numbers, viz., u := h− l,
b := l, and d := 1− h.
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