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Abstract. Home environments are one of the subjects of study regarding ambi-
ent intelligent systems for various purposes, including development of assis-
tance systems for the elderly and energy consumption optimization. Sensing the 
environmental state via different sensors is the first and crucial component of 
every ambient intelligent system. In this work we investigate the use of envi-
ronmental sounds for touch-free audio-based device recognition in a home envi-
ronment. For this purpose, we analyzed sound characteristics of typical home 
appliances using different processing techniques. We are using the acquired 
knowledge to develop a flexible set of features, which can be set manually or 
determined automatically. To classify the device-specific acoustic fingerprints – 
consisting of a significant subset of our features – we use established supervised 
learning techniques, whereby we optimized the straightforward ones. After 
building a recognition basis for the recognition of fixed length sound buffers on 
demand, we implemented a live recognition mode for real-time environment 
monitoring, providing runtime setup adjustments. We then extended our work 
with the recognition of untrained, simultaneously working, known devices by 
mixing their records, utilizing semi-supervised learning. We then anticipated 
promising results in our evaluation in various aspects, including recognition 
rate, performance for the different combinations of features, as well as to study 
the reliability of an automatic mixing of trained data. 

Keywords: Ambient Intelligence, Smart Home, Sound-based Device Recogni-
tion 

1 Introduction 

In our modern way of life we are surrounded by an increasing number of devices, 
which we use to perform a large variety of activities. Some of those activities are not 
always straightforward and we often need some assistance to perform them. To make 
this happen, one has to give some intelligence to the devices to make them able to 
understand our intentions and to fit into our needs. In other words: making those de-
vices sensitive and responsive to our presence, instead of relying on us to learn how to 
operate them. Making the devices more sensitive to human actions is one of the goals 
in the notion of activity recognition. This is the first step of designing a so called am-
bient intelligent system, which at first anticipates human actions with their purpose in 



a given environment, and then acts in an intelligent manner by predicting and assist-
ing future actions. This should hold especially in the case, where humans are experi-
encing difficulties in performing those actions, but there are many further applica-
tions, such as optimizing electrical energy consumption. 

 
In this work we study the sensing component of an ambient intelligent system. 

Such a component utilizes sensors and techniques to process their data in order to 
extract the desired information about the environment. Most studied techniques for 
this task, in respect to the human perception, are using visual and haptic sensors. Con-
sidering our perception, an additional way to sense the environment is by the per-
ceived sounds. For this purpose, we introduce our Sound-based Device Recognition 
Framework – a fully developed system for device recognition based on analyzing 
environmental sounds. Our environment consists of a normal home. Its devices are 
commonly used for performing daily tasks, like the electrical toothbrush, the shaver, 
or the washing machine. Most of those devices create or disperse sounds, while being 
used to perform different activities. We study the most frequently used devices and 
the nature of the sounds, which accompany their usage. We then use this knowledge 
to transform those sounds to different acoustic representations in order to extract their 
most telling characteristics for the purpose of sound-based device fingerprinting. For 
the gathering of acoustic fingerprints we build a database, which is later used as a 
knowledgebase for further classification tasks. The latter are performed by trying out 
different machine learning algorithms and evaluating their performance in terms of 
complexity, recognition accuracy and adaptation capability. We then expand our work 
by adding further system capabilities, like live recognition using buffers of variable 
length and automatic mixing of different sounds for then the recognition of untrained 
combinations of known devices. Finally, we evaluate different aspects of the imple-
mented recognition techniques in a smart home setup. 

2 Related Work 

Ambient intelligence has become a trending field in computer science as a natural 
consequence of high-instrumented environments, where each device is a target to 
embedding a microchip with increasing computational power. However, not all de-
vices possess some sort of intelligence, nor do they need to. Furthermore, the so 
called intelligent devices are often not meant to be intelligent in a way besides ac-
complishing their function in a constant manner, regardless of environmental effects 
and regardless of potential improvement possibilities. From this standpoint, ambient 
intelligence is about to provide an intelligent interaction between different environ-
mental parts, to integrate them in a holistic intelligent system, which automatically 
adapts to further environmental changes and incrementally increases the knowledge 
about the users [22, 4]. 



2.1 Sensor-based Environment Monitoring 

The first component of such a system is the environment-sensing component, 
which recognizes all types of activities, ranging from long to short term and from 
large-scale to small-scale activities. Video cameras are a popular choice for a sensor 
when it comes to recognizing user activities, because they can provide a detailed 
knowledge about the ongoing activities in a home environment. On the other hand, 
cameras have some fallacies such as being obtrusive for its inhabitants regarding their 
presence [2], and usually suffer from bad recognition in sub-optimal light conditions. 
In addition, cameras are expensive and require computationally intensive algorithms 
for recognition [11]. 

 
Another function of the environment-sensing component is to recognize the differ-

ent parts of the environment itself. Those include different devices, which are com-
monly used for performing different activities, or those devices performing periodic 
miscellaneous tasks by themselves. Since we investigate the device recognition part, 
we first get familiar with activity recognition using sounds and translate their results 
into our case (see Section 2.2). Then we make a comparison with the current research 
progress the concrete case of device recognition, mostly using power-based sensors 
(see Section 2.3). 

2.2 Sound-based Activity Recognition 

Another touch-free technique of recognition, regarding the human perception, is 
based on analyzing the audible sounds in a given environment. On the on hand, most 
of the sound-based recognizers are limited in recognizing human speech, together 
with some of its characteristics like speaker recognition and his emotional state in 
order to obtain detailed information about their subject of interest. On the other hand, 
there are very few studies, which aim to examine in an abstract way the daily human 
activities in a home environment according to their acoustic characteristics [18, 20, 9, 
21, 12, 10, 16]. Despite their generalized way of analyzing sounds, they are all devel-
oped in a healthcare perspective and often make the implication that certain sound 
implies certain activity, which is not necessarily true. This slightly differs from our 
perspective of building up a set of audibly distinguishable entities, most of them being 
devices in an active state, without attempting to interpret their further meaning. Fur-
thermore from a sound-processing standpoint, all of the mentioned studies use very 
similar techniques, which represent a small range of the available sound transfor-
mation techniques for recognition [15]. In this context, this study aims to integrate 
and evaluate also further recognition methods, based on refining and tuning of exist-
ing sound processing techniques and various machine learning algorithms, for the task 
of device recognition. 

 
Among the most related works to our study, the most competing one has been done 

by Stäger et al. They have studied into detail different aspects of an activity recogni-
tion system, which we consider as important, too, like performing an optimization 
friendly installation [19] with carefully selected feature sets. However their biggest 



difference to our intended framework is that their recognition setup relies on wearable 
sensors, which is an uncomfortable way of sensing information. The second most 
competing work has been done by Istrate et al. [9]. They perform a large variety of 
sound processing techniques for their recognition, but in their tests they used data 
from multiple environments and trained the recognizer with 90% of it. In both points 
our work intends to do exactly the opposite. We first intend to create a personalized 
setup, and second to use less training data. Other interesting capabilities, which are 
out of the scope of this paper, but are implemented, include sound event detection and 
an attempt to recognize rare short-time events like glass breaking. The third related 
work collective also made an excellent job in placing multiple microphones and ex-
ploiting their installation, but we consider their setup as being too overwhelming for 
our purposes. 

2.3 Power-based Device Recognition 

Usually device recognition stands for recognizing different devices according to 
their interface. For instance, a recognizer scans the environment using different com-
munication protocols like WiFi or Bluetooth and relies on the devices to support those 
protocols. However, not all devices had to support such communication protocols. 
Another recent research trend is to recognize electrical devices via a series of methods 
like using energy monitoring sockets, power analyzer [6, 1], and electromagnetic 
interference [5]. The problem is that all of those devices have to be electrical and 
connected to the power supply. Nevertheless, not all of the devices are electrical, nor 
should they be. Examples include toilet flush or a toothbrush. Some toothbrushes are 
electrical but they rely on batteries for their function, which makes them “invisible” 
for the mentioned technologies in their acting time. A natural way of recognizing 
devices, according to the human sense would be by analyzing their sounds. This in-
cludes the case where someone is using them to perform some activities, as well as 
the case, where they perform some periodic miscellaneous tasks without being oper-
ated directly by humans. 

3 Sound-based Device Recognition 

Figure 1 below illustrates our proposed process from an activity to its correspond-
ing device recognition. 

 
Fig. 1. Illustration of our process from an activity to the corresponding recognition 
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It starts with the environment (see Section 3.1) where some activity occurs (Sec-
tion 3.2). Its sounds are captured by a microphone (see Section 3.3), and used to ex-
tract a desired set of features (see Section 3.4) to classify the devices (see Section 
3.5). Furthermore we introduce sound mixing for recognizing untrained combination 
of devices (see Section 3.6). Finally we present how we cover the described process 
in a Sound-based Device Recognition Framework (see Section 3.7). 

 
3.1 Environment 

Since the main goal of this study is to provide device recognition in the smart 
home, the architecture, the implementation and the evaluations are centralized on this 
infrastructure. For the setup we have a home environment consisting of a single room 
(see Figure 2). For the sound monitoring a single microphone is used. We assume 
there is only one activity running at a time, with a single user that performs it. How-
ever as mentioned in the introduction, during certain activities, there may be multiple 
devices running at the same time, like shaving while showering. Activities consisting 
of simultaneously occurring actions are called complex activities. Our goal is to rec-
ognize all used devices during such a complex activity. 

 
Fig. 2. Illustration of a one room home environment with its typical devices and their corre-

sponding locations. The red dot represents a sample placement of the microphone. One should 
note that we are interested only in those devices that produce sound. 

Compared to differently sensor equipped home environments our approach enables 
very simple and low cost installation. We eventually aim to optimize the sound pro-
cessing and machine learning element components to complete the objective of creat-
ing a personalized low-cost recognition system. 

Microphone



3.2 Activity and Device Types 

In this section we define the activity types, which determines the different devices 
and their corresponding actions in a home environment. The latter are of interest in 
this paper, due to the various device types used to perform them. It has to be noted 
that some devices perform miscellaneous tasks on a periodical basis. Such a task may 
or may not be part of an activity. Thus we assume that all recorded sounds are caused 
by tasks that correspond to at least one activity type. 

 
In our framework the activity type encapsulates all types of activities, which pro-

duce sounds for time intervals longer than our smallest recognition window of 0.1s. 
Since we are interested in recognizing the devices used in activities we introduce a 
device type for devices used to perform the according activity. As we mentioned, not 
all of the activities are performed by humans. For example, a heating element starts 
heating by itself, when the temperature falls beyond a given threshold. We define the 
state of the device as active, if it disperses sounds. According to the heater example, it 
is on standby or inactive while measuring the temperature and active while heating. 

 
To enable deeper knowledge about the used devices the user can determine whether 
the activity is performed with an electrical device while training the recognizer. On 
this basis one can make statements in recognition whether the recorded activity is 
performed with an electrical device. For example if we have five activities like brush-
ing teeth with an electrical toothbrush, cleaning using a vacuum cleaner, coffee mak-
ing using a moka pot, showering and speaking, we can separate those activities into 
three categories – performed with an electrical device (first two), performed with a 
non-electrical device (second two) and the last one performed without any device at 
all (see Figure 3). So after the recognition request the recognizer assigns different 
probabilities for the occurrence of each activity, and by those probabilities, one can 
make statements as to which of the currently defined three activity categories this 
was. 
 

Fig. 3. This figure shows an example of deducting the sound source of an underlying activity. 
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3.3 Sound Recording and Buffering 

Besides setting up the hardware there is a need to setup the software and its record-
ing parameters. While choosing flexible recording settings, one still has to convert 
those unified metrics for the later transformation, which always results in data loss. So 
instead of bothering with conversion, we fix the recording parameters to unified sup-
ported constants, which satisfy our needs. It has to be noted that we make no assump-
tions about the capabilities of the recording device and we aim to use a single generic 
sound recording device.  

 
The sampling frequency of the recorded sound is set to the most common used 

44100 Hz (also used in compact disks). It has been chosen because every hardware 
supports this rate. Not all of the microphones support stereo recording though, which 
might produce some deviations during the hardware setup as well, so the number of 
channels is reduced to one (mono recording). For the sound transformations it is use-
ful to have high precision variables, so the bit depth is set to 32 bit signed integer per 
sample, which doubles the standard bit depth value of 16 and is uniformly supported 
as well. 

 
To extract the spectrum of the audio signal we performed a Fast Fourier Transfor-

mation (FFT). To increase the spectral resolution we set the FFT buffer to 4096 sam-
ples. For record frames we have chosen a variable time length, which is at least twice 
the FFT buffer size. The latter is important considering our choice of Hamming win-
dow function, where window overlapping makes sense in order to avoid missing re-
cording information. Furthermore, to standardize the test data we chose a record 
length of 10 seconds. After performing the FFT we cropped the frequency window 
between 80 Hz and 5000 Hz. This frequency range contains the most distinguishable 
features in the spectrum, according to our manual study and automated evaluation of 
different signals. Further reasoning for this choice is the unsteady behavior of the 
frequency response, which different microphones provide. To handle further disturb-
ances in the frequency response of our chosen range we implemented various filters at 
spectrum level. 

3.4 Feature Extraction 

In order to make a decision which features we should select, we first studied the 
nature of the sounds produced by devices using speech and music analysis software 
(see Figure 4). The first notable difference from the mentioned domains was that our 
signals were most noise-like, similar to the environmental sounds studied by [3]. So 
we had to consider a specific feature choice, different from the one used by speech 
and music recognition fields. 



 
Fig. 4. Plot of 10 second recording of speech (first quarter), music (second quarter), epilator 

(third quarter) and hair trimmer (last quarter). Above we see the waveform of the recording and 
below its spectrogram between 80 Hz and 5000 Hz. 

For activities performed with electrical devices it is typical that most of the defin-
ing part of the sound comes from its electrical motor, which is the actual sound 
source. An interesting finding was that other activities performed with non-electrical 
devices, like showering, have similar spectrograms compared to electrical devices. 

 
We present the features in the order of their addition to the framework over the im-

plementation process, which was influenced by our perception of sound and the con-
clusion from the last subsection. For example, the first perceivable feature of a sound 
is its loudness, so we chose to start with it. Then, in a mathematical perspective, zero 
crossings are one of the most important characteristics of a function, together with its 
maximums and minimums. Subsequently, we implemented a set of 8 features, for the 
task of audio-based device fingerprinting. 

• Loudness (LA) is the average cumulative energy of the spectrum over the recogni-
tion interval. Note that this is a relative measure and is very dependent on filters 
and especially noise cancellation algorithms. Due to the nature of the feature it is 
also very important whether the activities occur at the same place, because the 
loudness is very dependent on their distance to the microphone. 

• Zero Crossing Rate (ZCR) is the only feature derived from the time/amplitude 
domain (e.g., without processing the raw signal), after deciding to compute loud-
ness after the filtering. To count zero crossings we check whether we have a zero 
crossing after each received sample. 

• Pitch (PA) and First Formant (FF) is the pitch is also called fundamental fre-
quency and represents the lowest frequency of a sound wave. It can be measured 



by looking at the global maximum in the spectrum, while the second global maxi-
mum after the pitch in the spectrum is the first formant. 

• Pitch Span (PS) is a temporal feature, which refers to the span of values, which 
the pitch takes over time. For some devices, like a vacuum cleaner, the pitch is 
steady and does not vary over time, while for some other devices, like a tooth-
brush, the pitch varies over time. In some cases, pitch span refers to the distance 
between the pitch and the first formant over time, due to the ambiguity of automat-
ic distinction between local maximums (see Figure 5). 

• Pitch Energy (PE) is the amount of energy as part of the whole energy, which 
surrounds the pitch in a 10% rectangular window (e.g. the 10% of the signal 
around the pitch as middle point).  

• Spectral Flatness (SF) is an important measure, which is very useful to distin-
guish meaningful sound from noise (see Figure 5). 

• Spectral Roll Off (SRO) is the point where the spectral function falls down. It 
provides important information about the main energy concentration over the fre-
quencies. 
 

 

Fig. 5. Plot of spectrum of a hair trimmer illustrating that determination of the pitch and the 
first formant are a hard task. For the current snapshot the pitch would be calculated as 1975 Hz, 
while the first formant, would be 2234 Hz. One should note that over time those peaks switch, 

making the pitch vary between the mentioned two values, which is the way we compute the 
pitch span. Red points represent the beginning and the end of the interval for computing the 

pitch energy. 

3.5 Device Classification 

For a straightforward device classification we use the one-dimensional nearest 
neighbor algorithm. To enable fast runtime we use a single reference value. This ref-
erence value can be manually chosen either as the first, the last or the average of all 
features in the training set. The implemented algorithm provides a runtime with com-
plexity in O(df) with number of devices (d) and  number of enabled features (f). 

To realize a more sophisticated solution, we use Infer.NET [14] as a state-of-the-
art machine-learning library. Infer.NET implements the bayes point machine [8] in a 
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standard supervised learning setting. The algorithms are trained via expectation prop-
agation [13]. 

 
We also made a comparison between Infer.NET classifiers and our implementation 

of the multi-dimensional nearest neighbor for our test corpus with all selected fea-
tures. Our results showed that for testing with single training, both recognizers 
achieved the same recognition accuracy. The drawback of Infer.NET was that it ran 
about 10 times slower, which is reasonable, considering the much larger number of 
computations it has to perform. However, with the increasing number of training data 
Infer.NET steadily increases its recognition rate, while our optimized implementation 
had a nearly constant recognition rate. Consequently, we anticipate a tradeoff between 
the runtime and the recognition rate, where one might choose the best option for the 
underlying setup. 

3.6 Mixing 

Mixing sounds is a novel approach in the field of sound-based activity recognition. 
It has been discussed in the field of music recognition for mixing different instru-
ments in order to attempt their combined recognition [23]. However the technique 
used here is slightly different and avoids volume normalization, which is important 
for musical instruments, since they can play at different intensity, but mostly irrele-
vant for devices, which often have steady loudness. We are aware that defining which 
activities can occur simultaneously is a non-trivial task. In our framework we imple-
mented up to three mixing mechanisms. Each mix consists of at most three records. 

 
In order to test the mixing component we recorded two activities and their combi-

nation, and then we mixed automatically the recorded activities and compared them 
according to the obtained features (see Figure 6). 

 
 

Fig. 6. Illustration of the comparison between automatically generated mix of records and a real 
mix according to their features. 

To test whether mixing works or not, we compared 6 records of tooth brushing and 
showering together with their automatic and real mixes to illustrate their similarity in 
terms of the first three implemented features (see Figure 7). 
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Fig. 7. Three-dimensional plot consisting of 6 experiment results with real (red) and automatic 
(green) mix of showering (blue) and tooth brushing (orange) according to the distribution over 

loudness, zero Crossing rate and Pitch. 

We obtained similar results when mixing other devices, except while mixing the 
record of a blender and a vacuum cleaner. This mixing shared almost the same feature 
values between the automatic mixing and real mixing, except their average pitch en-
ergy. For instance, in the mixed version the pitch of the blender was perceived to be 
stronger, so it dominated and produced similar values throughout the tests. While in 
the real mixes of both devices we measured an average pitch ranging between 586 Hz 
and 915 Hz with one occurrence of 1531 Hz. Such deviations can be explained by the 
occurrence of acoustic resonance, which can alter the pitch frequency. Another possi-
ble explanation is that the sum of the energies at some frequency bin might be the 
strongest energy in the mix and thus regarded as a pitch by the sound-processing unit.   

3.7 Sound-based Device Recognition Framework 

We implemented a graphical user interface (GUI), which provides fast access to all 
functions and combinations of our sound-based device recognition framework. It is 
also important to visualize some of the sound derivations and to enable live tracking 
of relevant features.  
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In the following, we introduce the architecture of our sound-based device recogni-
tion framework. Its main part is the developer GUI, which contains all of the func-
tionality of the system, while there is also a client, which can connect with the main 
program to ask for recognition results (see Figure 8). An example of a client can be a 
smartphone, which can provide basic tasks like training the recognizer and requesting 
recognition, without providing the user with all possible configuration steps. 

 

 
Fig. 8. Screenshot of our sound-based device recognition framework interacting with a simple 

client application to provide a mobile recognition service. 

The developer GUI and the client application are both separated in two compo-
nents, responsible for the sound processing and machine learning parts. From the user 
perspective, the user first creates records and then attempts to recognize them. Train-
ing the recognizer is realized by adding an activity with its corresponding device if it 
exists. A further way of increasing the knowledge of the recognizer is realized by 
providing a user feedback mechanism after presenting the recognition result. The last 
two properties are the basis of building an incremental learning system, which aims to 
make better recognitions over time in terms of a growing number of recognizable 
devices and recognition accuracy. The latter means that the system is capable to start 
from scratch after being installed in a personalized setup and rely on the user to build 
its knowledge. A further important capability is changing the settings during a live-
recognition mode, which enables in depth control during the development process. 

	
  	
  
	
  	
  



4 Results 

We ran an evaluation in a home environment with a static microphone setup and 
recorded 150 records to build up our test corpus. It consists of 25 classes problem, out 
of which 20 classes represent devices, 3 classes are mixes of two devices, and the 
other two classes are speaker and silence. We ran the implemented multi-dimensional 
nearest neighbor algorithm with single training for the task of recognizing 125 devic-
es consisting of 5 occurrences from each of the 25 classes. We tested the power set of 
all features. This means, with our implemented 8 features we tested 255 combina-
tions, excluding the empty set. The results of best and worst performing feature com-
binations together with the average recognition results are shown in Table 1. 

 
Feature 

Count 
Best Set Result Worst Set Result 

Average 

Result 

1 LA, (ZCR, PA) 52% FF 30.4% 44.6% 

2 LA, SRO 81.6% SRO, FF 49.6% 67.49% 

3 LA, SF, FF 93.6% PS, FF, PE (PS,SRO,PE) 62.4% 76.69% 

4 
LA,PA,SF,FF 

(LA,SF,SRO,FF) 
97.6% PS,SRO,FF,PE 64% 79.97% 

5 LA,PA,SF,SRO,FF 97.6% 
ZCR,PS,SF,SRO,FF 

PA,PS,SRO,FF,PE 
68.8% 80.66% 

6 

LA,ZCR,PA,SF,SRO,FF 

LA,ZCR,SF,SRO,FF,PE 

LA,PA,SF,SRO,FF,PE 

94.4% 

ZCR,PA,PS,SF,SRO,FF,PE 

(ZCR,PA,PS,SRO,FF,PE) 

(ZCR,PA,PS,SF,SRO,FF) 

72% 80.06% 

7 LA,ZCR,PA,SF,SRO,FF,PE 93.6% 
PA,PS,SF,SRO,FF,PE 

(ZCR,PA,PS,SRO,FF,PE) 
74.4% 79% 

8 All Features 77.6% All Features 77.6% 77.6% 

AVG  85.9%  62.4% 73.26% 

Table 1. Best, worst and average true positive recognition rate for all different feature combina-
tions of different set sizes. The results in brackets were up to 1 recognition close to the provid-

ed result 

With a single feature for recognition we obtained best results for LA, directly fol-
lowed by ZCR and PA. They were also the first three implemented features. It is in-
teresting, that the combination of those three was nowhere near to matching the per-
formance of the winners in the next two categories. 

 
For feature coupling, we anticipated also an interesting result having SRO in the 

best combination as well as in the worst combination. In addition, the FF is present in 
both, the best and the worst result sets. This is a clear evidence that the combination 
of features is crucial for the recognition process, rather than having one strong feature, 
supporting our claims in Section 2.2. 



We can see also that LA performs well and could not be found in any of the worst 
results. This is due to the nature of the electrical devices to have a certain loudness 
level, especially, due to the fixed position of the microphone. It is important to note 
that most of the devices are used at fixed locations.  

 
For best recognition set we identified two combinations, which beat the 97% rate 

and one not far behind – <LA,PA,SF,FF> (97.6%), <LA,PA,SF,SRO,FF> (97.6%), 
and <LA,SF,SRO,FF> (96.8%). We identified the reason for these exceptional good 
results being the sound processing setup for the environment, as well as most of the 
devices being tested throughout the development, thus enabling the precise extraction 
of their characteristics. 

 
Our average results between 4 and 7 feature sizes was about 80%, which is also a 

same feature count, where the best results peaked. We tested our automatic feature 
selection algorithm and it chose a set of 6 features to obtain 91.2% recognition accu-
racy. Thus we conclude that the feature count range between 4 and 7 features is the 
best performing. 

 
Fig. 9. A plot of best (blue) vs. average (green) vs. worst (red) results in terms of the different 
recognition rates (y-axis) according to the different feature set size (x-axis). The violet point 

represents the automatic feature selection, which selected 6 features and obtained 91.2% recog-
nition accuracy. 

Figure 9 shows a visualization of the results from Table 1. Both, the best and the 
average cases increase their accuracy for feature count up to 4 and 5, and from that 
point on there is a declining. Thus we observe that the increasing number of features 
doesn’t necessarily mean better recognition, as mentioned in the introduction. How-
ever, more features should be implemented, since the worst-case recognition rate is 
increasing with the number of used features. 
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5 Conclusion 

There are many contributions in the field of sound-based device recognition pro-
vided in this work. We have first shown that we can significantly reduce the complex-
ity of a sound recognition system in a personalized home setup, as well as implement 
different ways to achieve this at both sound processing and machine learning levels. 
Our second contribution is in mixing automatically activities for their untrained 
recognition, where we obtained good results. We made also a detailed comparison 
between automatically mixed records of some activities and their real simultaneous 
occurrences. 

We performed a manual study of specific characteristics of sounds produced by 
devices and made a full testing of all combinations of features to identify the best 
performing set. Most of those characteristics were not regarded by the majority of 
related works for the case of general activity recognition, since they are not applicable 
for speech recognition, which is their conventional research starting point. However, 
according to our evaluation, combinations of our chosen features are definitely im-
portant for classification of activities in a home environment. In addition, we imple-
mented an automatic feature selection mechanism. Both, the chosen feature set for 
implementation, and their automatic selection for recognition, performed well in our 
evaluation. We adopted different machine learning techniques and optimized a couple 
of them for our purpose. We also introduced one of the first systems in the field of 
sound-based activity recognition, designed to learn over time using a feedback from 
the user and adapting its recognition settings, such as automatically choosing the best 
feature set.  
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