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Abstract— In brain computer interfaces, different amounts of
training data can be generated during the same recording time
depending on the type of e.g., error related potential (ErrP)
that is evoked. In our previous study (Kim & Kirchner, 2013),
we obtained more training data containing observation ErrPs
compared to interaction ErrPs within the same recording time
under similar scenario conditions. Thus we trained a classifier
on observation ErrPs to detect interaction ErrPs. This led to
the reduction of calibration time. In this previous study we
assumed that features extracted from a window, in which both
types of ErrPs show a similar shape of averaged activity (0.16–
0.6 s after error events), are optimal for classifier transfer. In
this study we test this assumption on a larger group of subjects.
Further, we evaluate an extended training window that covers
a late negativity at 0.6–0.8 s, which has a stronger amplitude
in case of observation ErrPs. Such an extension of the training
window allows to improve the classification performance in case
that observation ErrPs are used to train and test a classifier
(no transfer case). However, in this study we will show that for
the transfer case this long window [0.16–0.8 s] is outperformed
by the short window [0.16–0.6 s], which contains only the part
of both types of ErrPs with similar shape. The results indicate
that the signal characteristics can guide the choice of training
data for classifier transfer between different types of ErrPs.

I. INTRODUCTION

Brain computer interfaces (BCIs) that link a human user
and external systems are applied in different research areas
(reviews for EEG-based BCIs in general see [1], [2], review
for error-related potentials (ErrPs)-based BCIs [3], review for
P300-based BCIs [4], review for movement-based BCIs [5],
review for EEG-EMG based BCIs [6], and visual-evoked
potential (VEP)-based BCIs [7]).

A successful and robust detection of specific pattern in
the electroencephalogram (EEG), which correlates with the
user’s intent, is often a challenge in real-world BCI appli-
cations with complex application environments or situations
(e.g., [8]–[11]). A further challenge is to develop scenarios
which allow to generate enough training data for a BCI based
support of such real-world or realistic application scenarios.
Especially real-world applications using error-related poten-
tials (ErrPs), which are elicited by recognizing erroneous be-
haviors, are challenging, since in general erroneous behaviors
do not often occur in real-world applications. This leads to a
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long recording time to collect enough training data. Hence,
from the perspective of an application it is of interest to
develop scenarios which allow to collect a sufficient amount
of training instances within a reasonable recording time.

The amount of training data can be affected by the nature
of ErrPs. Our scenario is designed to generate two differ-
ent types of ErrPs by performing different tasks (interac-
tion/observation). Depending on who performs the task (e.g,
a subject or an artificial agent) the different types of ErrPs are
generated using the same scenario concept. Interaction ErrPs
are elicited in the EEG of users who recognize interaction
errors, which occur when an interface misinterprets the user’s
intent and sends a wrong control signal to an external
system [12]. On the other hand, observation ErrPs are elicited
in the EEG of a human observer who monitors the erroneous
behavior of an external system [13]. Thus, observation ErrPs
are elicited without any interaction with interfaces or external
systems, whereas during interaction additional time that the
user needs for decision making processes is necessary for
the interaction task. Such different natures of involved brain
processes eliciting both ErrP types lead to different amounts
of training data during the same recording time (i.e., twice as
much observation ErrPs are collected compared to interaction
ErrPs during the same calibration time in our scenario),
although the scenario concept used to generate both types
of ErrPs was the same for both tasks.

In the previous study, where we showed that a classifier
transfer between different scenarios can reduce calibration
time [14], we used features extracted from the window, in
which both types of ErrPs show a similar shape of averaged
activity. The reason for such window selection was based
on the assumption that the use of a window containing the
part of both types of ErrPs which have a similar shape
is optimal for classifier transfer. In this study, we test our
previous assumption by investigating another window that
contains a late negativity with an amplitude that is higher
for observation ErrPs compared to interaction ErrPs on
a larger group of subjects (i.e., 8 instead of 4 subjects).
In the previous study, we achieved a higher classification
performance for single trial detection of observation ErrPs
in the no transfer case, i.e., in case that observation ErrPs
including this late window are used to train and test a
classifier [14]. Thus, in this paper we investigate a possible
contribution of this later negativity for classifier transfer.

To this end, we investigate two time windows for classifier
transfer: 1) A short time window [0.16 s–0.6 s] containing
a similar averaged shape of each type of ErrPs and 2) A
longer time window [0.16 s–0.8 s] containing an additional



late negativity that is only observed in observation ErrPs.
The selection of different windows is based on the averaged
shape of each type of ErrP (see section II-D). We assume that
the averaged shape of each type of ErrPs can guide window
selection for feature extraction in case of classifier transfer.
Hence, the comparison of classification performance between
two time windows can support our assumption.

II. METHODS

A. Experimental Design

We used the scenario as depicted in Figure 1–(a) which
was developed in our previous study [14]. Using this sce-
nario, two different tasks (interaction/observation) were per-
formed to generate two different types of ErrPs (interaction
ErrPs/observation ErrPs) separately (more details, see [14]).

In both tasks, 20 targets had to be reached in numeric
order by moving the cursor (see, Figure 1–(a)). Here, both
obstacles placed among the targets and the spikes of targets
had to be avoided. If any task rule was violated, a penalty was
given (e.g., the cursor went back to the start position, when
touching a target spike). In case that a target was reached
in the wrong order, the target color remained red. For the
correct case, the target color changed to green.

In the interaction task, subjects were instructed to check
the target points by using a computer keyboard. All subjects
needed about 2 minutes to finish one set. Here, interaction
errors were programmed with a probability of 9%. Thus,
the current movement direction of the cursor did not always
correspond to the movement direction that was chosen by the
subjects by pressing a certain key. The possible directions of
wrong movements were uniformly distributed. In this way
interface errors (i.e., errors of a classifier) were simulated
as for the scenario described in [12]. When the subjects
recognized wrong movements of the cursor (i.e., interaction
errors) interaction ErrPs were elicited in the subject’s EEG.
In comparison with the scenario used in [12], our scenario
was closer to a more realistic application. Thus, we could
not exclude response errors made by the subjects themselves
[15] (e.g., violating the target order or touching the spikes
of a target). Therefore, two kinds of errors were expected:
a) interaction errors and b) response errors

In the observation task, an artificial agent performed the
task and the subjects observed the behavior of the agent.
Task rules were the same as for the interaction task. Here,
wrong behaviors of the agent were again programmed with
a probability of 9%. When monitoring the wrong behaviors
of the agent, observation ErrPs were elicited in the subject’s
EEG.

For both tasks, the order of targets was randomized for
each set to avoid the same task pattern. The empirical ratio of
erroneous and correct trials was 1:10 in both tasks. However,
the average time between consecutive cursor movements
was slower for the subjects (227 ms) compared to the agent
(110 ms), since the subjects paused often to find the correct
path to reach the targets. In contrast, the speed of key
pressing was hard coded in the observation task. Further,
the path to reach the targets and its deviation were also hard

coded to obtain as much trials as possible within a fixed
time. Thus, the way to reach the targets were not optimally
programmed compared to the strategy to reach the targets
which was chosen by subjects. Accordingly, twice as much
erroneous trials were collected from the observation task
compared to the interaction task during the same recording
time.

B. Data Acquisition

Eight subjects (two females/six males, age: 26.5 ± 3.25,
right-handed, normal or corrected to normal vision) partici-
pated in the study. All subjects provided written consent to
participate in the study approved by the ethics committee
of the University of Bremen. The study was conducted in
accordance with the Declaration of Helsinki. EEGs were
recorded using an actiCap system (Brain Products GmbH,
Germany), in which 64 active electrodes were arranged in
accordance to the extended 10-20 system with reference at
FCz. Impedance was kept below 5 kΩ. EEG signals were
sampled at 5 kHz, amplified by two 32 channel BrainAmp
DC Amplifiers (Brain Products GmbH, Germany), and fil-
tered with a low cut-off of 0.1 Hz and high cut-off of 1 kHz.

C. Data Set

We collected seven data sets from each task. For each task,
one set took 2 minutes. One data set from the observation
task contains 99 erroneous trials and 990 correct trials,
whereas one data set from the interaction task contains
48 erroneous trials and 480 correct trials. That means, a
different amount of trials was recorded for each task during
the same recording time per set. From the perspective of
an application a classifier transfer from the observation task
to the interaction task can be useful to reduce calibration
time needed to detect interaction ErrPs. To this end, the
data set collected from the observation task was used to
train the classifier for detecting interaction ErrPs, which were
generated in the interaction task. One data set from each task
was used for classifier transfer.

D. Preprocessing and Classification

The continuous EEG signal was segmented into epochs
from 0 s to 1 s after each event type (correct/erroneous trial).
All epochs were normalized to zero mean for each channel,
decimated to 50 Hz, and band pass filtered (0.5 to 10 Hz).
The xDAWN [16] was used as a spatial filter to enhance the
signal-to-noise ratio. By applying the xDAWN the number
of 64 physical channels was reduced to 8 pseudo channels.

Two time windows were used for feature generation:
[0.16 s–0.6 s] and [0.16 s–0.8 s]. The selection of the two
time windows was based on the shape of averaged interaction
and observation ErrPs. As shown for Figure 1–(b) and 1–
(c), both types of ErrPs showed a first negative peak around
0.27 s after the erroneous events, followed by a positive peak
around 0.38 s. As for the averaged interaction ErrPs, we
observed a narrow negativity peak in the late time window
[0.4 s–0.6 s], whereas a broad negative peak including two
negative peaks in the late time window [0.4 s–0.8 s] was
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Fig. 1. (a): A subject or an artificial agent moves the cursor (blue) towards one of 20 targets (red) in numeric order. When a target is reached in the
correct order, the color of the target changes from red to green. The track of cursor movements is depicted by gray arrows towards the chosen direction and
the track of wrong cursor movements is depicted by red arrows (direction of errors). (b) and (c): Averaged event related potential (ERP) for the difference
error-minus-correct trials at channel FCz for each subject. Only artifact-free EEG trials were used.

TABLE I
CLASSIFICATION PERFORMANCE (MEAN±STANDARD DEVIATION) IN CASE OF CLASSIFIER TRANSFER.

Observation ErrP (training: calibration time of 2 min) → Interaction ErrP (test) / feature extraction from the shorter window of 0.16 s–0.6 s

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average

bACC 0.83±0.01 0.70±0.04 0.76±0.01 0.81±0.01 0.82±0.01 0.76±0.02 0.77±0.01 0.88±0.01 0.79±0.06

TPR 0.74±0.01 0.55±0.13 0.58±0.03 0.80±0.02 0.75±0.05 0.77±0.04 0.66±0.05 0.81±0.01 0.71±0.05

TNR 0.91±0.01 0.84±0.06 0.94±0.01 0.82±0.02 0.88±0.03 0.74±0.02 0.89±0.02 0.94±0.01 0.87±0.07

Observation ErrP (training: calibration time of 2 min) → Interaction ErrP (test) / feature extraction from the longer window of 0.16 s–0.8 s

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 Subject 6 Subject 7 Subject 8 Average

bACC 0.81±0.02 0.65±0.01 0.75±0.01 0.74±0.06 0.81±0.01 0.72±0.01 0.78±0.01 0.85±0.01 0.76±0.06

TPR 0.74±0.05 0.65±0.01 0.58±0.02 0.56±0.13 0.72±0.09 0.68±0.01 0.66±0.01 0.73±0.01 0.67±0.07

TNR 0.87±0.01 0.65±0.01 0.92±0.02 0.91±0.02 0.68±0.04 0.76±0.02 0.73±0.01 0.96±0.01 0.86±0.1

observed for the averaged observation ErrPs. Compared to
both types of averaged activity, we observed a similar shape
of averaged event related potential (ERP) activity for the time
window of [0.4 s–0.6 s], whereas a difference in the averaged
shape between two types of ErrPs was shown for the later
time window [0.6 s–0.8 s].

For each time window, features were extracted from the
obtained 8 pseudo channels after spatial filtering, between
0.16 s and N s where N ∈ {0.6, 0.8}. We obtained 176
features (8 channels × 22 data points = 176) from the shorter
time window [0.16 s–0.6 s] and 256 features (8 channels ×
32 data points = 256) from the longer time window [0.16 s–
0.8 s].

The extracted features were normalized and used to
train a classifier. We used a linear support vector machine
(SVM) [17] to classify correct and erroneous trials. For
each training, the complexity parameter of the SVM was
optimized with an internal 5-fold cross validation using a
grid search among the predetermined complexity values [100,
10−1, ... , 10−6]. The parameter optimization was repeated
ten times and the construction of splits was different for
each repetition. Due to the unbalanced ratio of erroneous and
correct trials (1:10), different penalty constants were used for
both classes [18]. We determined a class weight of 5 for the
under-represented class as penalty so that making errors on
under-represented instances was costlier than making errors

on over-represented instances.

E. Evaluation

As mentioned earlier, the classifier trained on observation
ErrPs was transferred to interaction ErrPs. To this end,
we used one data set from each task. The classifier was
trained on one data set containing observation ErrPs (99
erroneous trials, calibration time of 2 min). After that, the
trained classifier was used to evaluate one data set containing
interaction ErrPs (48 erroneous trials).

As performance metric, we used the arithmetic mean of
true positive rate (TPR) and true negative rate (TNR), the so-
called balanced accuracy (bACC). Here, the erroneous trials
were the positive instances. This metric is less sensitive to
imbalanced data (i.e., unbalanced ratio of the two classes)
compared to other metrics, e.g., accuracy (details, see [19]).

To compare both time windows that were used to extract
features for classifier transfer, repeated measures ANOVA
were performed with time window and subject as two within-
subjects factors.

III. RESULTS

Table I shows the classification performance on interac-
tion ErrPs using the classifier trained on observation ErrPs,
in which two time windows (short [0.16 s–0.6 s] vs. long
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Fig. 2. Classification performance in case of classifier transfer [observation
ErrPs (Training) → interaction ErrPs (test)] when using different time
windows of observation ErrPs: short time window vs. long time window

[0.16 s–0.8 s]) were used to extract features from observation
ErrPs.

We achieved a bACC of 0.79 (across all subject) with the
short time window and a bACC of 0.76 (across all subjects)
with the long time window. In case of using the short
time window five subjects showed a higher classification
performance compared to the case of using the long window.
For three other subjects, there was no statistically significant
difference between both time windows. Statistical values for
each subject are depicted in Figure 2.

In summary, a higher classification performance was
achieved for five subjects when using the shorter time
window containing the part of the averaged ERP activity
that has a similar shape for both types of ErrPs compared
to the window including also a later negativity in case that
observation ErrPs are evoked.

IV. CONCLUSION

In this study, we have shown that the short window was
sufficient to transfer a classifier trained on interaction ErrPs
to observation ErrPs. The long time window did not lead to
a higher classification performance as in the no transfer case
(i.e., observation ErrPs were trained and tested) [14]. In case
of classifier transfer, we achieved no significant difference
between the long and short time window for three subjects.
However, a significant higher classification performance was
obtained with the short time window for the remaining five
subjects. Further, the use of the short window is beneficial
with regard to computation time needed to detect single trial
detection.

The paper shows that the window selection for feature
generation may be relevant for classifier transfer between
different types of ErrPs. The assumption that similarity in
averaged activity between different types of ErrPs can guide
the selection of training windows in case of classifier transfer
is supported by this study. Furthermore, a later negativity
with a higher amplitude in case that observation ErrPs are
evoked plays a relevant role for single trial detection of
observation ErrPs (i.e., during no transfer) [14]. However,
this later negativity is not relevant for single trial detection
of interaction ErrPs or does even reduce classification per-
formance (i.e., during classifier transfer).
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