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Abstract—In this paper, we propose a novel approach for
assisting human bug triagers in large open source software
projects by semi-automating the bug assignment process. Our
approach employs a simple and efficient n-gram-based al-
gorithm for approximate string matching. We propose and
implement a recommender prototype which collects the natural
language textual information available in the summary and
description fields of the previously resolved bug reports and
classifies that information in a number of separate inverted
lists with respect to the resolver of each issue. These inverted
lists are considered as vocabulary-based expertise and interest
models of the developers. Given a new bug report, the recom-
mender creates all possible n-grams of the strings, evaluates
their similarities to the available expertise models concerning
a number of well-known string similarity measures, namely
Cosine, Dice, Jaccard and Overlap coefficients. Finally, the top
three developers are recommended as proper candidates for
resolving this new issue. Experimental results on5200 bug
reports of the Eclipse JDT project show weighted average
precision value of 90.1% and weighted average recall value
of 45.5%.

Keywords-software deployment and maintenance; semi-
automated bug triage; approximate string retrieval; open
source software;

I. I NTRODUCTION

Open source software projects often provide their devel-
oper and user communities with an open bug repository for
reporting the software defects in order to be tracked by
developers and users. Each bug report usually undergoes
a triage process in which a group of developers, known
as triagers, check whether it contains sufficient amount of
information for the developers, whether it is not a duplicate
of a previously reported bug and if the bug is reported at
the right place. Only if the bug report passes these filters
successfully then they would assign a priority degree and a
severity degree to it from the business perspective and from
the technical point of view, respectively. Last but not least,
the triagers should assign each bug report to a developer in
order to hopefully resolve the issue. This latter part, i.e.bug
report assignment defines the scope of our work.

In large open source projects where hundreds or thousands
of developers are collaborating with each other the main
question is which person would be the best candidate for

fixing a newly reported bug. Human triagers often take
developers’ fields of expertise and interest into consideration
in order to reduce the bug resolution cost for the project.
However, since the number of bug reports and the rate of
their production could become very large, the bug triage
process itself might become labor intensive when performed
manually.

In recent years, there have been a number of valuable
contributions in order to address this problem. We overview
most of the works which we are aware of them in section
4 briefly. One common approach for semi-automated bug
assignment is to employ a supervised machine learning
algorithm through which a classifier is trained and used
to categorize new bug reports. In such text categorization
problems, documents are usually considered as word vectors
and the term weights (Term Frequency-Inverse Document
Frequencies, abbreviated as TF-IDF) are calculated. Support
Vector Machines (SVMs) have turned out to be the best
supervised machine learning algorithms in applying such an
approach.[1]

Another common approach which has already been ap-
plied to several subfield of the bug triage problem area such
as the duplicate bug report recognition problem [2] is using
document indexing and information retrieval techniques.
This latter approach is somehow closer to our position.
However, we clearly make several distinctions between our
work and those contributions. Our approach is novel in that
we consider n-gram representations for strings rather than
considering tokens. Furthermore, we perform approximate
string matching (a.k.a. approximate vocabulary look-up)
with a flexible similarity threshold parameter rather than
a fixed exact match. Concerning the application domain,
this brings a noticeable capability. For example, one does
not have to concern about the misspelled words in the bug
reports too much anymore. Last but not least, we do not
directly consider the similarity between the vector represen-
tation of two text documents, but instead the approximate
similarity between the n-gram representations of strings are
taken into account.

Regardless of the applied techniques, almost all prior work
in this field could be categorized in three main groups-based



on the source of information which they use in order to
extract the developers’ expertise and interest models. One
major source of information is the previously resolved bug
reports which are archived in the repositories of bug tracking
systems like Bugzilla1, Jira2, etc.[3][4][1][5] Another one
is the log information of the source code revision control
system, i.e. comments of developers in each source code
commit (for example to the Subversion3 or CVS4 source
code repository).[6][4][5] Finally, one could explicitlyuse
the vocabulary of the committed source code by each devel-
oper as a means of extracting such an expertise model.[7]

Our recommender is efficient and powerful enough to ben-
efit from all of the above mentioned resources in large scales
in order to make its recommendation more precise while
performing fast. However, in the current implementation we
have only included the first one, i.e. the previously resolved
bug reports in the open bug repository.

This paper makes two main contributions:

1) It proposes a novel approach which employs a simple
and efficient approximate string matching algorithm
[8] in order to find appropriate developers who are
more likely to have sufficient expertise and interest
levels to resolve a new issue.

2) It provides an implementation of the proposed ap-
proach as well as experimental results on a large
dataset of5200 bug reports from the Eclipse Java De-
velopment Tools (JDT) project including the achieved
information retrieval evaluation metrics, namely, Ac-
curacy, weighted average precision, weighted average
recall and F-measure for the top three developers
recommendation.

The paper is structured as follows: Section 2 presents
the proposed approach. In section 3, we implement our
recommender prototype and present experimental results.
Related work in this field are discussed in section 4. Finally,
conclusion and possible future work are stated in section 5.

II. T HE PROPOSEDAPPROACH

The core idea is to apply an n-gram vocabulary-based
approach with approximate string matching. We start with
a dataset of previously resolved bug reports where each
instance contains the free text available in the summary
and description of the bug report and the name of the
developer who has resolved the bug. For each developerpi
we automatically extract a vocabulary from all bug reports
assigned topi. This gives us a setD of vocabulariesdi
(1 ≤ i ≤ n, wheren is the number of different developers
pi). Then, for a new bug report, we automatically extract its
vocabularydj , and compute its overlap withD. We compute

1http://www.bugzilla.org/
2http://www.atlassian.com/software/jira/overview
3http://subversion.apache.org/
4http://www.nongnu.org/cvs/

a ranked list of names of developers{pi} with respect to the
degree of overlap ofdj and the corresponding vocabulary
di ∈ D, and finally recommend the top three developers as
possibly good candidates for resolving this new bug.

Our approach is semi-automated, since a human triager
would need to choose one of the recommended developers
by our system in order to finally assign the bug to that
person.

A. Background: SimString

Since our approach is vocabulary-based, we need to ad-
dress the problem of spelling variations (e.g., spelling errors
like “Pyhton” instead of “Python” or name variations like
“FileOpenDialog” vs. “’File Open’ Dialog”). Furthermore,
since we are extracting a number of different large-scale
vocabularies, we need fast and scalable approximate string
matching algorithms.

SimString5 is a C++ library that uses the CPMerge algo-
rithm [8] for fast approximate string matching. The idea is
to construct an n-gram-based inverted index from the entries
of a vocabulary (basically a list of strings of instances of
some common semantic class). The n-gram representation
of a string s is just the set of all substrings of length
n of s. For example, for n=3, the n-grams for the string
“python” are{pyt, yth, tho, hon}, and for the string “pathon”
they are{pat, yth, tho, hon}. Matching is then realized by
defining a similarity function that applies aτ -overlap join
between the n-gram representation of a query and the n-gram
inverted index, whereτ represents the degree of similarity.
For example, for the cosine function, when usingτ=1, the
two above entries would not match, but settingτ=0.7 they
would match.

For our purpose, the most important properties of Sim-
String are:

1) It allows finding matches in a collection of millions of
entries in only a few milliseconds, e.g., using cosine
similarity function and a similarity threshold of 0.7
only about 1 millisecond is needed for a query on
standard PC hardware.

2) Beside the cosine similarity function, SimString
utilizes additional well-known similarity functions,
namely, Jaccard, Dice and Overlap coefficients.

3) When constructing the n-gram-based inverted index,
the exact value of n can be parametrized.

4) SimString uses efficient disk-based hashing for main-
taining the inverted index, and hence, it has a very
good memory footprint.

We will now describe in detail how we are employing
SimString in our recommender prototype which is called
Approxricom.

5http://www.chokkan.org/software/simstring/



B. Our Bug Resolver Recommender: Approxricom

A Bug report (a.k.a. issue) in an open bug repository
(a.k.a. open issue (bug) tracking system) often has a life-
cycle. It is initially created by any registered user or de-
veloper. In this very beginning stage, its status is set to
NEW. Later during its life-cycle its status might change to
other possible values such as ASSIGNED, RESOLVED DU-
PLICATE, RESOLVED INVALID, RESOLVED WORKS-
FORME, RESOLVED WONTFIX, RESOLVED FIXED,
VERIFIED FIXED or CLOSED FIXED. No matter the bug
is currently at which state, it always resides in the open bug
repository of the open source project. Our recommender only
uses issues which are currently in the RESOLVED FIXED,
VERIFIED FIXED and CLOSED FIXED states in order to
create its vocabulary-based expertise and interest model.

Furthermore, each bug report is a structured file which
consists of a number of fields in addition to its current
state, such as the bug ID, summary, description, product,
component, importance, assignee, reporter, date of report,
date of the latest modification, CC list (list of people
who are interested in getting updated about this issue),
comments, etc. Among all these fields, our recommender
is only concerned with the bug ID, product name, status,
summary and description of the bug reports.

As depicted in figure 1, the workflow of our recommender
comprises three main parts:

1) Collecting and preprocessing the required data includ-
ing the bug IDs, the resolver developer for each bug
and the summary and description text of each bug
report in order to create the vocabulary-based expertise
and interest models. (corresponds to step 1 in figure
1)

2) Creating the n-gram-based inverted lists of the non-
trivial terms in summaries and descriptions of previ-
ously resolved bug reports. (corresponds to step 2 in
figure 1)

3) Recommending the three most similar vocabulary
databases to each query which contains a number
of non-trivial terms extracted from the summary and
description of a newly reported bug. (corresponds to
steps 3 to 5 in figure 1)

The second and third parts are done through employ-
ing SimString and specifying the similarity measure, the
similarity threshold and the size of n-grams for string
representations.

Concerning the first part, our recommender connects to
the open bug repository of an open source project and
retrieves a large set of successfully resolved bug reports
for a specific product. For example, in case of the Eclipse
bug repository, there exist many products such as Platform,
JDT, CDT, etc. It is clear that we would like to recommend
proper bug resolvers working within one product and not in
any of the products which are hosted there and might not

Figure 1. Bug Resolver Recommendation by Approxricom usingSim-
String

necessarily relate to each other.
Moreover, we perform data preparation by setting all

characters to lower case and removing all stop words from
the bug reports.

The second and third parts of the recommendation work-
flow deal with employing a fast approximate string matching
algorithm to store the inverted lists (inverted indexes) in
an efficient way and later retrieve them with respect to
the similarity level of the query, i.e. the vocabulary of the
new bug report to each of those lists which we actually
consider them as the vocabulary-based expertise and interest
models of developers. Given a new bug report as a query,
our recommender assigns a score to each vocabulary-based
expertise model database, i.e. to each developer6 and finally
recommends the top three databases (developers) as proper
candidates for this query, i.e. for the resolution of this new
bug report.

III. I MPLEMENTATION & EXPERIMENTAL RESULTS

We implement our prototype using Java, C++ and Python.
The interface for interacting with the open bug repository is
developed in Java using XML Remote Procedure Call (XML
RPC). The core of Approxricom which employs SimString
is developed in C++. Finally, we take advantage of Python
for our data preparation using the python-based Natural
Language Toolkit (NLTK)7.

6Each vocabulary-based expertise model database corresponds to one
developer.

7http://nltk.org/



Table I
EVALUATION USING WELL -KNOWN INFORMATION RETRIEVAL METRICS

(W.A. STANDS FORWEIGHTED AVERAGE)

Fold / Accuracy / W.A. Precision / W.A. Recall / F-measure

1 50.19 85.8 46.02 59.91
2 50.86 83.16 44.39 57.89
3 46.73 75.05 42.62 54.37
4 49.8 86.35 41.46 56.03
5 51.92 94.98 44.81 60.89
6 55 96.85 50.4 66.3
7 57.11 97.16 50.25 66.24
8 57.11 93.76 53.29 67.95
9 55.57 100 42 59.15
10 53.37 88.14 39.82 54.86
Average 52.76 90.12 45.50 60.35

A. Parameters

The approximate string matching algorithm which we
have employed in Approxricom, i.e. SimString is config-
urable with various parameters. In particular, one could set
the parametern for n-gram size, the similarity measure
for vocabulary look-up (Cosine, Dice, Jaccard and Overlap
coefficients) and the degree of flexibility in the approximate
matching, known as the similarity threshold which is be-
tween 0 and 1.0 (1.0 corresponds to exact matching instead
of approximate matching).

After doing some experiments with various values of
configuration parameters, we decided to use the following
setting for our recommender:

1) The size of n-grams (n) is5. In other words, all
possible 5-grams are created for string representations.

2) All these four similarity measures are taken into
account: Cosine, Dice, Jaccard, Overlap.

3) The similarity threshold is set to0.95. While main-
taining a high degree of accuracy (since it is close to
1.0) this value prevents the recommender from trivially
doing exact string matching which is in contrast to our
core idea of approximate string matching in order to
handle spelling errors and different writing forms.

However, we believe that further empirical research work
is required to investigate the role of the above mentioned pa-
rameters in the achieved evaluation results and probably find
out the best parameter settings concerning the application.

B. Scoring Strategy

In order to rank our inverted lists based on the degree of
their similarity to a query, we store the maximum number of
similarities which are reported by each of the four similarity
functions, Cosine, Dice, Jaccard and Overlap coefficients.
This maximum number is considered as the score of that
inverted list given a query string and a similarity threshold.

C. Experimental Results

In order to evaluate our approach we did experiments
on 5200 resolved bug reports of the Eclipse JDT project.

After doing data preparation as stated in the previous section,
we performed a10 folded random cross validation on this
dataset which led to the results of table I (values are in
percent). As shown in the table, we have achieved average
weighted precision of90.12% and average weighted recall
of 45.50%. Moreover, the accuracy is52.76% on average.

We consider the top three high-ranked developers which
are recommended by our bug resolver recommender as
proper candidates for resolving a new bug report. Therefore,
it is clear that if the developer who has fixed an unseen
test instance bug report in real world is present among
the three top-ranked developers which are recommend by
Approxricom, we consider this as a success. Otherwise, it
is considered as a failure.

The True Positive (TP) rate, also known as recall, mea-
sures how much part of a specific class is captured. In other
words, the TP rate (recall) is the proportion of the instances
which are retrieved as class A, among all instances which
indeed have class A.

Precision is the proportion of the instances which indeed
have class A, among all those instances which are retrieved
as class A.

Since there is often a trade-off between precision and
recall, it is common to measure the final performance via a
mixture of both, called F-Measure.
F −Measure = 2∗Precision∗Recall

Precision+Recall

Finally, Accuracy is the proportion of the total number of
correctly classified instances among all instances.

According to our experimental results and the evaluation
metrics, it is obvious that our proposed approach is compet-
itive with other related approaches which are discussed in
the next section.

IV. RELATED WORK

One related contribution is Mockus and Herbsleb’s Ex-
pertise Browser[6]. They have introduced a tool which uses
source code change data from a revision control repository to
determine appropriate experts to work on various elements
of software projects.

Cubranic and Murphy [3] have trained a Bayesian clas-
sifier using descriptions of fixed bug reports in open bug
repositories as machine learning features, and names of
developers as class labels. They have reported the accuracy
value of 30% for Eclipse projects. However, they fairly
believe that even this level of classification accuracy could
significantly lighten the load that the human triagers face in
large open source projects.

Canfora and Cerulo[4] have proposed an information re-
trieval approach. They have used textual descriptions of fixed
change requests stored in open source software repositories,
both bug repository and revision control system (Bugzilla
and CVS), to index developers and source files as documents
in an information retrieval system. The indices are utilized
to suggest the most appropriate developers to resolve a new



change request. They have reported recall values of 10-20%
and 30-50% for Mozilla projects and KDE, respectively.

Their approach is similar to ours in that they also index
documents and developers to solve an information retrieval
problem. However, from their very brief explanation it is
clear that they do not apply any approximate n-gram-based
string retrieval algorithm.

Anvik et al.[1] have presented an approach which expands
on Cubranic and Murphy’s previous work[3]. They have
used additional textual information of bug reports beyond the
bug description, to form the machine learning features. They
have also applied a non-linear Support Vector Machines
(SVMs) and C4.5 algorithms in addition to the Naive Bayes
classifier which their predecessor work had used. They have
compared the achieved results using the three classifiers and
found SVM the best one for this purpose.

Anvik and Murphy[5] have presented an empirical eval-
uation of two approaches for determining who has the
implementation expertise for a bug report using data from
two types of repositories: The source repository check-in
logs and the bug repository. They have found that different
repositories are useful in different situations, based on what
is wanted.

Jeong et al.[9] have introduced a graph model based on
Markov chains to capture bug tossing8 history. The model
could be used both to reveal team structures to find suitable
experts for a new task and also to better assign developers
to bug reports. Their model has reduced bug tossing by
up to 72% and improved the accuracy of automatic bug
assignment by 23% comparing the common manual bug
triage process.

Baysal et al.[10] have presented a theoretic framework for
automating assignment of bug-fixing tasks with an emphasis
on learning developer preferences. They have proposed to
apply a vector space model to recommend experts for
resolving bug reports based on the level of expertise, current
workload and preference of developers which are inferred
from the previously fixed bugs by each developer. Imple-
mentation of their novel model has remained as future work.

Matter et al.[7] have stood in an outstanding position,
since they model developer expertise by explicitly compar-
ing the vocabulary found in the source code contributions
of developers with the vocabulary of bug reports. The
advantage of their approach is that no previous activity of
a developer in the current project is necessarily required.
Instead, any prior activity of a developer through interacting
with a source code revision control system would be enough
to model his or her expertise. They report33.6% top-1
precision and71% top-10 recall.

Bhattacharya and Neamtiu [11] have improved triaging
accuracy and reduce tossing path lengths by employing sev-

8Bug tossing refers to the process of re-assignment of bug reports among
the developers of an open source project.

eral techniques such as refined classification using additional
attributes and intra-fold updates during training.

Finally, Servant and Jones [12] have presented a new
technique which automatically selects the most appropriate
developers for fixing the fault represented by a failing test
case. Their technique is the first to assign developers to
execution failures without the need for textual bug reports.
On one hand, they do fault localization to map the current
software bug to the corresponding line of code. On he other
hand, they perform history mining to find out who has com-
mitted that buggy line of code. They have reported81% of
success (accuracy) for the top-three developer suggestions.

While their contribution is a valuable one, it is basically
different than our point of view. Because, they try to find
who has introduced a bug to the software so that he fixes
the bug himself. In contrast, we believe that the developer
who has caused a bug might not necessarily be the best one
to resolve it.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a novel approach to semi-
automate the bug assignment task of human triagers in large
open source projects using an expert recommender system.
We create vocabulary-based expertise and interest model of
developers based on the history of their contributions in
resolving previous bug reports. Using a fast and efficient
algorithm for approximate string matching, we store inverted
lists of the mentioned vocabulary-based models and effi-
ciently query them to find the most similar ones to a new
bug report.

Our promising experimental results transparently show
that our proposed approach is competitive with other ap-
proaches and our recommender system performs more effi-
ciently than prior semi-automated bug triagers.

Our approach is novel in that it uses approximate n-gram-
based string matching. Therefore, it is capable of handling
spelling errors and different forms of writing. Moreover, it
is extremely fast and efficient.

Like other related work, the implicit assumption is that for
a resolved bug report, the person who has finally resolved
the issue in practice is the one whose name is mentioned as
the assignee of that bug. While this assumption is in most
cases true, there exist open source projects in which this is
not always the case.

Similar to many other related work, one limitation of our
approach is that it needs the history of previously resolved
bug reports in order to be able to perform well. Furthermore,
the prototype which we have implemented currently works
only with the Bugzilla open bug repositories which support
the XML RPC protocol. Extending our prototype to support
more bug tracking systems and evaluating our approach with
other open source projects could be done as future work.

Applying this approach on other parts of the bug triage
problem such as duplicate bug reports recognition remains as



a possible future work. In addition, empirical research work
is needed to find the best parameter configurations for the
approximate string matching algorithm as well as the effect
of those parameter values on the achieved values for the
information retrieval evaluation metrics. Further, we believe
that the scoring strategy which we have proposed in section
3 is itself a matter of further research work. It might turn
out that one could rank the databases based on the results
of the similarity measures in a smarter way.
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