
On-line version of Rabinovitch theorem

for proper intervals

Bartłomiej Boseka, Kamil Klochb, Tomasz Krawczyka, Piotr Miceka

a Algorithmics Research Group, Faculty of Mathematics and Computer Science,

Jagiellonian University, Gronostajowa 3, 30-387 Kraków, Poland
bEmbedded Systems Lab, University of Passau, Innstrasse 43, 94032 Passau, Germany

Abstract

We analyze the on-line dimension of semi-orders as a two-person game between
Algorithm and Spoiler, in a customary way. The game is played in rounds.
Spoiler presents a collection of intervals representing a semi-order, one interval
at a time. Algorithm maintains its realizer, i.e., the set of linear extensions
intersecting to the semi-order presented so far. Each time a new interval is
presented, Algorithm inserts it into all maintained linear extensions and is not
allowed to change the ordering of the previously introduced elements. Reading
carefully the theorem of Rabinovitch on dimension of semi-orders one can prove
that Algorithm needs only 3 linear extensions when Spoiler presents intervals of
unit length. With the introduction of proper intervals, however, Algorithm can
be forced to use one more extension. We prove that the value of the game on
proper intervals is exactly 4.

Key words: on-line dimension, semi-order

1. Introduction

The concept of dimension of partial orders was introduced more than 60
years ago in Dushnik and Miller’s classic paper [1]. Dimension theory has greatly
influenced the research on combinatorial properties of posets and graphs. For
a comprehensive account on the topic and an extensive bibliography work we
refer the reader to Trotter’s monograph [2].

When P = (X,P) and Q = (X,Q) are partial orders on the same set X then
we call Q an extension of P if P ⊆ Q, i.e., if x 6 y in P implies x 6 y in Q, for

Email addresses: bartlomiej.bosek@tcs.uj.edu.pl (Bartłomiej Bosek),
kamil.kloch@uni-passau.de (Kamil Kloch), tomasz.krawczyk@tcs.uj.edu.pl (Tomasz
Krawczyk), piotr.micek@tcs.uj.edu.pl (Piotr Micek)

URL: http://tcs.uj.edu.pl/Bosek (Bartłomiej Bosek),
http://www.esl.fim.uni-passau.de/˜kloch/ (Kamil Kloch),
http://tcs.uj.edu.pl/Krawczyk (Tomasz Krawczyk), http://tcs.uj.edu.pl/Micek (Piotr
Micek)

Preprint submitted to Elsevier November 29, 2011

all x, y ∈ X . Among all extensions of a given poset, those which are additionally
linear orders are of special importance. They are called linear extensions. For
a poset P consisting of n elements x1, . . . , xn we write L = (x1, . . . , xn) as an
abbreviation for a linear extension L = (X,L) of P in which x1 < · · · < xn. A
set R of linear extensions of a poset P intersecting to P is called a realizer of P.
This means that for any two incomparable points x, y in P there are two linear
extensions L1, L2 ∈ R admitting x < y in L1 and x > y in L2. The dimension

of a poset P, denoted by dim(P), is the least integer k for which there exists a
realizer of P consisting of k linear extensions.

It is well known that the dimension of P = (X,6) with |X | = n does not
exceed n

2
. Recall that for a partially ordered set P the width of P is the size

of the largest antichain in P and the height of P is the size of the largest chain
in P. By Dilworth’s theorem any order of width w can be partitioned into w
chains. Another classical Dilworth’s theorem says that dim(P) 6 width(P).

A poset P = (X,6) is called an interval order if there is a function I which
assigns to each x ∈ X a closed interval I(x) = [lx, rx] of the real line so that
x < y in P if and only if I(x) < I(y), i.e., rx < ly. The function I is called an
interval representation of P.

It is not entirely naive to ask whether there are interval orders which have
large dimension. It turns out that although interval orders have somewhat
one-dimensional nature, their dimension can be arbitrarily high. Surprisingly,
according to our knowledge, the complexity of determining the dimension of
interval orders is still unknown, in contrast to all orders, where the problem is
known to be NP-hard.

An interval order P = (X,6) is called a semi-order if it has an interval
representation {[lx, rx] : x ∈ X} such that rx = lx + 1 for every x ∈ X . By
possibly locally stretching some of the intervals one can easily show that P is a
semi-order if it admits a proper interval representation, i.e., a representation in
which no interval is properly contained in another one.

A poset which admits a partition of its elements into antichains A1, . . . , An

such that A1 < A2 < . . . < An (i.e. ai < aj for ai ∈ Ai, aj ∈ Aj and i < j) is
called a weak order. It is easy to see that every weak order is also a semi-order.

Theorem 1 (Rabinovitch [3]). The dimension of a semi-order is at most 3.

The bound obtained in Theorem 1 is tight, i.e., semi-orders of dimension
3 do exist. In fact, the original result of Rabinovitch lists four 3-dimensional
semi-orders and proves that every semi-order of dimension 3 must contain at
least one of these four orders as a subposet.

All mentioned basic parameters of orders: width, height and dimension have
their witnessing structures. These structures in are: chain decomposition, an-
tichain decomposition and a realizer, all of the smallest possible size equal to the
respective parameter. In the on-line setting the sole question about the value of
those parameters is not that interesting, as all of them can be computed after
each round of the game exactly in the same way as in the off-line case. There-
fore, instead of asking only for the scalar values we additionally require to build

2

(and update on-line) an appropriate witnessing structure, in our case an on-line
realizer.

The on-line dimension of orders is defined as an outcome of a two-person
game. We call the players Spoiler and Algorithm. The game is played in rounds.
Spoiler presents an on-line order, one point at a time. Algorithm maintains its
realizer, i.e., the set of linear extensions intersecting to the order presented so far.
It is forbidden for Algorithm to change the ordering of the previously introduced
elements in the existing linear extensions. The performance of Algorithm is
measured by comparing the number of linear extensions used against the off-
line width of the presented poset. The value of the game, denoted by val(w) is
the least integer k such that Algorithm has a strategy using at most k chains
on any on-line order of width w presented by Spoiler.

For the unrestricted class of all orders Kierstead, McNulty and Trotter [4]
proved that val(3) =∞, i.e. Algorithm can be forced to construct an arbitrarily
large realizer already on orders of width 3. In the very same paper they also
prove that if Spoiler presents an on-line order of width w without an n-crown
as a subposet for any n > 3 then the number of linear extensions needed by
Algorithm is indeed bounded in terms of w. This brings up the question whether
on-line dimension is perhaps finite on other classes of orders defined in terms of
forbidden structures, like interval orders or semi-orders?

The on-line dimension of interval orders is still far from being understood.
For example, instead of presenting merely points, Spoiler may reveal the under-
lying interval representation of the poset. The result of the two games will be
completely different. As interval orders do not induce n-crown for n > 3 their
on-line dimension is bounded in terms of the width. The results of Hopkins [5],
Kierstead, McNulty, Trotter [4] and Felsner [6] give us some better bounds (see
Table 1).

presentation method bounds remarks

w/o representation 4

3
w 6 ? 6 4w − 4 [4], [5]

with representation ? 6 log(w) [6]

Table 1: On-line dimension of interval orders

In this paper we investigate the on-line dimension of semi-orders. First,
inspired by the proof technique of Rabinovitch theorem, we show that Algorithm
can maintain an on-line realizer of size 3 if intervals presented by Spoiler are of
the same length. Since semi-orders of dimension 3 do exist, the achieved result
is optimal. Next, in Section 3, we deal with the proper interval representation,
i.e., the case in which the presented intervals may be arbitrarily long but none
of them can contain another one. For this variant we prove a matching lower
and upper bound of 4.

3

presentation method bounds remarks

w/o representation 4

3
w 6 ? 6 2w [4], [7]

proper representation 4 Theorem 3

unit representation 3 Corollary 2

Table 2: On-line dimension of semi orders

2. Proof of Rabinovitch theorem

When P = (X,6) is an interval order with a representation I, the relation
between the elements of P can be easily obtained from the set {I(x) : x ∈ X}
and so we use the bold symbol I when considering the poset P with its interval
representation I. An interval representation I is distinguishing if all end points
of the intervals are distinct numbers (in particular, no interval is degenerate).

Let I be an interval representation. An injective function µ : I→ R is called
a marking function on I if for every interval x ∈ I we have µ(x) ∈ x. Marking
function µ naturally defines a linear extension Lµ of I in which x < y if and
only if µ(x) < µ(y).

We now give the proof of Rabinovitch theorem. The reason for including
the proof of such a classic result shall become apparent later in Sec. 3.2, when
proving the upper bound of Theorem 3.

Proof of Theorem 1. Let P be a semi-order and I a distinguishing, unit-length
representation of P. Any interval x ∈ I contains one or two integer points but
we can always shift the whole representation in such a way that each interval
contains exactly one such point. Let f : I→ Z be the function assigning to an
interval x its unique integral grid point. Note that:

(i) f−1(k) is an antichain in I,

(ii) f−1(k) < k + 1 < f−1(k + 2).

Define a partition of I into the disjoint sum I0 ∪ I1 as follows:

I0 := f−1(2Z), I1 := f−1(2Z+ 1).

From (i) and (ii) we get that both I0 and I1 are serial compositions of antichains,
i.e., weak orders. Now define the marking functions µj , for j = 0, 1:

µj(x) =

{

rx, if x ∈ Ij ,

lx, otherwise,

for x = [lx, rx] ∈ I. Let L0 = Lµ0
and L1 = Lµ1

. Define the third linear exten-
sion L2 so that

– if f(x) < f(y) then x < y in L2,

– if f(x) = f(y) then x < y in L2 if and only if x > y in L0.

4

Linear extension L2 orders intervals according to their f -value, i.e., their grid
point, and in case of equal f -values the ordering is a reverse of L0. A linear
order L2 is indeed an extension of I as x < y implies f(x) < f(y).

We claim that {L0, L1, L2} is a realizer of I. Choose an incomparable pair
x‖ y. There are now two possibilities: |f(x)− f(y)| = 1 or f(x) = f(y). In
the former case without loss of generality we may assume that x ∈ I0, y ∈ I1
and lx < ly < rx < ry . Thus µ0(x) > µ0(y), µ1(x) < µ1(y) and therefore x > y
in L0 and x < y in L1 (see Figure 1). In the latter case, f(x) = f(y) implies
x, y ∈ Ij . By definition of L2, points x and y are sorted in the opposite order in
linear extensions L0 and L2.

2k 2k + 1

x

y

y

x

x

y

µ1(x)

µ1(y)

µ0(x)

µ0(y)
L0 L1

Figure 1: Marking functions for x‖y with x ∈ I0, y ∈ I1

It is almost clear that the realizer {L0, L1, L2} from the proof above can be
constructed in the on-line setting. Indeed, the partition I = I0 ∪ I1 can be done
on-line as incorporation of an incoming interval x into I0 or I1 depends only
on f(x). Then L0, L1 and consequently L2 depend only on I0 and I1. The
assumptions that incoming representation is distinguishing and that each inter-
val x contains exactly one integral point f(x) can be omitted by differentiating
endpoints with some ε’s.

Corollary 2. The value of the on-line dimension game for a unit-length interval

representation is 3.

3. On-line game on proper intervals

We now consider the case when the semi-order presented by Spoiler is given
by a proper interval representation, i.e., a representation in which intervals may
be arbitrarily long but none of them may be properly contained in another one.
In particular, Algorithm can no longer use a unit-length grid to partition the
incoming intervals into two weak orders as in the proof of Rabinovitch theorem.
Instead we have the following result:

Theorem 3. The value of the on-line dimension game for a proper interval

representation is 4.

5

3.1. Lower bound

Assume that 3 linear extensions L1, L2 and L3 suffice to maintain a realizer
of an on-line proper representation of a semi-order. We present a strategy for
Spoiler which forces Algorithm to use the 4-th linear extension. The strategy
is presented in phases. Already in Phase 1 we make use of the integer value
N which will be calculated at the end of the proof so that all needed Ramsey-
style arguments could be carried out. For a curious reader we may reveal that
N = 72.

Phase 1. Spoiler fixes an integer n > N and presents n intervals a1, . . . , an
forming an antichain, with end points sorted as in Figure 2. For i = 1, . . . , n/2,

..
.

a2

an−1

an

a1

Figure 2: Phase 1

consider n/2 pairs of intervals (a2i−1, a2i). Since a2i−1 and a2i are incomparable,
in at least one linear extension out of L1, L2 and L3, we have a2i−1 > a2i.
Hence there is one extension, say L1, so that for n′ > n/6 such pairs we have
a2i−1 > a2i in L1. For the clarity of further consideration we renumber ai’s so
that for i = 1, . . . , n′ we have a2i−1 > a2i in L1. All other points can actually be
now omitted but they are kept in mind only to prevent Spoiler from presenting
a new interval in a way that it contains or is contained in one of them. Actually
they can be omitted as all but one intervals presented by Spoiler will be of the
same length. The one exceptional interval will arrive at the very end and then
we will analyze it carefully.

Phase 2. Spoiler presents n′ intervals b1, b3, . . . , b2n′−1, again forming an an-
tichain and such that bi ‖ ai+1, . . . , a2n′ and bi > ai, . . . , a1 (see Figure 3).
Recall that a2i−1 > a2i in L1. This, together with b2i−1 > a2i−1, gives b2i−1 >

..
...

.

a2

a2n′−1

a2n′

b1a1

b2n′−1

Figure 3: Phase 2

a2i in L1. Since b2i−1 ‖a2i, either in L2 or L3 we must have b2i−1 < a2i. With-
out loss of generality we may assume that for n′′ > n′/2 of the bi’s we have

6

b2i−1 < a2i in L2. As in Phase 1, we do a renumbering of the important inter-
vals to get b2i−1 < a2i in L2 for i = 1, . . . , n′′. After that, we have

b1 < a2 < b3 < a4 < · · · < a2n′′−2 < b2n′′−1 < a2n′′ in L2. (1)

Recall that the k-th Ramsey number R(k) is the smallest integer n so that
any graph of order n contains either a k-element clique or a k-element indepen-
dent set. In the next argument we will merely use the fact that R(3) = 6.

According to (1) we have b1 < b3 < · · · < b2n′′−1 in L2. If Algorithm wants
to keep a realizer of size 3, then for 1 6 i < j 6 n′′ it must be b2i−1 > b2j−1

either in L1 or in L3. If only n′′ > 6 then, since R(3) = 6, we find three indices
i0, j0 and k0 so that 1 6 i0 < j0 < k0 6 n′′ and b2i0−1 > b2j0−1 > b2k0−1 in Ls,
for s = 1 or s = 3. As in Phases 1 and 2, we renumber the existing intervals so
that i0 = 1, j0 = 2, k0 = 3 and hence

b1 > b3 > b5 in Ls. (2)

Phase 3. Spoiler presents two incomparable intervals c1, c3 so that c1 ‖ b3, b5
and c1 > b1, a1, . . . , a6 while c3 ‖b5 and c3 > b1, b3, a1, . . . , a6 (see Figure 4).

a2

c3

b5

b3

b1a1

a4

a3

a6

a5

c1

Figure 4: Phase 3

We claim that
c1, c3 > b1, b3, b5 both in L2 and Ls. (3)

First, recall from (1) that a6 > b1, b3, b5 in L2. Since c1, c3 > a6, it is clear that
c1, c3 > a6 > b1, b3, b5 in L2. Similarly, c1, c3 > b1, b3, b5 in Ls as c1, c3 > b1 and
according to (2) we have b1 > b3 > b5 in Ls.

Now, since c1 ‖b3 and c3 ‖b5, from (3) we get b3 > c1 in L4−s and b5 > c3 in
L4−s. This, together with c3 > b3, gives

b5 > c3 > b3 > c1 in L4−s. (4)

Consider what would happen if Spoiler introduced an interval x such that

a1, . . . , a6, b1, b3 < x and x ‖ c1, c3, b5, (5)

see Figure 5. From (1) and (2) we get b5 < a6 < x in L2 and b5 < b1 < x in Ls,
respectively. If Algorithm wants to keep a realizer of size 3, it must put x below
b5 in L4−s.

7

a2

c3

b5

b3

b1a1

a4

a3

a6

a5

x

y

c1

Figure 5: Phase 3—points x and y

Now, consider what would happen if Spoiler introduced y such that

a1, . . . , a6, b1, b3, b5, c1 < y and y ‖ c3, (6)

see Figure 5. Observe, that (4) together with c1 ‖ c3 implies c1 > c3 in Ls or
in L2. Furthermore, y > b5 > c3 in L4−s. Hence if Algorithm wants to keep a
realizer of size 3, there is exactly one linear extension where y can be put below
c3, namely Ls or L2. We have just proved the following observation.

Observation 4. Assume that Spoiler plays the strategy described in Phases 1–3

and Algorithm builds a realizer using 3 linear extensions L1, L2 and L3. Then

there exist 2 distinct indices i0, j0 ∈ {1, 2, 3} such that

(i) if Spoiler presents interval x satisfying (5) then x < b5 in Li0 ,

(ii) if Spoiler presents interval y satisfying (6) then y < c3 in Lj0 .

Phase 4. Spoiler plays the mirror-flipped strategies from Phases 1–3 com-
pletely to the right, and far apart from the existing intervals, so that the result-
ing family of intervals looks as in Figure 6. Note that in all 3 linear extensions
L1, L2 and L3 we have b5, c1, c3 < b′5, c

′

1, c
′

3. Now, Observation 4 translated for
Phase 4 looks as follows.

..
. ...c′3

c′1 b′1

b′3

b′5

a6

b5

c3b3

b1

a′6

c1

Figure 6: Phase 4

Observation 5. Assume that Spoiler plays the strategy described in Phases 1–4

and Algorithm builds a realizer using 3 linear extensions L1, L2 and L3. Then

there exist 2 distinct indices i′0, j
′

0 ∈ {1, 2, 3} such that

(i) if Spoiler presents x′ satisfying (5′) that is dual to (5) then x′ > b′5 in Li′
0
,

(ii) if Spoiler presents y′ satisfying (6′) that is dual to (6) then y′ > c′3 in Lj′
0
.

8

..
. ...c′3

c′1 b′1

b′3

b′5

x′

y′
a6

b5

c3b3

b1

a′6

c1

Figure 7: Intervals x′ and y′ from Observation 5

Phase 5. A careful reader will easily notice that strategies described in Phases
1–4 could be carried out so that all presented intervals are of unit length. It
is only in Phase 5 where Spoiler takes advantage of relaxing the unit-length to
a proper interval representation of the poset. The indices i0, j0, i

′

0, j
′

0 forced by
Observations 4 and 5 obviously satisfy {i0, j0} ∩ {i′0, j

′

0} 6= ∅. The final attack
of Spoiler depends on the intersection of those two sets.

(i) If i0 = i′0 then Spoiler introduces x1 which plays the role of x to the left
part and x′ to the right part as in Figure 8. Now Observations 4(i) and
5(i) give x1 < b5 and x1 > b′5 in Li0 = Li′

0
. This is impossible as b5 < b′5.

(ii) If i0 = j′0 then Spoiler introduces x2 which plays the role of x to the left
part and y′ to the right part as in Figure 8. Now Observations 4(i) and
5(ii) give x2 < b5 and x2 > c′3 in Li0 = Lj′

0
. This is impossible as b5 < c′3.

(iii) If j0 = i′0 then Spoiler introduces x3 which plays the role of y to the left
part and x′ to the right part as in Figure 8. Now Observations 4(ii) and
5(i) give x3 < c3 and x3 > b′5 in Lj0 = Li′

0
. This is impossible as c3 < b′5.

(iv) If j0 = j′0 then Spoiler introduces x4 which plays the role of y to the left
part and y′ to the right part as in Figure 8. Now Observations 4(ii) and
5(ii) give x4 < c3 and x4 > c′3 in Lj0 = Lj′

0
. This is impossible as c3 < c′3.

..
. ...c′3

c′1 b′1

b′3

b′5

x1

x2

x3

x4

a6

b5

c3b3

b1

a′6

c1

Figure 8: Phase 5—four possible final attacks of Spoiler

To finish the proof we estimate the value of N . The strategy of Spoiler is
successful if only n′′ > R(3). Thus, it suffices to put n > N = R(3) · 2 · 6 = 72.

3.2. Upper bound

Taking a second look into the proof of Theorem 1 we may notice that it
consisted of two independent parts. First, using a unit-length grid, the interval
representation was partitioned into 2 weak orders. These weak orders, in turn,
defined 3 linear extensions which yielded a realizer. In our current setting the

9

presented intervals may be arbitrarily long and so a unit-length grid does not
induce a partition into 2 weak orders as before. However, if we could find
another way of partitioning incoming intervals into (possibly more than two)
weak orders, we could follow the second part of the proof of Theorem 1 to obtain
the desired realizer. To achieve the first goal we introduce a new game in which
Algorithm, instead of a realizer, maintains a partition of incoming intervals into
weak orders. Then, adding a twist to the proof technique from Theorem 1, we
show that an on-line partition into k weak orders can be transformed into an
on-line realizer of size k + 1.

In order to keep the forthcoming arguments as simple as possible, we addi-
tionally assume that the on-line interval representation I presented by Spoiler
is distinguishing, i.e., that no two intervals share the same end point. This con-
dition, although reducing the set of strategies which could have been possibly
played by Spoiler, does not change the value k of the game. Indeed, any strat-
egy that would allow Spoiler to force more than k weak orders, would have used
only finitely many points. Since any finite interval order admits a distinguishing
interval representation, this strategy could be transformed into the one using a
distinguishing interval representation.

Let I be a proper interval representation of a weak order, with its serial
decomposition into antichains I = A1 ∪ . . . ∪ Am such that Ai < Aj , for i < j.
Obviously the interval ai =

⋂

x∈Ai
x is non-empty, while ai ∩ aj = ∅ for i 6= j.

Let C(I) = {a1, . . . , am}. We say that ai is the core of each x ∈ Ai. Obviously
every x ∈ Ai contains exactly one core, namely the ai.

Our weak order partitioning game is defined as follows. Spoiler presents
an on-line proper interval representation I. Algorithm partitions I into pairwise
disjoint weak orders I1, . . . , Ik so that cores from the set C := C(I1)∪ . . .∪C(Ik)
are pairwise disjoint, i.e., the set C is a linear order. This linear ordering of C
is required to compensate for the lack of a unit-length grid that had produced
{f−1(i) : i ∈ Z} in the proof of Theorem 1.

The least k for which Algorithm has a strategy partitioning any given proper
interval representation into k weak orders is called the value of the weak order
partitioning game. This value gives the following upper bound for the on-line
dimension game.

Proposition 6. Denote by k the value of the weak order partitioning game

described above. Then the value of the on-line dimension game for the proper

interval representation is bounded from above by k + 1.

Proof. Assume that the proper representation I is being on-line partitioned into
k weak orders I1, . . . , Ik and that core intervals from the set C = C(I1) ∪ . . . ∪
C(Ik) are pairwise disjoint at any moment during the game. Note that although
x ∈ I may contain more than one core from C, every x ∈ Ii contains exactly one
core from C(Ii). We let the function core : I→ C assign to x ∈ Ii this unique
core a ∈ C(Ii) for which x ⊇ a.

10

Define marking functions µi for i = 1, . . . , k as follows:

µi(x) =

{

rx, if x ∈ Ii,

lx, otherwise,

for x = [lx, rx] ∈ I. Let Li = Lµi
for i = 1, . . . , k. This construction assures us

that x > y in Li whenever x ∈ Ii, y /∈ Ii and x‖y. One more linear extension
L0 is defined so that

(i) if core(x) < core(y) then x < y in L0,

(ii) if core(x) = core(y) then x < y in L0 if and only if x > y in L1.

Note that for intervals x and y with core(x) < core(y) we trivially have x ≯ y as
x ⊇ core(x) and y ⊇ core(y). This proves that L0 is indeed a linear extension of
I. We claim that k + 1 linear extensions L0, . . . , Lk yield a realizer of I. Choose
an incomparable pair x‖y. If x ∈ Ii, y ∈ Ij and i 6= j then x > y in Li and x < y
in Lj . Otherwise, x, y ∈ Ij and since they are incomparable core(x) = core(y).
Then in the linear extensions L0, L1 points x and y are sorted in the opposite
order.

Clearly, for a proper distinguishing interval representation I the functions
µ1, . . . , µk (and also the resulting linear extensions L1, . . . , Lk determined by
these functions) can be constructed on-line. To see that the remaining linear
extension L0 can be built on-line as well, note that the ordering of elements in
C does not change in time as the cores can only shrink during the game.

Proposition 6 supplies us with a tool which transforms the on-line weak
order partition of size k into the on-line realizer of size k+ 1. The next theorem
settles the exact value of the weak order partitioning game. The upper bound of
3 translates, by Proposition 6, to an upper bound of 4 for the on-line dimension
problem. On the other hand, it can be verified that the achieved lower bound
of 3 holds even in the more general case when the cores of the weak orders
need not be disjoint. This gives a good illustration of the difference between a
unit-length and a proper interval representations, as by Theorem 1 a unit-length
representation can be partitioned on-line into 2 weak orders.

Theorem 7. The value of the on-line weak order partitioning game for the

proper interval representation is equal to 3.

Proof. For the lower bound observe that an on-line partition into 2 weak orders
would, by Proposition 6, provide an upper bound of 3 for the on-line dimension
game. This, in turn, would contradict the result from Subsection 3.1.

Assume that a proper distinguishing interval representation I is extended to
I′ = I∪{x}. We present an algorithm which assigns the new interval x to one
of the 3 existing (possibly empty) weak orders. We do it in three steps. First,
we introduce a data structure used by the algorithm. Second, we define a set
of invariants which are to be kept during each run of the algorithm. Finally, we
present a pseudo-code of the algorithm.

11

Data structure

First of all, the data structure of Algorithm 1 consists of the on-line proper
interval representation I presented by Spoiler and its partition into three weak
orders I1, I2 and I3. The set of cores of Ij is denoted by C(Ij). We let C =
C(I1) ∪ C(I2) ∪ C(I3). The new interval introduced in each round is called x.
Algorithm maintains two coloring functions cl, cr : C→ {1, 2, 3}. Intuitively,
function cl (cr respectively) colors the left (right) end points of core intervals
from C.

Invariants

(I0) I1 ∪ I2 ∪ I3 yields a partition of I into 3 weak orders.

(I1) The set C of cores is a set of mutually disjoint intervals, i.e., a linear order.

(I2) For every core a ∈ C(Ii) we have {i, cl(a), cr(a)} = {1, 2, 3}.

(I3) For every two consecutive cores a < b from C with a ∈ C(Ii), b ∈ C(Ij)
we have i 6= j and cr(a) 6= cl(b) (see Figure 9).

I2

b

I1

a

2 3

I2

b

I1

a

2 1

I2

b

I1

a

13

Figure 9: All possible colorings of cr(a), cl(b), with a ∈ C(I1) and b ∈ C(I2).

(I4) For a ∈ C(Ii) and y ∈ Ij with i 6= j we have (see Figure 10)

(i) if la ∈ y then cl(a) = j,

(ii) if ra ∈ y then cr(a) = j.

I3

a

2

y
I2

I3

a

2

y
I2

Figure 10: Invariant (I4) shown for y ∈ I2 and a ∈ C(I3)

Invariant (I1) guarantees a property relating all three weak orders I1, I2 and
I3. It states that the cores of I1, I2 and I3 are mutually disjoint and as such
form a linear order. Note that this is nothing else but the rules of the weak order
partitioning game. From (I3) we know that the neighboring cores in the linear
order originate from distinct weak orders, and moreover, that the colors of the
neighboring end points of the cores must be distinct. Together with (I2) this
induces a very restricted sequence of colors associated with consecutive cores.
Finally, for any core a ∈ C, the value of cl(a) (cr(a), respectively) determines,
by (I4), the weak order of all intervals which do not contain a but do intersect a.

12

As in the proof of Proposition 6 we let the function core : I → C assign
to x ∈ Ii the unique core a ∈ C(Ii) for which x ⊇ a. Recall that the weak
order Ii is a serial composition of antichains, say A1, . . . , Am. If two intervals
x, y ∈ Ii intersect then x, y are in the same antichain Aj and therefore core(x) =
⋂

z∈Aj
z = core(y). Hence for two intervals x, y ∈ Ii we have

x and y intersect if and only if core(x) = core(y). (7)

Note also that for a ∈ C(Ii) there must exist y, z ∈ Ii with ly = la, rz = ra
and core(y) = core(z) = a (see Figure 11).

Ii

a
z
Ii y

Ii

Figure 11: Intervals witnessing the end points of the core

Before presenting our Algorithm we need the following Claim which will help
us to split its work into cases.

Claim 8. Suppose that the data structure (I, I1, I2, I3, cl, cr) satisfies proper-

ties described by (I0)–(I4). Then

(i) for every y ∈ I there is exactly one a ∈ C such that a ⊆ y,

(ii) if I is extended to I′ = I∪{x} then the new interval x contains at most

one core interval from C.

Proof. Suppose that (i) fails, i.e., there is y ∈ Ik which contains two core inter-
vals a < b. By (I1) we may assume that a and b are consecutive in C. From
(I3) it now follows that a and b originate from two different weak orders, i.e.,
that a ∈ C(Ii), b ∈ C(Ij) and i 6= j. Without loss of generality we may assume
that y /∈ Ij , i.e., j 6= k. Since b is contained in y with its both ends, namely lb
and rb, our invariant (I4) gives cl(b) = k = cr(b), which contradicts (I2).

Now, suppose that (ii) fails, i.e., the new interval x contains two core intervals
a < b, in particular, lx < la < rb < rx. Like in the proof of (i), by (I1) we may
assume that a and b are consecutive in C, and again from (I3) we get that
a ∈ C(Ii), b ∈ C(Ij) and i 6= j. Since a is the core of Ii there must be some
y ∈ Ii witnessing the left end point of a, i.e., such that ly = la. Now, from
(i) applied to y it follows that b * y. Hence ry < rb < rx and so y (x. This
contradicts the fact that I∪{x} is a proper interval representation.

Algorithm

Algorithm 1 puts the new interval x into one of the three maintained weak
orders I1, I2 or I3 and updates the coloring functions cl, cr in such a way that
invariants (I0)–(I4) are kept. We distinguish the variables before and after the
incorporation of x into I by appending ′ to the latter ones, i.e., I1 becomes I

′

1,
cr becomes c′r etc. In particular, C′ = C(I′1) ∪C(I′2) ∪C(I′3). By writing ‘put x

13

into Ii’ we mean I′i ← Ii ∪{x} and I′j ← Ij for j 6= i. To simplify Algorithm we
consider the initial situation in which Spoiler had already introduced the first
interval x0. For this interval we manually define I1 = {x0}, I2 = I3 = ∅ so that
C = C(I1) = {x0} and then we put cl(x0) = 2 and cr(x0) = 3.

Algorithm 1: Weak order partition of a proper interval representation

1 if x ⊇ a for some core a ∈ C(Ii) then /* 1 */

2 put x into Ii;
3 else if x intersects cores C(Ii) ∋ a < b ∈ C(Ij) then /* 2 */

4 if cr(a) = j then put x into Ij ;
5 else if cl(b) = i then put x into Ii;

6 else if x intersects exactly one core, say a ∈ C(Ii) then /* 3 */

7 put x into Ii;
8 else if x does not intersect any existing core then

9 if x lies between consecutive C(Ii) ∋ a < b ∈ C(Ij) then /* 4.1 */

10 c′l(x)← i;
11 c′r(x)← j;

12 else if x > a := max(C) with a ∈ C(Ii) then /* 4.2 */

13 c′l(x)← i;
14 c′r(x)← color distinct from i;

15 else if x < b := min(C) with b ∈ C(Ij) then /* 4.3 */

16 c′r(x)← j;
17 c′l(x)← color distinct from j;

18 put x into Im so that {m, c′l(x), c
′

r(x)} = {1, 2, 3}

19 foreach a′ ∈ C′ such that a′ ⊆ a for some a ∈ C do

20 c′l(a
′)← cl(a);

21 c′r(a
′)← cr(a);

As it can be easily seen, the weak order that incorporates the incoming x
depends on how x interacts with the existing cores. Due to Claim 8(ii) this
behavior is covered by six cases 1–3 and 4.1–4.3. All we need to show is that
our extended data structure satisfies (I0)–(I4).

Case 1

In this case we have x ⊇ a for some core interval a ∈ C(Ii). By Claim 8(ii)
we know that a is the unique core interval which is contained in x.

In order to prove (I0) we show that I′i := Ii ∪{x} is a weak order. Clearly,
the set {x} ∪ core−1(a) is an antichain as x intersects every y ∈ Ii for which
core(y) = a. It remains to show that x is disjoint with all other intervals from
Ii. Suppose to the contrary that for some y ∈ Ii with core(y) = b 6= a we have
x ∩ y 6= ∅. Without loss of generality assume that a < b and so rx ∈ y (see
Figure 12). Let z ∈ Ii be an interval witnessing the left end point of the core a,
i.e., lz = la. Since I∪{x} is a distinguishing proper interval representation and
a ⊆ x, we must have lx < lz. Hence rx < rz , as otherwise z would be properly

14

Ii Iiy

z
x

a b

Figure 12: Case 1, proof of (I0)

contained in x. The latter implies z ∩ y 6= ∅. This, in turn, contradicts (7).
Invariants (I1)–(I3) are trivially satisfied as the set C of cores and the coloring

functions cl, cr remain unchanged. However, some effort is needed to prove that
the last invariant (I4) is kept.

Suppose that x intersects the core b ∈ C(Ij) and j 6= i. Since a is the unique
core interval which is contained in x, we get b * x. Suppose that a < b. Then b
must be the immediate successor of a in C. To prove (I4) for x and b we need
to show that cl(b) = i. Let z ∈ Ii be an interval witnessing the left end point
of a, i.e., lz = la (see Figure 13). Now, since I∪{x} is a distinguishing proper

a

Ii

z

x

b

Ij

Figure 13: Case 1, proof of (I4)

interval representation, we have lx < lz = la and therefore rx < rz. Hence lb ∈ z.
Invariant (I4) applied to b and z gives cl(b) = i, as desired. An analogous proof
delivers cr(b) = i in the case when b < a.

Case 2

In this case the new interval x intersects exactly two consecutive core inter-
vals a < b with a ∈ C(Ii) and b ∈ C(Ij). By (I3) we know that i 6= j. Since
we are not in Case 1, we also know that neither a nor b is contained in x. In
particular, la < lx < ra < lb < rx < rb.

First of all, we need to show that lines 4–5 of Algorithm 1 cover all possibil-
ities, i.e., either cr(a) = j or cl(b) = i. Suppose that cr(a) 6= j. Invariant (I2)
applied to a ∈ C(Ii) implies cr(a) 6= i. Hence {i, j, cr(a)} = {1, 2, 3}. But this
restricts the possible values of cl(b). Indeed, (I2) applied to b ∈ C(Ij) together
with (I3) give cl(b) 6= j and cl(b) 6= cr(a), respectively. Hence we must have
cl(b) = i, exactly as stated in line 5.

To prove that (I0)–(I4) are kept we assume that cr(a) = j, i.e., line 4 of
Algorithm 1 rather than line 5 is executed. The arguments in the case cl(b) = i
are analogous. For (I0) we show that I′j := Ij ∪{x} is a weak order. Clearly,
the set {x} ∪ core−1(b) is an antichain. It remains to show that x is disjoint
with all other intervals from Ij . Suppose to the contrary that for some y ∈ Ij
with core(y) 6= b we have x ∩ y 6= ∅. As a and b are consecutive in C, either

15

core(y) < a or core(y) > b. In the latter case x∩ y 6= ∅ together with rx < rb im-
plies y ∩ b 6= ∅ (see Figure 14). Therefore, y ∩ z 6= ∅ for every z with core(z) = b,

a

Ii

y

x

core(y)b

Ij Ij

Figure 14: Case 2, proof of (I0), core(y) > b

contradicting (7). Now consider the case when core(y) < a. Then x ∩ y 6= ∅ to-
gether with la < lx gives la ∈ y (see Figure 15). Invariant (I4) applied to a and

a

Ii

y

x

b

Ij

core(y)

Ij

Figure 15: Case 2, proof of (I0), core(y) < a

y gives cl(a) = j. Hence cl(a) = cr(a), contradicting (I2).
Invariants (I1)–(I3) are trivially satisfied. Invariant (I4) holds for x and a as

cr(a) = j.

Case 3

In this case the new interval x intersects, yet does not contain, exactly one
a ∈ C. Without loss of generality assume that la < lx. Suppose that (I0) does
not hold, i.e., for some y ∈ Ii with core(y) = b 6= a we have x ∩ y 6= ∅. Note
that we must have y ∩ a = ∅ as otherwise y ∩ z 6= ∅ for every z with core(z) = a,
contradicting (7). Together with la < lx this gives a < y. Since a, b ∈ C(Ii),
invariant (I3) yields a c ∈ C(Ij) with i 6= j and a < c < b. Interval x intersects
only one a ∈ C. Hence we must have x < c and so c ⊆ y (see Figure 16). But
this would mean that y contains two cores b and c, which is impossible, by
Claim 8(i).

We easily check that the remaining invariants (I1)–(I4) are trivially kept.

a

Ii

y
x

b

Ii

c

Ij

Figure 16: Case 3

16

Case 4

In this case the new interval x does not intersect any element from C. It is
also the only moment when Algorithm forms a brand new core, i.e., C′ = C ∪
{x}. We only prove that invariants (I0)–(I4) are kept in Case 4.1 as the proofs
in Cases 4.2 and 4.3 are analogous. In Case 4.1 the new interval x lies between
two consecutive core intervals a and b. Thus, intervals a < x < b become three
consecutive cores in C′.

In order to prove (I0) we will show that x does not intersect any interval
from Im. Suppose to the contrary that for some y ∈ Im we have x ∩ y 6= ∅.
Without loss of generality assume that lx < ly. As a and b are consecutive in C,
from y ∈ Im and m 6= j we get b < core(y). Moreover, ly < rx < lb < rb < ry
(see Figure 17). Thus y contains two cores b and core(y), which is impossible,
by Claim 8(i).

a

Ii

y
x

core(y)

Im

b

Ij

Figure 17: Case 4.1

Invariant (I1) is trivially satisfied. Invariant (I3) applied to consecutive (in I)
core intervals a ∈ C(Ii) and b ∈ C(Ij) gives i 6= j. Now, c′l(x) = i 6= j = c′r(x)
together with line 18 yields {m, c′l(x), c

′

r(x)} = {1, 2, 3}, proving (I2).
The first part of (I3) follows again from {m, i, j} = {1, 2, 3}. To verify the

second part of (I3) we need to check that cr(a) 6= c′l(x) = i and cl(b) 6= c′r(x) = j.
Applying (I2) to a and b we get cr(a) 6= i and cl(b) 6= j, respectively.

To prove (I4) assume that for some y /∈ Im we have x ∩ y 6= ∅. If lx ∈ y then
core(y) 6= a would imply core(y) < a, a ⊆ y so that y would contain two cores
core(y) and a, which is impossible, by Claim 8(i). Hence core(y) = a, y ∈ Ii and
so c′l(x) = i, as desired. The proof in the case rx ∈ y is analogous.

References

[1] B. Dushnik, E. W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941)
600–610.

[2] W. T. Trotter, Combinatorics and partially ordered sets, Johns Hopkins
Series in the Mathematical Sciences, Johns Hopkins University Press, Bal-
timore, MD, 1992, dimension theory.

[3] I. Rabinovitch, The dimension of semiorders, J. Combin. Theory Ser. A
25 (1) (1978) 50–61.

[4] H. A. Kierstead, G. F. McNulty, W. T. Trotter, Jr., A theory of recursive
dimension for ordered sets, Order 1 (1) (1984) 67–82.

17

[5] L. Hopkins, Some problems involving combinatorial structures determined
by intersections of intervals and arcs, Ph.D. thesis, University of South Car-
olina (1981).

[6] S. Felsner, Interval orders: Combinatorial Structure and Algo-
rithms, Ph.D. thesis, Technische Universität Berlin, http://www.math.tu-
berlin.de/˜felsner/Paper/diss.pdf (1993).

[7] B. Bosek, K. Kloch, T. Krawczyk, P. Micek, On-line dimension of semi-
orders, manuscript (2011).

18

	1 Introduction
	2 Proof of Rabinovitch theorem
	3 On-line game on proper intervals
	3.1 Lower bound
	3.2 Upper bound

