Event Broadcasting Service
An Event-Based Communication Infrastructure

Gerrit Kahl, Christian Biirckert, Liibomira
Spassova
DFKI
Affiliation
{forename.surname} @dfki.de

ABSTRACT

In this paper, we present the Event Broadcasting Service (EBS),
which can be used in instrumented environments to exchange
data between different devices and services. The EBS can be
used with almost all operating systems and programming lan-
guages. It enables real-time exchange of large data sets and
provides effective debugging tools. Example applications for
smart spaces, such as a visualization dashboard and location
observation, are presented.

Author Keywords
event broadcasting, platform-independent communication

ACM Classification Keywords
H.5.2 Information Interfaces and Presentation: Miscellaneous

General Terms
Design, Management, Measurement

INTRODUCTION

Nowadays, a variety of sensors have been installed in more
and more public areas, which therefore can be regarded as in-
strumented environments. For example, retailers are increas-
ingly embedding technology into their supermarkets in order
to improve the shopping experience of their customers and
support them in their shopping process. Moreover, customers
can also act as human sensors and send current locations de-
tected by their smartphones to the supermarket’s server. This
collected data could be useful for the shop manager, e.g. to
send more employees to the cash points if needed. The col-
lected data could also be deployed in other systems, for ex-
ample, to personalize the content of assistant systems. To
realize these goals, all information should be transmitted and
received by different systems in real time. In order to manage
the huge data exchange, an appropriate service has to be im-
plemented in the instrumented environment. Due to the fact
that the sensor systems in such an instrumented environment
are often implemented in different programming languages,
this service should provide an easy to use generic interface.

Copyright is held by the author/owner(s)
IUI Workshop on Location Awareness for Mixed and Dual Reality
LAMDal?2, 14, February 2012, Lisbon, Portugal.

Tim Schwartz
Saarland University
Affiliation
schwartz @cs.uni-saarland.de

In this paper, we propose an event-based communication struc-
ture, which is originally implemented in Java, but also offers
a web interface such that events can be generated by simply
calling a web page. All events are serialized to an XML rep-
resentation of the corresponding class and then transmitted to
a communication server. Other systems can register at this
server for different types of events and are notified whenever
an event is sent to the server. Afterwards, the events can be
deserialized by a native Java deserializer, which can also be
used on Android. In order to receive messages in other pro-
gramming languages, a corresponding deserializer has to be
implemented.

RELATED WORK

Johanson et al. developed a system called iROS (interac-
tive Room Operating System), which can be used to transmit
data between processes [1]. This system has been designed
as middleware and used in an interactive workspace (iRoom)
where multiple ubiquitous computing devices are connected
to each other in order to help people coming together for col-
laborations. One part of iROS is the EventHeap [3], a com-
munication server which is used by the computing devices
in the iRoom to communicate in a client-server-architecture
manner. Therefore, the data is packed into events which are
serialized and transmitted through the server. A client regis-
ters at the EventHeap for the events it wants to receive. Fur-
thermore, a TTL (Time-To-Live) can be set, so that clients
who will register later can request older events from the heap.
According to [3], there are Java, C++, and web service im-
plementations, so that client processes in different languages
can connect to the server implemented in Java. The authors
mention that iROS is “friendly to existing languages and en-
vironments, and straightforward to support a wide range of
devices and leverage their existing application bases.” Unfor-
tunately, we could not find any newer documentation, which
leads to the conclusion that the development has stopped after
the publication of the paper. Also the current documentation
and sources are not available any longer, hence we could not
validate this system using Android devices for transmitting
and receiving events.

Metaglue from the Stanford University is a distributed multi-
agent system for intelligent environments implemented in Java.
It shall meet the requirement to handle large numbers of hard-
ware and software components’ interconnection [2]. It is
possible to establish communication channels between single
agents and maintain their state. It is also created to intro-
duce and modify agents in a running system and to manage



shared resources. Furthermore, an event broadcasting mech-
anism is part of its capabilities. To maintain the configura-
tion and work on the running system, Metaglue has an SQL
database and a web-based interface for modifying the agent’s
configuration-attributes at runtime. The agents make requests
in an ad-hoc direct way and can also use event broadcasting
to notify groups of agents about context-shifts in room appli-
cations. For debugging, a so called “Catalog monitor” is pre-
sented which displays all running agents and their reliance
interconnections. Still, the authors admit that debugging is
difficult, and they hope for the Java community to make more
steps into the direction of distributed agent debugging [2].

In [6], two frameworks are presented: Prism-SF, an architec-
tural style framework, and Prism-MW, an architectural mid-
dleware framework. These frameworks can be used to de-
scribe network architectures and then work on top of this to
let different components communicate with each other. Ac-
cording to the authors, the frameworks can be used in many
types of distributed systems like client-server or peer-to-peer
networks. Prism-SF provides design guidelines for compos-
ing large distributed, decentralized, mobile systems and Prism-
MW is a lightweight architectural middleware supporting the
implementation of these guidelines [6]. The Prism-MW frame-
work is a composition of a large amount of classes that can be
extended and connected to create large distributed systems in
which all components have the ability to communicate. They
make use of Java’s dynamic class loading and DLLs under
Windows to add and remove communication ports at runtime.
The authors claim that more than a dozen applications have
been designed using various instances of Prism-SF, imple-
mented on top of Prism-MW. The system supports PalmOS,
WindowsCE and desktop platforms and even digital cameras
and motion sensors. However, there is no support for Android
devices.

Since all of these system are either very complex to install and
configure (Prism and Metaglue) or are not available for mod-
ern devices like Android (iROS, Prism), we had to develop a
new approach. This Event Broadcasting Service (EBS) aims
at being easy to configure, to debug, and to extend.

EVENT BROADCASTING SERVICE

In order to enable an interconnection between different ser-
vices in an instrumented environment, we developed an event-
based communication infrastructure. For the design of this
service, we devised four criteria. The developed service should
enable users to easily install it and adapt their applications to
the infrastructure within a relatively short timeframe. Since
there is a variety of different services and sensors in instru-
mented environments, the communication architecture should
offer interfaces for different programming languages and op-
erating systems, especially for embedded and portable ones.
In order to cope with a wide range of different applications,
the communication interfaces have to be generic. Further-
more, the event broadcasting between several services should
be guaranteed to work in nearly real time. Due to the huge
amount of data that will be sent by several systems, a simple
and easy to use debugging mechanism should be provided na-
tively.

These requirements can be summed up by the following key-
words:

1. Simplicity
2. Portability
3. Flexibility

4. Simple Debugging

In order to fulfill our predefined criteria, we decided to im-
plement our infrastructure as an Event Broadcasting Service
(EBS). Hence, only one server is needed, to which all clients
can connect using web sockets and to which they can send
events. These events are broadcast to every client connected
to the server and filtered on the client side. The corresponding
architecture is illustrated in Figure 1.

Other
JavaClient Clients
Eqdmid Event Filter -
ients &
S
- XML Serialized Event J
— Transmission b S

N

Event Broadcasting

&
&

Server
check/ permit/
handle deny
event event

|Serverside Callback Service'

Figure 1. Architecture of the EBS

The EBS server is implemented in Java in order to be inde-
pendent from the operating system. For the events, we de-
cided to use an XML serialization before transmitting them
as simple strings. Due to this serialization, events can be gen-
erated and parsed in any programming language supporting
XML parsers. For example, Java already implements such
a serializer and deserializer that can also be used with An-
droid, namely the xstream library'. To also enable sensors to
send events, the EBS additionally offers a web interface for
generating and sending events with primitive datatypes. For
this purpose, a URL containing the event name and param-
eters as key-value pairs has to be called. In contrast to the
iROS EventHeap, we obtain the corresponding Java instance
after deserialization, where all parameters and functions can
be called.

1http://xstream.codehaus.org/


http://xstream.codehaus.org/

In order to simplify the debugging of the system, precise run-
time exceptions are thrown including stack traces. For in-
stance if the method for a HelloWorldEvent, which a client
has registered for, is missing, the system outputs the error
message “ You forgot to implement onEvent(HelloWorldEvent
event) in your callback class HelloWorld”. To make runtime
debugging more comfortable and efficient, a DebugEvent-
Client can be connected, which simply outputs the XML string
of every broadcast event. Every event contains an ID defined
by the programmer, which makes it possible to infer its ori-
gin. All clients automatically send HelloEvents at regular in-
tervals, containing the origin ID and a list of all events they
are currently listening to, which makes it possible to recog-
nize if clients are available or blocked. Development and de-
bugging processes are further simplified by the opportunity
to specify an auto reconnect. This means if the server is lost,
a client blocks its send operations until the server is avail-
able again, while informing regularly about its own connec-
tion state. This makes it possible to restart the server and the
clients in a running environment.

Implementation Details

In the currently available Java and Android implementations,
all events are extensions of the class Event. Events can theo-
retically be very complex data structures composed of various
other classes. To simplify the usage of the EBS, we decided
to limit the client’s functionality to a minimum, implement-
ing only the following methods: connecting, event transmit-
ting, and event receiving. In order to establish a connection, a
client has to be created by defining its event receiving handler
(callback) and a set of events it listens to. Afterwards, events
can be transmitted by calling the send method, which takes
an instance of an event class that is to be broadcasted. The
event received on the server side will be automatically passed
to the callback instances of the connected clients. The latter
must implement a special method for every event they have
registered for, which defines how a specific event is to be han-
dled. These methods must be named onEvent and must take
one argument of the corresponding event’s class type. For ex-
ample, a client listening to a HelloWorldEvent must provide
the method public void onEvent(HelloWorldEvent event) in
its own callback class.

To make the system even more flexible, the server can also be
extended by a callback method, which is guaranteed to be ex-
ecuted before broadcasting a detected event and thus allows
to permit or deny the broadcasting of specific events (filter).
Some advantages of this extension are discussed in the fol-
lowing section.

Deployment in an Instrumented Shopping Environment

The Innovative Retail Laboratory (IRL) [8] is a small exper-
imental instrumented retail environment, in which modern
shopping assistance systems are developed and tested. In this
environment, we have to face the problem of many different
systems (mobile and embedded systems, servers, etc.) run-
ning all kinds of operating systems, e.g. Windows, Android,
Mac OS and Linux. Since all components should be inter-
connected, a middleware had to be developed that allows the

different systems to interact. Furthermore, all products of the
instrumented environment operate on a centralized database.
One of the challenges to be handled in this context was the
need to inform all systems in the environment of possible
changes, e.g. the re-location of an object or person.

Apart from the transmission of data from sensors and systems
to other systems, the current global state of the instrumented
environment needs to be observed. For this purpose, we de-
cided to set up a database containing all information concern-
ing the current state of the environment, e.g. the positions
of all objects. In order to keep this data coherent, we use
the aforementioned events to update the database. Since the
changes of the database are mainly simple transactions, we
outsourced them to a centralized service and included it into
the core EBS server. All events sent to the EBS server are
directed to the Synchronization Service (SyncService) before
being broadcast. An event received by the SyncService trig-
gers an update of the database and is then forwarded to the
broadcasting algorithm or denied depending on the current
filter options. This guarantees that the clients are informed
about a change only after it has been captured in the database.
The SyncService is the only component which is capable of
editing the database. Since the events are broadcast, every
service in our environment will be informed about changes
and can get the information out of the event or the database,
which is updated before the event has been broadcast.

In our opinion, the EBS infrastructure provides a suitable ap-
proach to decoupling services from their corresponding user
interfaces (UI). The Uls listen to events and display changes
while the backend services receive sensory data and produce
appropriate events. Relevant user interactions with sensors or
UI elements also result in events, which offers all listening
clients the opportunity to react to them. For example, one of
our systems reacts to the presence of certain objects and dis-
plays relevant information on a screen as soon as an object has
been detected at a specified location and clears this informa-
tion when the object is removed again. Whenever sensors de-
tect the absence or presence of an item, a corresponding event
is sent by the sensor client and received by the user interface
component, which then reacts appropriately. Using this ap-
proach, graphical user interfaces can also easily be decoupled
from the sensors, which facilitates the development and com-
parison of different Uls on different operating systems using
the same sensor data. Additionally, the components can be
tested beforehand, without having real sensor data, by just
sending the corresponding events and hence simulating cer-
tain state changes. With this architecture, systems can react
to events sent by sensors or by simulators in the same way,
which offers a comfortable way to debug programs.

APPLICATION USING THE DUAL REALITY PARADIGM

Using this architecture, a great number of events can be sent
by the sensors and systems of the instrumented environment.
These events comprise different pieces of information includ-
ing data measured by sensors or information provided by other
systems. In order to provide a representation of the detected
state changes, we are developing a component aiming at vi-
sualizing the current state of the instrumented environment



using a dashboard-like metaphor. Each change of the envi-
ronment detected by sensors will be transmitted via events to
the EBS server, which will broadcast them to this dashboard
component, which itself is registered as a client. The dash-
board component aims at monitoring and controlling the ser-
vices I/O behavior, which can be detected in the instrumented
environment. Apart from the visual representation itself, in-
teraction in this visual representation should have an influ-
ence on the real world, e.g., if the user changes a parameter in
the virtual model, the corresponding change is reflected in the
real environment. This bi-directional communication from
the real world to a virtual model and vice versa is referred to
as Dual Reality [5]. The dashboard component should also
be implemented as a generic interface to enable the inclusion
of simulators that can influence the virtual representation but
also the real world [4].

Net: 26207
Cell: 27058361

Available Data:

Country: de

Office 118 : 90 Sc
LA: 41712

.
2
2
]
2
=
o
a
pres
3]
=
T
<
[v]
A
A
o
S
2
o
@
4
=

A
A
i
00
£
i)
E
@
A
A
2
‘B
4
7}
=
c
=)
o
c
S
=
S
o
vl

Figure 2. Smart phone running UbiSpot

In smart spaces, it is important to keep track of the loca-
tions of people in this environment. In [7], an Always Best
Positioned system called UBISPOT is described, which uses
cell towers, WiFi and Bluetooth information to estimate the
current position of an object or person. Originally, this sys-
tem has been implemented for SymbianOS smart phones. We
reimplemented the algorithms for Android devices (a screen-
shot of UBISPOT for Android devices is shown in Figure 2).
Using EBS, users can decide to share their anonymized loca-
tions with the infrastructure of a smart space. In this context,
“anonymized” means that the identity of the person is not re-
vealed. Still, the provided information can be helpful, for
example in airports or large malls, to enable a manager to as-
sign workers appropriately. These locations can, for example,
be visualized in the previously introduced dashboard.

CONCLUSION AND FUTURE WORK

The Event Broadcasting Service provides an easy and effi-
cient way to interconnect different services running on differ-
ent devices by exchanging events. The server itself is imple-
mented in Java, the clients, however, can run on any operation
system due to the XML representation of the events. While
interfaces for receiving events have just been implemented in
Java, client services can be written in any programming lan-
guage to send events using the web interface for event gen-
eration and transmission. Early tests of the EBS showed fast
performance. In these test, clients ran on Mac OS X, Linux,
Windows XP, Windows 7, and Android.

For future work, we plan to run intensive tests of the server
and to further extend the EBS. One such extension will be a
protocol for question answering, which enables to trace possi-
ble communication problems and further improves the stabil-
ity by monitoring if queries have already been answered and
optionally resending the appropriate events. Furthermore, the
dashboard system will be extended to visualize further events
delivered by the intelligent environment as well as usage statis-
tics.

ACKNOWLEDGEMENT

This research was funded in part by the German Federal Min-
istry of Education and Research and developed in the projects
EMERGENT (grant number 01 IC 10SO1H) and SWINNG
(grant number 01 IC 10S05A). The responsibility for this
publication lies with the authors.

REFERENCES

1. Borchers, J., Ringel, M., Tyler, J., and Fox, A. Stanford
Interactive Workspaces: A Framework for Physical and
Graphical User Interface Prototyping. Wireless
Communications 9, 6 (2002), 64-69.

2. Coen, M. H., Phillips, B., Warshawsky, N., Weisman, L.,
Peters, S., and Finin, P. Meeting the computational needs
of intelligent environments: The metaglue system. In
Proceedings of MANSE 99 (1999), 201-212.

3. Johanson, B., and Fox, A. The event heap: A coordination
infrastructure for interactive workspaces. In Proceedings
of the Fourth Workshop on Mobile Computing Systems
and Applications, IEEE (2002), 83-93.

4. Kahl, G., Warwas, S., PascalLiedtke, Spassova, L., and
Brandherm, B. Management dashboard in a retail
scenario. In Workshop on Location Awareness in Dual
and Mixed Reality. International Conference on
Intelligent User Interfaces (IUI-11), February 13, Palo
Alto,, California, United States, G. Kahl, T. Schwartz,
P. Nurmi, E. Dim, and A. Forsblom, Eds.,
Online-Proceedings (2011), 22-25.

5. Lifton, J., and Paradiso, J. A. Dual Reality: Merging the
Real and Virtual. In Proceedings of the First International
ICST Conference on Facets of Virtual Environments

(FaVE) (July 2009).

6. Medvidovic, N., Mikic-Rakic, M., Mehta, N. R., and
Malek, S. Software architectural support for handheld
computing. Computer 36 (September 2003), 66—73.

7. Schwartz, T., Stahl, C., Miiller, C., Dimitrov, V., and Ji,
H. UbiSpot — A User-Trained Always Best Positioned
Engine for Mobile Phones. In Proceedings of Ubiquitous
Positioning Indoor Navigation and Location Based
Services (2010), IEEE XPlore (2010). Online Publication,
no pagenumbers.

8. Spassova, L., Schoning, J., Kahl, G., and Kriiger, A.
Innovative retail laboratory. In Roots for the Future of
Ambient Intelligence. European Conference on Ambient
Intelligence (AmI-09), in Conjunction with 3rd,
November 18-21, Salzburg, Austria, o.A. (2009).



	Introduction
	Related Work
	Event Broadcasting Service
	Implementation Details
	Deployment in an Instrumented Shopping Environment

	Application using the Dual Reality Paradigm
	Conclusion and Future Work
	Acknowledgement
	REFERENCES 

