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D-6750 Kaiserslautern

Germany
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Abstract: Plans which were constructed by human experts and have been
repeatedly executed to the complete satisfaction of some customer in a complex
real world domain contain very valuable planning knowledge. In order to make
this compiled knowledge re-usable for novel situations, a specific integrated
knowledge acquisition method has been developed: First, a domain theory is
established from documentation materials or texts, which is then used as the
foundation for explaining how the plan achieves the planning goal. Secondly,
hierarchically structured problem class definitions are obtained from the
practitioners' highlevel problem conceptualizations. The descriptions of these
problem classes also provide operationality criteria for the various levels in the
hierarchy. A skeletal plan is then constructed for each problem class with an
explanation-based learning procedure. These skeletal plans consist of a sequence
of general plan elements, so that each plan element can be independently refined.
The skeletal plan thus accounts for the interactions between the various concrete
operations of the plan at a general level. The complexity of the planning problem
is thereby factored in a domain-specific way and the compiled knowledge of
sophisticated expert plans can be re-used in novel situations.

1. MOTIVATION

Like other synthetic tasks, planning problems are inherently intractable [Georgeff87]. In a

complex real world domain such as production planning in mechanical engineering, expert

systems can consequently not be based on planning from first principles [Koehler91]. It is

also not surprising that in at least 80 percent of all mechanical engineering planning tasks,

even human planners re-use old plans by adapting them to the new planning problem

[Spur79; ThobenSchmalhofer90].

Expert plans have not only been developed with much effort, but were also carefully

tested and have proven their sophistication during numerous successful executions in the real

world. Preparing such human planning solutions for their re-use in novel situations can

provide an important basis for the development of a successful planning system.

This paper describes a general procedure by which concrete human expert plans can be

generalized into skeletal plans [FriedlandIwasaki85]. A skeletal plan provides a partitioning
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of the enormous search space of the complete planning problem into a number of

subproblems with small search spaces. The skeletal plans constructed by this procedure are

indexed by the various application conditions so that they can be re-used in novel situations.

Explanation-based learning [MitchellKeller86] is applied to find an appropriate

generalization of a concrete case consisting of the description of a manufacturing problem

and its solution. It is embedded into an integrated knowledge acquisition method

[SchmalhoferKuehn+91] which provides the domain theory and allows the specification of

domain-adequate operationality criteria for the construction of skeletal plans.

We will first outline the integrated knowledge acquisition framework, which is based on a

quite general model of expertise. The general model describes the overall structure of the

future expert system. We will then describe the skeletal plan construction procedure and its

implementation in some detail. The application of the procedure to the production planning

of a rotational part will be described and the results will be discussed.

2. INTEGRATED KNOWLEDGE ACQUISITION FOR PLAN RE-USE

The problem of production planning in mechanical engineering consists of finding an

adequate production plan for a given workpiece which is to be manufactured in some factory.

For the manufacturing of a rotational part, the production plan consists of a sequence of

chucking and cutting operations by which the workpiece can be manufactured.

refine

factory description
machines, 
tools, ...

abstract

workpiece description
mold and goal workpiece,
geometry, technology, ...

abstract

workpiece features

associate

skeletal  plan

production  plan
sequence of chucking
 and cutting operations

factory features

Figure 1: Model of expertise for production planning



3

The general structure of the expert system which is being developed can be described by

the model of expertise [BreukerWielinga89] shown in Figure 1. From the concrete description

of the workpiece and the available manufacturing environment more abstract feature

descriptions are first constructed. These abstractions are then associated with an appropriate

skeletal plan that has been stored stored in the knowledge base. The skeletal plan is finally

refined with the help of the workpiece and the factory description into the concrete

production plan.

The model of expertise specifies what kind of knowledge has to be acquired for the expert

system, namely abstraction rules, refinement rules and skeletal plans which are associated

with features of the problem description. In addition, a model of mechanical engineering

actions is presumed as a general domain model. This model requires chucking and cutting

operations to be described by some typology and their preconditions and effects.

SPGEN
EBL-procedure
for generating
skelatal plans

domain and
common sense

knowledge

problem classesapplication conditions and
skeletal plan

Texts Case Expert Memories

Knowledge-Base for Production Planning

COKAM CECoS

domain theory operationality criteria for
the different problem classes

Figure 2: Integrated knowledge acquisition method

An integrated knowledge acquisition method is used to coordinate knowledge from texts,

previously solved planning problems (cases) and the expert's respective memories. The

knowledge acquisition tools COKAM (Case-Oriented Knowledge-Acquisition Method from

Text) [SchmidtSchmalhofer90; KuehnLinster+91] and CECoS (C ase-Experience

Combination System) [BergmannSchmalhofer91] are applied to the same set of cases so that

the knowledge acquired with the two tools will complement one another. The domain and

common sense knowledge supplied by COKAM and the definition of production classes
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obtained through CECoS, can then be utilized to automatically construct skeletal plans and

associated application conditions through the explanation-based learning procedure SPGEN

(Skeletal Plan Generation Procedure).

2.1. Case oriented knowledge acquisition with COKAM

With the interactive tool COKAM information is interactively extracted from a text and

subsequently enhanced by the expert's elaborations. The extracted information is then

mapped to the model of mechanical engineering actions (domain model). The so collected

knowledge thus provides an explanation of each step in the production plan and specifies the

conditions which are required for its application and the resulting consequences. Table 1

shows a sample of text information and expert elaborations, which are relevant for

determining the preconditions and consequences of a specific cutting operation. The mapping

of the 3rd knowledge unit of Table 1 into the model of mechanical engineering actions, which

will be described in section 3.1 shows that the extracted information needs to be properly

interpreted.

1. For rough cutting the cutting speed should be 400 to 600 m/minute.

2. When the mold has been forged, bezeling is required, if ceramic
cutting tools are to be used.

3. The surface roughness Rt depends on the cutting feed f and the corner
radius re of the cutting tool and can be computed by the formula Rt =
f2 /8re .

4. When thin workpieces are manufactured with a high cutting force,
vibrations may occur.

5. When high tolerances are required, a very hard cutting material
must be used for fine turning.

Table 1: A sample of text information extracted with COCAM

2.2. Acquisition of problem classes with CECoS

With the interactive tool CECoS a hierarchically structured set of problem classes is obtained

from a set of prototypical cases and human expert judgements. The problem classes are

defined so that a useful skeletal plan will exist for each problem class. From explicit and

implicit memories, the expert first establishes an extensional definition of the various problem

classes with respect to selected prototypical cases. The so established production classes are

then intensionally and thereby generally defined.

Because the class definitions are based on expert judgements, the classes should be

defined at the right level of generality: They should be general enough so that a large number

of specific problems fall into the different classes and they should be specific enough to
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provide operational knowledge for production planning.

Figure 3 shows a section of the hierarchy of production classes which was obtained for

some prototypical shafts. Class A is defined by the features which all three cases have in

common. The more specific class B inherits all the features from class A and has some

additional features which apply to the cases M5 and M4 but not to M3.

The features of each class may refer to the geometry (long workpiece) and technology

(hardened steel) of the workpiece, to the factory (one tool revolver), or to the production plan

(2 chucking fixations). As will be shown later, the features referring to the problem

description (i.e. the workpiece or the factory) are utilized for the specification of the

application conditions, whereas the features referring to the production plan are used for the

definition of the operator classes in the skeletal plans.

class B

class A

case M5

material hardened steel
max tolerance  > 0.05
smooth left plane required
monotonic contour
clamped with collet chucks
thread cutting required
ceramic cutting tools 
...

material steel
not spheroidized
long workpiece
2 chucking fixations
no inside processing
half finished mold
one tool revolver

case M4

case M3

Figure 3: A section of a hierarchy of problem classes acquired with CECoS



6

3. PROCEDURE FOR GENERATING SKELETAL PLANS

SPGEN is based on explanation-based generalization as described by [MitchellKeller86]. The

domain and common sense knowledge acquired with COKAM is thereby used as domain

theory and the hierarchy of problem classes is employed to specify operationality criteria.

Depending upon the selected problem class and the respective operationality criteria, a more

or less general skeletal plan will be obtained from a given case.

A skeletal plan is constructed by SPGEN in four phases:

1. In the first phase the execution of the source plan is simulated and explanations for the

effects of the individual operations are constructed.

2. In the second phase the generalization of these explanations is performed with respect

to a criterion of operationality, that specifies the vocabulary for defining abstract

operators for the skeletal plan.

3. In the third phase, a dependency analysis of the resulting operator effects unveils the

substantial interactions of the concrete plan at the more general level of the skeletal

plan.

4. In the forth phase the concept descriptions for the abstract operators of the skeletal

plan are formed by collecting and normalizing the important constraints for each

operation that were indicated by the dependencies.

For describing the SPGEN procedure we will use a simplification of the case M5 from Figure

3. The input and the (intermediate) results of the procedure will be presented in a PROLOG-

like notation in which unquoted strings beginning with an upper-case character denote

variables.

The formal representation of the case M5 which is used as input to SPGEN is shown in

Table 2. The left side of the table shows the representation of the problem description which

consists of the representation of the to be manufactured workpiece, the mold and the factory.

The geometry of the workpiece and the geometry of the mold is represented by elementary

surfaces. The technology is represented by a specification of the tolerances, the material, the

heat-treatment, etc. These specifications may apply to individual or to all surfaces. The

production plan is represented as a sequence of chucking and cutting operations with various

parameters.
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Representation of problem description

The workpiece
Geometry
surface(1, form(linear, (0,0), (0,52.5))),
surface(200, form(linear, (0, 52.5), (60,52.5))),
surface(201, form(linear, (60, 52.5), (67,45.5))),
...
Technology
tolerance(201, radial(0.05)),
surface-finish(201,mean-roughness(0.01)),
...

The mold
Geometry
surface(1, form(linear, (0,0), (0,52.5))),
surface(2, form(linear, (0, 52.5), (500, 52.5))),
surface(3, form(linear, (500, 52.5), ((500,3)))),
surface(4, form(linear, (500,3), (497,0))),
centerhole(40, 'Zen3mm', 1)
Technology
material(all, 'C45'),
fabrication(all, half-finished),
heat-treatment(all, none),
...

The factory
machine('PNE480'),
no_of_tools('PNE480', 6),
power('PNE480', 20 000),
stiffness('PNE480', very-high),
...

Representation of problem solution

The production plan
operator(1,
  chuck(collet-chucks(15,soft),

surface(2),
force(200) )),

operator(2,
  cut(1, speed(450),

feed(0.45),
depth(5),
form(linear, (66, 47.5), (500, 47.5 )),
tool(('FTC32-CSSNL3250-15',

'SNGN150816TO3030SN80')))),

operator(3,
  cut(2, speed(450), ... )),

...

operator(9,
  unchuck)

Table 2: Partial representation of a case used as input for SPGEN

3.1. Simulation and Explanation

In the first phase of SPGEN, the plan execution is simulated on the basis of the available

domain theory. The simulation of the plan is performed by sequentially determining the

effects of each operator Op1,...,Opn of the plan. In order to determine the effects of the

sequence of operators, the intermediate processing states from the initial state S0 (the mold) to

the final state Sn (which will contain the target workpiece if the domain theory is sufficient)

are computed as follows:

      Op1       Op2       Opn
S0  S1  S2 .... Sn-1  Sn

The effects of the operator are represented by a set of rules with STRIPS like add- and delete

actions. The execution of these rules thus create the successor world state. For example,

knowledge unit 3 from table 1 is represented by the following rule:

IF operator(I,cut(speed(S),feed(F),depth(D),form(Form), tool(T)),

corner_radius(T,R),

produces_roughness(F,R,Roughness),

is_surface(Form,Surface),

THEN ADD(roughness(Surface,Roughness))

By applying all the rules for each operator, the various consequences of the individual

operations of the plan are calculated. If the domain theory is sufficient, a complete
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explanation of the plan will be obtained. The proofs that exist for the applicability of each

operator rule can now be seen as an explanation of each effect that depends on operator

attributes as well as world state attributes, from the initial or intermediate states.

3.2. Generalization

In the second phase of the procedure, these proofs are independently generalized for each

production step of the plan (explanation based generalization). The independent

generalization of each production step is necessitated because of the complexity of the

complete plans.

The degree of generalization is determined by the operationality criteria for each

production step, which are defined at the concept [Hirsh88] rather than at the predicate level.

These criteria are obtained from the terms, which the texts and the expert used for describing

the different operations of the concrete plan at a general level. It is thus assumed that exactly

those terms which are used by experienced humans would determine operationality. A

justification for this assumption can be found in the research of Rosch [Rosch78]: Rosch has

shown that humans favor basic level categories in their descriptions. Such categories can be

termed operational in the sense that they provide maximum information and the least

cognitive effort for achieving some task goal.

3.3. Dependency Analysis

The dependency analysis of the third phase determines which previous operations (or initial

state affairs) achieved the prerequisites for the various productions steps of the plan. It is

thereby determined when the prerequisites for performing a specific production step were

accomplished. A directed graph is constructed, in which all existing dependencies between

the individual plan operations and the problem description are denoted by arcs. These

problem descriptions, which were obtained through CECoS determine the generality of the

skeletal plan to be constructed. The operationality criteria are provided by the features of the

problem classes which were acquired from the human expert with the knowledge acquisition

tool CECoS.

With the hierarchy of problem classes shown in figure 3, either the features of class B (and

its subclasses) or the features of class A (and its subclasses) can be specified as being

operational. In the first case a rather specific skeletal plan which applies to the problems of

class B will be constructed, whereas in the latter case a more general skeletal plan for class A

will be obtained.

Figure 4 shows a graphical representation of a part of the dependency graph that results

from the analysis of the case M5. For example, cut 1 depends on the workpiece being

chucked (for subsequent cuts this obvious dependency is no longer shown in the graph), on

the geometry and the technology of the mold, and on the availability of ceramic cutting tools

in the factory. It can also be seen from figure 4 that the first three cuts produce intermediate

surfaces which are needed for the subsequent cut respectively but are no longer present in the
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final workpiece. The required geometry and technology of the goal workpiece is produced

exclusively by the cuts 4 to 7, each of which produces some particular feature. The lack of a

dependency between the cuts 5 to 7, furthermore indicates that they could be executed in any

sequence.

PPrroobblleemm  ddeessccrr iipptt iioonn

chuck cut 1 cut 2 cut 3 cut 4 cut 5 cut 6 cut 7
chucked

chucked
with high precision

surface surface surface surface

mold

geometry technology

factory

machine tools

goal workpiece

geometry technology

hardened steel
not spheroidized

not forged

ceramics stiff machinesurfacesurface

ceramics

surface

tolerance 
high

thread

surface

surface

groove groove

Figure 4: Partial dependency graph for the case M5

3.4. Normalization

This last phase builds the skeletal plan in its final representation by identifying independently

solvable sub-formulas from the dependency graph which expresses only local constraints on

one operator. By analyzing the occurrence of variables in the graph the dependencies are

separated into:

• one set REnable that collects all dependencies that only relate to features of the

problem description,

• one set ROpi for each operator Opi where the dependencies refer to parameters of the

operator Opi

• one set RDependent where the dependencies refer to the possible orderings of the

operator classes.

The set of constraints REnable formally describes the class of problems for which the skeletal

plan can be used: it specifies the application conditions for the skeletal plan. The application
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conditions may refer to the mold, the goal workpiece or the manufacturing environment, as

indicated in Figure 4. The skeletal plan itself consists of the set of operator classes

Op1,...,Opn with the constraints ROpi and RDependent which specify the possible

sequences in which they may be applied.

For the case M5 the skeletal plan with application conditions shown in Table 3 is

generated for the problem class B. The skeletal plan for the problem class A would be

somewhat more general. For instance, it would allow any chucking tool with two fixations

instead of collet chucks and would not require the material to be hardened steel.

Application conditions concerning

the workpiece
Geometry

surface(S1, form(linear, (0,0), (0,Z1))),
10 =< Z1 < 120,
surface(S2, form(linear, (0, Z1), (X1,Z1))),
...

Technology
tolerance(S2, radial(Rt1)), Rt1 >= 0.025,
surface-finish(201,mean-roughness(MR)),
MR >= 0.01,
...

the mold
Geometry

surface(Sm1, form(linear, (0,0), (0,Z1))),
surface(Sm2, form(linear, (0, Z1), (X1, Z1))),
surface(Sm3, form(linear, (X1,Z1), ((X1,Z2)))),
surface(Sm4, form(linear, (X1,Z2), (X2,0))),
centerhole(Sm5,Type,Depth), ...

Technology
material(all, Mat),
mat_type(Mat,hardened_steel),
fabrication(all, half-finished),
heat-treatment(all, none),
...

the factory
machine(M),
no_of_tools(M,N), N >= 6,
power(M,P), P >= 15000,
stiffness(M, very-high),
...

The skeletal plan

operator(1,
chuck(collet-chucks(Width,soft),

surface(S2),
force(Force1) )),
10 =< Width < 20,
200 =< Force1 < 300,
...

operator(2,
cut(speed(Speed1),

feed(Feed1),
depth(Depth1),
form(linear, Star1,End1),
tool(Tool1) )),
400 < Speed1 < 600,
3 =< Feed1 < 5,
1 =< Depth1 < 6,
cutting_material(Tool1,'SN80'),
rake_angle(Tool1,45),
tool_phase(Tool1,Phase1),
2 =< Phase1 < 3,
...

operator(3, ...),
...

operator(9,unchuck)

Dependencies
see bottom half of Figure 4

Table 3: Partial skeletal plan generated from case M5 for problem class A

A first version of SPGEN has been implemented in LPA-PROLOG on a MAC II computer

[Bergmann90]. It can construct skeletal plans from simplified cases such as those shown in

Figure 3. The current implementation deals mostly with the geometrical aspects and does not

yet adequately take into account the technological and economical aspects of production

planning.
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4. DISCUSSION

The re-use of previously established solutions to hard problems has been suggested in the

area of Artificial Intelligence [RiesbeckSchank89] as well as for software development in

general [Fischer87; Standish84]. In the area of Artificial Intelligence most approaches to the

re-use of established solutions are discussed within the framework of case-based reasoning

[Koehler91]. In case-based reasoning, the modification of an old case to a new problem is

typically performed at the time when the new problem arises. By suggesting to systematically

prepare sophisticated expert plans already during the knowledge acquisition process for an

expert system these approaches are extended in the current paper.

Unlike case-based planning, the preparation of a case for its re-use is thus performed in

ignorance of a specific new problem. It basically consists in analyzing and explaining a

prototypical case in terms of a model of expertise and supplementary domain knowledge.

Additionally, the features of problem classes which supposedly constitute the base level

categories of human experts [Rosch78] are used to determine operationality criteria for

concepts in an explanation-based generalization procedure.

The skeletal plans and application conditions constructed with SPGEN, provide a

combination of knowledge-based and heuristic abstractions of a concrete plan. For novel

problems, which satisfy the application conditions, the skeletal plan will provide a knowledge-

based partitioning of the novel problems into appropriate subproblems, which can then be

solved more easily.
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