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Abstract

Natural language generators are faced with a
multitude of different decisions during their
generation process. We address the joint opti-
misation of navigation strategies and referring
expressionsin a situated setting with respectto
task success and human-likeness. To this end,
we present a novel, comprehensive framework
that combines supervised learning, Hierarchi-
cal Reinforcement Learning and a hierarchical
Information State. A human evaluation shows
that our learnt instructions are rated similar
to human instructions, and significantly better

use techniques from Al planning for the combined
generation of navigation instructions and referring
expressions (RE). More generally, the NLG prob-
lem of non-deterministic decision making has been
addressed from many different angles, including
PENMANS-style choosers (Mann and Matthiessen,
1983), corpus-based statistical knowledge (Langk-
ilde and Knight, 1998), tree-based stochastic models
(Bangalore and Rambow, 2000), maximum entropy-
based ranking (Ratnaparkhi, 2000), combinatorial
pattern discovery (Duboue and McKeown, 2001),
instance-based ranking (Varges, 2003), chart gen-

eration (White, 2004), planning (Koller and Stone,
2007), or probabilistic generation spaces (Belz,
2008) to name just a few.

than the supervised learning baseline.

1 Introduction
More recently, there have been several approaches

Natural Language Generation (NLG) systems ar®wards using Reinforcement Learning (RL) (Rieser
typically faced with a multitude of decisions dur-et al., 2010; Janarthanam and Lemon, 2010) or Hi-
ing their generation process due to nondetermina@rarchical Reinforcement Learning (HRL) (Deth-
between a semantic input to a generator and its reefs and Cuayahuitl, 2010) for NLG decision mak-
alised output. This is especially true in situated seing. All of these approaches have demonstrated that
tings, where sudden changes of context can occHiRL/RL offers a powerful mechanism for learn-
at anytime. Sources of uncertainty include (a) theng generation policies in the absence of complete
situational context, such as visible objects, or tasknowledge about the environment or the user. It
complexity, (b) the user, including their behaviourovercomes the need for large amounts of hand-
and reactions, and (c) the dialogue history, includerafted knowledge or data in rule-based or super-
ing shared knowledge or patterns of linguistic convised learning accounts. On the other hand, RL
sistency (Halliday and Hasan, 1976) and alignmertan have difficulties to find an optimal policy in a
(Pickering and Garrod, 2004). large search space, and is therefore often limited to
Previous work on context-sensitive generation ismall-scale applications. Pruning the search space
situated domains includes Stoia et al. (2006) andf a learning agent by including prior knowledge is
Garoufi and Koller (2010). Stoia et al. present @herefore attractive, since it finds solutions faster, re-
supervised learning approach for situated referrinduces computational demands, incorporates expert
expression generation (REG). Garoufi and Kolleknowledge, and scales to complex problems. Sug-

78

Proceedings of the SIGDIAL 2011: the 12th Annual Meeting of the Special Interest Group on Discourse and Dialogue, pages 78-87,
Portland, Oregon, June 17-18, 2011. (©2011 Association for Computational Linguistics



gestions to use such prior knowledge include Litan instruction giver (IG) navigates an instruction fol-
man et al. (2000) and Singh et al. (2002), whdower (IF) through the world, pressing a sequence of
hand-craft rules of prior knowledge obvious to theébuttons and completing the task by obtaining a tro-
system designer. Cuayahuitl (2009) suggests uphy. Pairs take part in three dialogues (in three dif-
ing Hierarchical Abstract Machines to partially pre-ferent worlds); after the first dialogue, they switch
specify dialogue strategies, and Heeman (2007) usedes. The GIVE-2 corpus (Gargett et al., 2010) pro-
a combination of RL and Information State (IS)vides transcripts of such dialogues in English and
to also pre-specify dialogue strategies. Williamsserman. For this paper, we complemented the En-
(2008) presents an approach of combining Partiallyglish dialogues of the corpus with a set of seman-
Observable Markov Decision Processes with cortic annotations. The feature set is organised in five
ventional dialogue systems. The Information Statgroups (Table 1). The first two groups cover manip-
approach is well-established in dialogue manageHation instructions (i.e., instructions to press a but-
ment (e.g., Bohlin et al. (1999) and Larsson antbn), including distractofsand landmarks (Gargett
Traum (2000)). It allows the system designer teet al., 2010). The third group describes high- and
specify dialogue strategies in a principled and sydew-level navigation, the fourth group describes the
tematic way. A disadvantage is that random desigaser. The fifth group finally contains grammatical
decisions need to be made in cases where the bagbrmation.
action, or sequence of actions, is not obvious.

The contribution of this paper consists in a com2.2 Navigation and Manipulation Instructions

prehensive account of constrained Hierarchical R?ﬂavigation instructions can take many forms, even

inforcement Learning through a combination Withfor the same route. For example, a way to another
a hierarchical Information State (HIS), which is in—room can be described as ‘go to the room with the

formed by prior knowledge induced from decisionlamp, ‘go left and through the door’, or ‘turn 90

trees._ W? apply ou_r framework FO the gene_rat'oﬁegrees, left, straight’. Choosing among these vari-
of navigation strategies and referring expressions Mtsis a highly context- and speaker-dependent task.

a situated setting, jointly optimised for task SucFigure 1 shows the six user strategies we identified

cess and linguistic consistency. An evaluation shovxﬁom the corpus based on an analysis of the combi-
that humans prefer our learnt instructions to the sy of navigation levetligh’ vs. ‘low’) and con-
pervised learning-based instructions, and rate the{gnt (destination’

lto h 4 i imulation-based , ‘direction’, ‘orientation’, ‘path’,
equal to human instructions. Simulation-base reé,traight’). User models are based on the navigation

sults show that our semi-learnt approach learns MO[&/el and content decisions made in a sequence of in-

quickly than the fully-learnt baseline, which makesyy,ions, so that different sequences, with a certain
it suitable for large and complex problems. Our apdistribution, lead to different user model classifica-

proach differs from Heeman’s in that we transfer tions. The proportions are shown in Figure 1. We
to NLG and to a hierarchical sgtting. A_lthOUQh HeeTound that 75% of all speakers use the same strat-
man was able to show that his combined approacly, iy consecutive rounds/games. 62.5% of pairs

Iearrllls mcl)re quickly than ?g_re_dRL' '; IS I|m|tec! 0 4re consistent over all three dialogues, indicating
small-scale systems. Our ‘divide-and-conquer aFTnter-speaker alignment. These high measures of

proach, on the other hand, scales up to large Searﬁnman consistency suggest that this phenomenon
spaces and allows us to address complex problem% worth modelling in a learning agent, and there-

fore provides the motivation of including linguis-
tic consistency in our agent’s behaviour. Manipula-
2.1 The GIVE-2 Domain tion instructions were treated as an REG task, which

. . L needs to be sensitive to the properties of the referent
Our domain is the generation of navigation instruc-

) ) _ ) ) dand distractors (e.g, size, colour, or spatial relation
tions and referring expressions in a virtual 3D worl
task, two people engage in a ‘treasure hunt’, where ZDistractors are objects of the same type as the referent.

2 The Generation Tasks
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ID Feature Type Description

f1  absoluteproperty(referent) boolean |s the colour of the referent mentioned?

f2  absoluteproperty(distractor) boolean 1s the colour of the distractor mentioned?

f3  discriminativecolour(referent)  boolean Is the colour of the referent discriminating?
f1+  discriminativecolour(distractor) boolean Is the colour of the distractor discriminating?

f5  mention(distractor) boolean Is a distractor mentioned?

fe  firstmention(referent) boolean s this the first reference to the referent?

fr mention(macrdandmark) boolean Is a macro (non-movable) landmark mentioned?
fs  mention(micralandmark) boolean 1s a micro (movable) landmark mentioned?

fo  num(distractors) integer How many distractors are present?

fio  num(micralandmarks) integer  How many micro landmarks are present?

f11 spatialrel(referent,obj) string ~ Which spatial relation(s) are used in the RE?

fi2 taxonomicproperty(referent) boolean Is the type of the distractor mentioned?
f1z  within_field_of_vision(referent)  boolean Is the referent within the user’s field of vision?

fi4  mention(colour, Im) boolean |s the colour of a macro- / micro Im mentioned?
fis mention(size, Im) boolean s the size of a macro- / micro Im mentioned?
fie  abstractness(nawstruction) string Is the instructiorexplicit or implicit?

fir  content(navinstruction) string  Vals: destination direction, orientation path straight
fis level(navinstruction) string Isthe instructiorhigh-or low-level?

fio  position(user) string Is the usepn track or off_track?

f20 reaction(user) string  Vals: takeaction takewrong action wait, req_help
fa1  type(user) string  Vals: likeswaiting, likes.exploring in_between
fa2  waits(user) boolean |s the user waiting for the next instruction?
f23 model(user) string  User model/navig. strategy used (cf. Fig.1)?
f2a  actor(instruction) boolean Is the actor of the instruction inserted?

f2s5  mood(instruction) boolean s the mood of the instruction inserted?

fa¢  process(instruction) boolean |s the process of the instruction inserted?

for locationalphrase(instruction)  boolean Is the loc. phrase (path, straight, etc.) inserted?

Table 1:Corpus annotation features that were used as knowledgedé#iining agent and the Information State. Fea-
tures are presented in groups, describing the propertigsfefents in the environmenfy(.. f13) and their distractors
(f14..-f15), features of high- and low-level navigatiofi ... f1s), the user fiq... f23), and grammatical information
about constituentsfty... for).

with respect to the referent) to be natural and diszonsistency. Table 3 (in Section 5.2) presents an ex-
tinguishing. We also considered the visual saliencemple dialogue generated by our system.

of objects, and the type of spatial relation involved,

since recent studies indicate the potential relevance Constrained Hierarchical Reinforcement

of these features (Viethen and Dale, 2008). Given Learning for NLG

these observations, we aim to optimise tigigk suc-
cessandlinguistic consistencyof instructions. Task _ _ o
success is measured from user reactions after eagh" idéa oflanguage generation as an optimisa-
instruction (Section 5.1). Linguistic consistency idion Problemis as follows: given a set of genera-
achieved by rewarding the agent for generating irio" States, a set of actions, and an objective reward
structions that belong to the same user model as tf#"Ction, an optimal generation strategy maximises

previous one. The agent has the same probabiliﬂ?e objective function by choosing the actions lead-

for choosing any pattern, but is then rewarded fo9 t© the highest reward for every reached state.

Such states describe the system’s knowledge about

3.1 Hierarchical Reinforcement Learning

80



% content(nav, destination) > imises the reward for each visited state, according to
— Ty T™(s) = arg MaX,e 4i Q*j(s,a), where@j'(s, a)

specifies the expected cumulative reward for exe-

)

\
|
|
Fae
=)

'model(user, 0)| (‘Z{/c;:lent(nav, orientatiﬁfr;))(\‘/’é’éontent(nav, orienia\ti\oﬁ\)/ Cuting actiona in states and then fO”OWing p0|-

S icy 7r*§ We use HSMQ-Learning (Dietterich, 1999)

B ‘ (<20) \7@) o2 for learning a hierarchy of generation policies. This
imodel(user. 3) T | medeifuser, 2)| hierarchical approach has been applied successfully
<% content(nav, path) > model(user, 1) to dialogue strategy learning by Cuayahuitl et al.
e (2010).
\220/ o
model(user, 4)| | model(user, 5)| 3.2 Information State

The notion of an Information State has traditionally
Figure 1: Decisign tree for the Classifi'cati'on of userpeen applied to dialogue, where it encodes all infor-
models (UM) defined by the use of navigation level ang, ,iinn relevant to the current state of the dialogue.
content. L.JM 0=high-level, UM Emw‘l.evel (LL), UM This includes, for example, the context of the in-
2=orientation-based LL, UM 3=orientation-based mix- , o v .
ture (M), UM 4=path-based M, UM 5=pure M. teraction, participants and their beliefs, and the sta-
tus of grounding. An IS consists of a setiafor-
mational componentencoding the information of
the dialogueformal representation®f these com-

the generation task (e.g. navigation strategy, or r%’onents, a set dlialogue moveteading to the up-

ferring expressions). The action set describes te,e of the 1S, a set afpdate rulesvhich govern the
system’s capabilities (e.g:use high level naviga- ,qate and finally anpdate strategywhich speci-
tion strategy, ‘mention colour of referent’ €iC.). gag \yhich update rule to apply in case more than one
The rew_ard function assigns a numeric value f%pplies (Larsson and Traum (2000), p. 2-3). In this
each action taken. I_n _thls way, language generatl_o&bper’ we apply the theory of IS to language gener-
can be seen as a finite sequence of states, actidfg,, ' For this purpose we define the informational
and rewards{so, ao, 1, 51, 1, -, 7e—1, 5}, Where components of an IS to represent the (situational and
the goal is to find an optimal strategy automatlcally”nguistic) knowledge of the generator (Section 4.2).

To do this we use RL with a divide-and-conquer apyy e ryles are triggered by generator actions, such
proach in order to optimise a hierarchy of generatios the decision to insert a new constituent into the

policies rather than a single policy. The hierarchy of, rant |ogical form, or the decision to prefer one

RL agents consists of levels andV-models per 4 order sequence over another. We use the DIP-

level, denoted asi/j, wherej € {0,....N — 1}  pgR toolkit (Bos et al., 2003for our implementa-
and: € {0,...,L — 1}. Each agent of the hierar- tion of the IS.

chy is defined as a Semi-Markov Decision Process
(SMDP) consisting of a 4-tuple: 57, A3, T}, 5 >. 3.3 Combining Hierarchical Reinforcement
S5 is a set of statesA’ is a set of actions(7 is Learning and Information State

a transition function that determines the next statg, ., .- .« \work has suggested the HSMQ-Learning

, -
s’ from the current state and the performed ac algorithm for optimizing text generation strategies

:'r‘])n a, angl ﬁj tIS a rewatrd fun'ctlonf thf:\tkgpe0|f|es Dethlefs and Cuayahuitl, 2010). Because such an
_e reWar atan _agen _recelves or taking an a Igorithm uses all available actions in each state,
tion a in states lasting 7 time steps. The random

iabl s th b i . than important extension is to constrain the actions
variable represents the number ot ime Seps e, ilable with some prior expert knowledge, aim-
agent takes to complete a subtask. Actions can

tﬁ?g to combine behaviour specified by human de-

e:ther pI’II’T;ItIV?hOI’ ;:ot;nposne. The ;ortmesrk//llglg Sln's'gners and behaviour automatically inferred by re-
gle rewards, the latier correspond 1o S an%forcement learning agents. To that end, we sug-

yield cumulative discounted rewards. The goal o
each SMDP is to find an optimal policy that max- 3http://www.ltg.ed.ac.uk/dipper
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State variables (features) ‘

MY fr9-.-faz
M fi...f10, fr2...f13, fro...f20, fo2
M} fi6...f22
M3 Jiz...fo3
M(z Jr, fil, fis...fis
M; Ji-f5, fu1, fis
M21 M3 f8, fi1, fi3, fao ,fa2
M2, M2 | fie, fa1, foo sfea--fas
faa...far

Figure 2: (Left:) Hierarchy of learning agents executedrfitop to bottom for generating instructions. (Right:) State
representations for the agents shown in the hierarchy olethelhe featured ... fo7 refer back to the features used
in the annotation given in the first column of Table 1. Notd #gents can share information across levels.

gest combining the Information State approach witfinding a goal state for the root subtask. This process
hierarchical reinforcement learning. We thereforéterates until convergence occurs to optimal context-
re-define the characterisation of each Semi-Markowndependent policies, as in HSMQ-Learning.
Decision Process (SMDP) in the hierarchy as a 5-

tuple modelM; =< Si A% T¢, R;,I; >, where 4 Experimental Setting

Si, AL, Tj and R’, are as before, and the additional '

element/ is an Information State used as knowl-4-1 Hierarchy of Agents

edge base and rulg—based dgcisi_on maker. In this &gure 2 shows a (hand-crafted) hierarchy of learn-
tended model, action selection is based on a Cofxg agents for navigating and acting in a situated en-
strained set of actions provided by the IS updatgonment. Each of these agents represents an indi-
rules. We assume that the names of update rulggy,a| generation task. Modalr? is the root agent

in I} represent the agent actiony. The goal of 514 js responsible for ensuring that a set of naviga-
each SMDP is then to find an optimal policy thakjo, jnstructions guide the user to the next referent,
maximises the reward for each visited state, accorgyhere an RE is generated. Model! is responsible
ing to 77;(s) = argmax,eainsi Q75(s,a), Where  for the generation of the RE that best describes an
Q3'(s,a) specifies the expected cumulative rewaréhtended referent. SubtasRg? ... M3 realise sur-
for executing constrained actiarin states and then face forms of possible distractors, or macro- / micro
following w*j— thereafter. For learning such poli- landmarks. Model/] is responsible for the gener-
cies we use a modified version of HSMQ-Learningation of navigation instructions which smoothly fit
This algorithm receives subtaﬂK;f and Information into the linguistic consistency pattern chosen. Part
State[;ﬁ used to initialise state, performs similarly of this task is choosing between a low-level (model
to Q-Learning for primitive actions, but for compos-A/2) and a high-level (model/?) instruction. Sub-

ite actions it invokes recursively with a child sub-tasksM... M realise the actual instructions, des-
task. In contrast to HSMQ-Learning, this algorithmtination, direction, orientation, path, and ‘straight’,
chooses actions from a subset derived by applyingspectivelyt Finally, model M can repair previ-
the IS update rules to the current state of the worldus system utterances.

When the subtask is completed, it returns a cumu-

lative rewardr;-, and continues its execution until “Note that navigation instructions and REs correspond to se-
guences of actions, not to a single one.
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Model(s) | Actions

MY navigation, manipulation, confirmation, stop, repsjstemact, repaimo_systemact

Mg insertdistractor, inserno_distractor, inserho_absoluteproperty, insermicro_relatum, insetimacrarelatum
insertno_taxonomicproperty, inserabsoluteproperty, inserno_macrarelatum, insertaxonomicproperty

M} choosehigh_level, choosdow_level, getroute, chooseasyroute, choosehortroute

M3... M3 | exphead, expo_head, insertolour, insertno_colour, insertsize, inserino_size, expspatialrelation

M3 chooseexplicit abstractness, choasmplicit_abstractness, destinatidmstruction, pathinstruction

M3 chooseexplicit abstractness, choasmplicit_abstractness, directianstr, orientationinstr, straightinstr

Mg§... M3} | expactor, expno_actor, expmood, exploc_phrase, exmo_loc_phrase, exgprocess, exmo_process

Table 2:Action set of the learning agents and Information States.

4.2 State and Action Sets intuitions. In our case, we use a supervised learn-

The HRL agent’s knowledge base consists of all sitNd @pproach to induce prior knowledge into our
uational and linguistic knowledge the agent needdRL agent. We trained decision trees on our anno-
for decision making. Figure 2 shows the hierarchj@t€d corpus data using Weka's (Witten and Frank,
of learning agents together with the knowledge bas&’09) J48 decision tree classifer. A separate tree
of the learning agent with respect to the semanti¥a@s trained for each semantic attribute (cf. Table
features shown in Table 1 that were used for the a)- The obtained decision trees represent our super-
notation of the GIVE-2 corpus dialogues. The firstiSéd leaming baseline. They achieved an accuracy
column of the table in Figure 2 indicates the respe@f 917 in a ten-fold cross-validation. For our semi-
tive model, also referred to as agent, or subtask, affgfnt combination of HRL and HIS, we performed a
the second column refers to the knowledge variabl@anual analysis of the resulting rules to assess their
it uses (in the form of the feature index given in thdMPact on a learning agent. In the end, the fol-
first column of Table 1). In the agent, boolean value!PWing rules were used to constrain the agent's be-
and strings were represented as integers. The Hgviour: (1) In REs, always use a referent's colour,
shares all information of the learning agent, but ha8XCepPt in cases of repair when colour is not discrim-
an additional set of relational feature-value pairs fof?2ting; (2) mention a distractor or micro landmark,
each slot. For example, if the agent knows that thié the CO'QUV Pf the referent is not dlsc.rlml'natmg;
slot content(nav_instruction) has valuel (mean- (3) In nav_lg_atlon, alwa_ys_ make O”_entatlon 'nSt_ruc'
ing “filled’), the HIS knows also which value it was oS exphcﬂ. All remaining behaviour was subject
filled with, such agath. Such additional knowledge O l€aming.

is required for the supervised learning baseline (Seg-4 Reward Function

tion 5). The action set of the hierarchical Iearningw the followi d function to train the hi
agent and the hierarchical information state is give € use fne following reward function fo train the hi-
archy of policies of our HRL agent. It aims to re-

in Table 2. The state-action space size of a flat Ieang-r di lenath at imal task suce
ing agent would béS x A| = 10!, the hierarchical 2Uc® dISCOUrse fength alt maximal task SUctess

setting has a state-action space size.df x 107. Ing & consistent navigation strategy.

The average state-action space size of all subtasks is 0 for reaching the goal state
|S x A|/14 = 1.7 x 107. Generation actions can -2 for an already invoked subtask
R=1< +1 for generating instruction con-

be primitive or composite. While the former corre-
spond to single generation decisions, the latter rep-
resent separate generation subtasks (Fig. 2).

sistent with instruction_
-1 otherwise.

SWe excluded rules that always choose the same value, since
4.3 Prior Knowledge they would work against our aim of generating consistent, bu

. . . . variable instructions.
Prior knowledge can include decisions obvious t0  s1ask success is addressed by that the user has to ‘accept

the system designer, expert knowledge, or generedch instruction for a state transition.
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The third reward that encourages consistency of ir

structions rewards a sequence of actions_ _that allo o, SRS
the last generated instruction to be classified as b ]
longing to the same navigation strategy/user mod: & R

as the previously generated instruction (cf. 2.2). g 2 Py Lot

5 Experiments and Results e

5.1 The Simulated Environment

10
Episodes

The simulated environment contains two kinds of

uncertainties: (1) uncertainty regarding the state dfigure 3: Comparison of fully-learnt, semi-learnt, and su-
the environment, and (2) uncertainty concerning theervised learning (deterministic) behaviours.

user’s reaction to a system utterance. The first aspect

is represented by a set of contextual variables de-

scribing the environmenf,and user behavioirAl- ~ Supervised learning policy generates successful in-
together, this leads tbl5 thousand different contex- structions from the start. Note that we are not ac-
tual configurations, which are estimated from datéJally learning dialogue strategies, but rather gen-
(cf. Section 2.1). The uncertainty regarding th&ration strategies using dialogue features. There-
user's reaction to an utterance is represented byfgre the described policies, fully-learnt, semi-learnt
Naive Bayes classifier, which is passed a set &hd supervised-learning, exclusively guide the sys-
contextual features describing the situation, mappé@m's behaviour in the interaction with the simulated
with a set of semantic features describing the uttekSer. An example dialogue is shown in Table 3. We
ance® From these data, the classifier specifies thgan observe that the agent starts using a low level
most likely user reaction (after each system act) dtavigation strategy, and then switches to high level.
performdesiredaction, performundesiredaction, wait When the user gets confused, the system temporar-
andrequesthelp® The classifier was trained on thelly switches back to low level. For referring expres-
annotated data and reached an accura®2#fin a sions, it first attempts to locate the referent by ref-
ten-fold cross validation. erence to a distractor, and then repairs by using a
micro landmark. The surface forms of instructions
were realised from templates, since the NLG system
so far only generates a sequence of content selection

With respect to REs, th&illy-learnt policy (onl - L
P . y o p_ y (only decisions. We address surface realisation in Dethlefs
HRL) uses colour when it is discriminating, and a

distractor or micro landmark otherwise. Themi- and Cuayahuitl (2011).

learnt policy (HRL with HIS) behaves as defined in]c I\IN(T comparzd our semi—lde?rnt _policl:)y aglg_ainstAﬁ\
Section 4.3. Theupervised learning policy(only ully-learnt, and a supervised learning baseline.

HIS) uses the rules learnt by the decision trees. BOHPI_'C_'es vtvhere :rame_zd fot0 thousandh_err)]ls_,og_es.t For
learnt policies learn to maximise task success, arfffining, the step-size parameter which indicates

to generate consistent navigation strategleshe the learning rate, was initiated withand then re-

duced over time by = -1, wheret is the time step.

"previous system act, route length, route statudhe discount rate, which indicates the relevance of
(known/unknown), objects within vision, ~objects within future rewards in relation to immediate rewards, was
dialogue history, number of instructions, alignment(maion) _set t00.99, and the probability of a random actien

g ) . "
previous user reaction, user position, user wait- .
ing(true/false), user type(explorative/hesitant/meagiu was0.01. See (Sutton and Barto, 1998) for details

®navigation level(high / low), abstractness(implicit / ex-On these parameters.
plicit), repair(yes / no), instruction type(destinatiodirection /
orientation / path / straight)

10yser reactions measure the system’s task success. .

UThey thereby also learn to adapt their semantic choices f5igure 3 compares the rewards averaged over 10
those most frequently made by humans. runs. In terms ofearning speed we can see that

5.2 Learnt Policies

5.3 Comparison of Policies
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Agent| Policy | Action (composite in italics) Utterance

Usr requestroute How do | get to the trophy?
Sys | =), w5 | root, navigation dontRepair, orientation

w3, T low level navigationadd direction+degrees| First, turn 90 degrees left.

w2, w3 low level navigation‘straight’ Then go straight ahead.
Usr perform.desiredaction
Sys ] confirmation OK.

73, 7, 5 | high level navigationdestination, direction,
72, w3, 5 | addLocation Turn left at the end of the hallway.

Usr wait
Sys i repair system acgtchange navigation strategy

73,5 | low level navigationdirection Turn right

73,75 | high level navigationpath and go down the hallway.
Usr perform.desiredaction
Sys 73,7 | low level navigationdirection Now turn left.
Usr perform.desiredaction
Sys ™ confirmation OK.

72,3 | high level navigationdestination,

73,73 | addLocation Enter to the room in front of you.
Usr perform.desiredaction
Sys s, 3 manipulation use colour, use distractor Press the red button beside the blue.
Usr requesthelp
Sys i repair system acgtchange granularity

73, T high level navigation, manipulation

T3, T3 destination, use colour, use micro landmarkGo to the red button beside the chair.
Usr perform.desiredaction
Sys Ty manipulation Press it.
Usr perform.desiredaction
Sys ey confirmation Well done.

Table 3: Sample dialogue in the GIVE-2 scenario showing theathics of generation policies. See Figure 2 for the
corresponding hierarchy models, and Table 2 for the acBonSee Section 5.2 for an explantation of the dialogue.

while the semi-learnt behaviour is able to follow dearning instruction. Instructions consisted of a nav-
near-optimal policy from the beginning, the fully-igation instruction followed by a referring expres-
learnt policy takes about0 thousand episodes to sion. Subjects were asked to rate instructions on a
reach the same performance. In terms of simulated5 Likert scale (where 5 is the best) for their help-
task successwe see that while the supervised learnfulness on guiding the displayed person from its ori-
ing behaviour follows a good policy from the start,gin to pressing the intended button. We selected

it is eventually beaten by the learnt policies. six different scenarios for the evaluation: (a) only
one button is present, (b) two buttons are present,
5.4 Human Evaluation Study the referent and a distractor of the same colour as

We asked 11 participars to rate altogether 132 the referent, (c) two buttons are present, the referent

sets of instructions, where each set contained a sp%{]d a dlstractqr ofa dlﬁeren'F colour than the refe_r—
t, (d) one micro landmark is present and one dis-

tial graphical scene containing a person, mappe%[1

with one human, one learnt, and one supervisettﬁe_lc'[Or of the Same colour as the refe_rent, () one
micro landmark is present and one distractor of a

126 female, 5 male with an age average26f4. different colour than the referent. All scenarios oc-
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(1) Please rate each instruction for its helpfulness
on a scale of 1 to 5, where 5 represents the best and
1 the worst. o 5 !

(a) Go to the room on the left. Press the green
button.

1 2 3 4 5 : : : :
LA NN ]
(b) Go to the green button. Press it. el
1 2 3 4 5 : € J;i i
(c) Go to the next room and press green. : ; : : |:|

1 2 3 4 5

(2) Please circle the intended referent.

Figure 4: Example scenario of the human evaluation study.

curred twice in each evaluation sheet, their specifistructions and referring expressions, in situated dia-
instances were drawn from the GIVE-2 corpus abgue under the aspects of task success and linguis-
random. Scenes and instructions were presentedtin consistency. Based on an evaluation in a simu-
a randomised order. Figure 4 presents an examgbted environment estimated from data, we showed
evaluation scene. Finally, we asked subjects to cithat our semi-learnt behaviour outperformed a fully-
cle the object they thought was the intended refefearnt baseline in terms of learning speed, and a su-
ent. Subjects rated the human instructions with apervised learning baseline in terms of average re-
average oB.82, the learnt instructions with an aver-wards. Human judges rated our instructions signif-
age 0f3.55, and the supervised learning instructionscantly better than the supervised learning instruc-
with an average dt.39. The difference between hu- tions, and close to human quality. The study re-
man and learnt is not significant. The difference bevealed a task success rate f%. Future work
tween learnt and supervised learning is significant &an transfer our approach to different applications to
p < 0.003, and the difference between human andonfirm its benefits, and induce the agent’s reward
supervised learning is significantzat< 0.0002. In  function from data to test in a more realistic setting.

96% of all cases, users were able to identify the in-
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