
MDA Organization Platform: A Holistic Approach for the Management of
Model-Driven Architectures

Andreas Emrich1, Dmytro Panfilenko1, Sebastian Weber2

1German Research Center for Artificial Intelligence (DFKI)
Stuhlsatzenhausweg 3, Campus D3.2, 66123 Saarbrücken, Germany

{andreas.emrich|dima.panfilenko}@dfki.de

2Fraunhofer Institute for Experimental Software Engineering (IESE)
Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany

sebastian.weber@iese.fraunhofer.de

Abstract

Nowadays, there is no integrated system that allows

for complete carrying out of the model driven
development based on MDA. In addition, transforming
CIM to PIM is regarded as manual and not further
investigated.

Hence, we propose a holistic approach that
facilitates conceptual development of an MDA
management platform under change considerations
and traceability through CIM, PIM and PSM models
and code generation.

Semantic meta descriptions of these models along
with facilities for impact analysis and cost estimations
allow for keeping track of changes. Moreover, plug-in-
based code generation is further core functionality of
the system. Finally, through semantic role associations
the responsible personnel can be contacted in case of
need for the manual changes on the system.

Overall, the platform allows for the execution of
defined change processes with both automatic and
manual transformation tasks. It regards not only
technical processes but also focuses on the integration
of relevant personnel.

Keywords: model-driven architectures, MDA
management, SPACE

1. Introduction

In the field of model-driven architectures there are a
lot of approaches for the setup and execution [1].
Nevertheless, it is often a view that is based on a single
creation process; the entire software lifecycle is seldom
addressed [2] [4]. Consequently, changes should be

tracked between different artifacts and throughout
different model layers. The human perspective is also
important, as manual transformation steps should be
addressed to the respective process owners.

Accordingly, we try to adapt the concept of
traceability to the domain of model-driven
architectures. Traceability enables engineers to keep
track of all changes, which occur in a model-driven
architecture. We will analyze, what impact is caused by
changes and how consequent transformation tasks can
be triggered. Semantics will be used to create a
semantic metadata infrastructure for model-driven
architectures, which allows for the seamless, semantic
capturing of the overall model.

To achieve this, we will adapt the SPACE (Semantic
Process- and Artifact-oriented Collaboration
Environment) concept to the area of model-driven
architectures. This paper will highlight the MDA
Organization Platform (MOP) as an implementation of
the SPACE concept. Different use cases throughout the
software development lifecycle will be analyzed. It
will be shown, how full traceability over all artifacts
contained in a model-driven architecture can be
achieved and what potential benefits it brings
throughout the software lifecycle.

Related work will be discussed in section 2 with a
focus on change management and cost and impact
analysis. In section 3 we will describe contemporary
MDA tools and analyze their suitability from a change
management perspective. Section 4 will discuss some
relevant aspects of the Semantic Process- and Artifact-
oriented Collaboration Environment and how they are
applied to the context of model-driven architectures.
Section 5 will show different scenarios in terms of
changes that occur in the context of model-driven

architectures, and how the proposed solution could
improve the management of model-driven architectures
in this area. We will end the paper with some
conclusions and directions for further research.

2. Related Work

This section provides an overview on the known
related research efforts on the topic of this paper and
the nearest adjacent ones. The work related to the
problematic of this paper comprises not only the
general question about how to model the CIM-level in
MDA and to transform developed models into PIMs
and PSMs with the resulting code. Even more arises the
following question: how to assess the changes a user of
an integrated MDA management system makes, how to
track them inside a modeling level and moreover
between levels as well as how to model the role
structure and dependencies in order to make the
changes transparent for the according users and to
notify them in case the manual changes have to be
performed. The code generation via plug-in mechanism
is another important question apart from the alreadz
mentioned. Thus, the relevant research work being
overviewed here addresses the conceptual framework
development for MDA support or parts of this problem.

The work of Gruhn [5] stands closely to the topics
being under concern in this paper with its activity and
artifacts produced during the engineering process
aligned with MDA as well as the role structure for the
project being under development.

The activities Gruhn elicitates in his work are: 1.
Qualify and 2. Analyze the domain of interest, 3.
Implement the framework, 4. Model the system; 5.
Execute the transformation between different levels of
modeling and 6. Finally get the feedback about the
completed steps.

The results of the activities should be accordingly:
1. The economic model of a developed system, 2. The
domain specific languages (i.e. constructs for modeling
CIMs, PIMs and PSMs), 3. The implemented
framework prototype or even a product, 4. The set of
all models for the system (i.e. all CIMs, PIMs and
PSMs not created through transformations), 5. All the
models and artifacts generated out of higher-level
models and system source code, 6. An evolution
document comprising changes to the system and
assessment of the completed work.

The role structure and assignment of the activities
mentioned are basically divided into two not strictly
separated pools of domain and application engineers,
thus showing the difference between domain experts
having the knowledge about the environment and the

technical experts finally implementing the modeled
system. As to this extent, the system proposed in this
paper should comprise the mentioned functionalities
and extend them with at least impact and cost analysis,
traceability and notification mechanisms.

Another research effort in this area is the
CASSANDRA research platform developed by
KnowGravity Inc. in Zurich, Switzerland (see also
section Existing Tools for the tool description) [11].
The core of this system and the main idea about it is
that it is assistant-based and guides the users along the
MDA line helping them in their tasks by giving hints in
business, systems and software engineering. Its
functionality is based on the project data analysis from
other similar CASE tools and generation of the
according questions or hints for the next steps for
making progress forwards in the development process.
CASSANDRA comes in two variants. CASSANDRA’s
core components are: REMEMBER – an active
declarative database repository of all project
information, KNOW – an optional component that is
accessing the domain model of the world and THINK –
a rule-based engine that is able to infer the propositions
for the next steps, questions and other general
information related to the project and also explain the
information provided. There are also additional
component as interface and application agents in the
CASSANDRA architecture providing adaptation
functionalities for different external CASE tools and
service components respectively. The platform for
which an approach is proposed in this paper has a
different architecture maybe not that much like the
human brain components drawn in CASSANDRA
architecture. The knowledge, remembering and
thinking functionalities are also present in the MOP
architecture in another way, providing abilities to trace
the model changes throughout the MDA-based
engineering process and estimate the costs emerging
from a single model element addition on one of the
levels, as well as the role management features.

The last work in this overview concerns the
approach to enterprise architecture models and their
maintenance proposed by Fischer [6]. Its main thought
turns around alignment of the business domain experts
and IT specialists, as it usually can be seen in much
research approaches concerning separation between the
business- and technology-oriented architectures. The
interesting point in this work is that it emphasizes the
importance of the permanence of the enterprise
architecture management process and the certain and
unavoidable need for a well-thought concept for
keeping the enterprise models aligned, up-to-date and
ready-to-use. For this, states the work, there should

exist elaborated concepts that are not only process-
oriented, but also include role assignments and role
management and pay attention to scheduling of the
maintenance processes. The authors also agree that the
interfaces to different other architectures are needed in
order to have a complete approach for enterprise
architecture, among others to the data and metrics
architectures. Although the ideas in this work are very
related to the concepts of the current paper, we choose
a holistic approach instead of the federated one chosen
in the references work for the reasons that can be seen
in sections 4 and 5, where the motivation is given for
the approach and its methodology is presented.

3. Existing Tools

In this section we provide an overview over existing
tools that partly or to some extent support the MDA
idea through providing modeling features on different
levels as CIM, PIM or PSM, M2M-transformations on
or between these levels or even organizational features
that are helpful for managing development processes.

There are five tools we provide overviews for in this
paper, namely AndroMDA [7], PowerDesigner [8],
Rational family [9], Modelio [10], and KnowGravity’s
CASSANDRA [11] and KnowEnterprise [12]. For
each of these tools, the feature highlights are addressed
first and then the support for modeling on different
MDA-levels as well as for M2M-transformation is
questioned. In this way, we will see which aspects of
MDA are mostly covered in the practice of model-
driven engineering. Of course, there are many other
tools we can’t afford to give a survey on in this paper,
but the tool choice here should give a good snapshot of
the existing tool support for MDA.

AndroMDA (pronounced "Andromeda") is an open
source tool supporting many features including UML
1.4 modeling (UML 2.0 is under development) and
deployment of the modeled content onto different
platforms (J2EE, Spring, .NET). For the latter a
mechanism dealing with so-called cartridges is
implemented in this tool. This is basically a set of
transformation prescriptions targeting different
platforms as Spring, EJB, Hibernate, Struts, JDF etc. In
addition to UML modeling support, AndroMDA
supports other existing UML-modeling tools like
MagicDraw, Poseidon and Enterprise Architect. That
said, we can see that the AndroMDA, as the tool
description itself states, is basically a transformation
engine offering modeling support for PIM- and PSM-
levels as well as transformation to code for a number of
platforms that can be additionally defined by users. The

CIM-level modeling is not explicitly supported or
mentioned.

Sybase provides a commercial modeling tool
PowerDesigner for enterprise architecture modeling,
which supports several modeling techniques as data,
application and business process modeling on different
levels of abstraction as conceptual, logical and
physical. The standards PowerDesigner uses for the
above mentioned modeling are among others UML,
BPMN and BPEL4WS. In addition, there is a
repository storing the models created with help of
PowerDesigner, which supports standard features like
version control and merging as well as advanced
features like team solution (multiple users on the same
model at the same time), meta-data management and
security. Overall, it is a powerful tool offering
modeling on the CIM-, PIM- and PSM-levels as well as
a bridge to the execution environments through support
of the BPEL export.

IBM’s Rational family is a well-known commercial
tool family supporting modeling of the different aspects
of the enterprise architecture with established standards
like UML targeting different programming languages
(e.g. Ada, ANSI C++, Java, Visual C++ and Visual
Basic). The requirement modeling is paid special
attention with the Requirements composer facilitating
integrations between modeled requirements, defect and
change tracking. The next feature supported by the
Rational family is its configurable process, which
selects only the process components needed for the
development process. It also supports Model-Driven
Development with patterns identification and provides
functionality for round-trip engineering – enables to
model the application, generate the code elements, then
modify and implement the code as necessary. This tool
offers support for modeling on CIM-, PIM- and PSM-
levels with code generation to different programming
languages and some support for horizontal and vertical
traceability.

Modelio is a famous commercial modeling tool with
explicit model-driven development support from
Modelio software, including extensive UML and
BPMN support as well as some basic features for
enterprise-level modeling. Not like AndroMDA,
Modelio already provides support for graphical
modeling of the UML profiles using UML 2.0
diagrams, thus exploiting further features of this
modeling language with respect to adaptability and
traceability. Its support for BMM [13], BPMN and
SoaML [14] states its strong tendency to work with
SOA applications. Especially the BMM support is
currently under development and extension, including
goals, rules and organization modeling and standards

support. The generators Modelio is using are at the
time targeting Java, C# and C++, which allow for code
generation without any programming efforts. In
addition, teamwork solutions are well supported by a
unique shared repository throughout the whole
development cycle. As we can see, Modelio offers
support for modeling on CIM-, PIM and PSM-levels,
for code generation to different programming
languages and some support for role management in the
team solution.

The last tool presented in this overview is a pair of
KnowGravity’s CASSANDRA and Know Enterprise –
a research platform series of the modeling tool
including support for CIM-level modeling and
transformation support from PIM to PSM. Here we
have a division of the enterprise modeling features as
motivation, vocabulary, rule and process views for
business and requirements, xUML, architecture and
deployment views for IT in KnowEntreprise on the one
hand and the assisted business, systems and software
engineering in CASSANDRA on the other hand. In the
enterprise modeling tool KnowEnterprise there is
support for the relevant modeling standards like BMM
for motivation, SBVR for business rules and BPMN for
business processes as well as OSM for organization
modeling. At the same time teamwork relevant features
are supported, too: model version control, sharing and
multi-user access authorization as well as fine-grained
change logging, which is useful for further research
tasks addressed in CASSANDRA. The latter makes
estimation of the usages of the models and changes on
them for the basis of the generation of the next steps
proposals for the progress in the engineering process.
KnowEnterprise and CASSANDRA provide modeling
support on CIM- and PIM-levels, M2M-transformation
definition and change analysis as well as next step
proposals as the basis for teamwork solution, which is
interesting in the research aspect and not to be found in
other commercial tools.

4. SPACE - The Semantic Process- and
Artifact-oriented Collaboration
Environment

The Semantic Process- and Artifact-oriented
Collaboration Environment (SPACE) is a concept for a
semantic meta-model infrastructure that aims at
semantically describing the whole perspectives of a
collaboration context [16] [17]. In our scenario, this
would be a management environment for model-driven
architectures. It features the process and artifact
models. The relationships among processes and
artifacts can be used to run analyses across different

kinds of information artifacts. Overall, it will facilitate
end-user friendly creation, management, and execution
of process and artifacts models.

The objective of SPACE is to facilitate the
management of meta-models and the model
instantiation with the help of visual editors and
templates, respectively. Templates are generated on the
basis of the modeled artifacts. See Fig. 1 for an
example of an artifact described on meta-level and the
corresponding artifact template.

Artifacts are organized in artifact models that
contain related artifact types (e.g., requirements
engineering artifacts, such as use cases) but also in
process models that contain process artifacts (e.g.,
requirements elicitation, use case creation, etc.).
SPACE allows the definition of models on any
granularity level. As an example, there might exist an
artifact model that contains only the artifacts of any
software phase required for the distribution to the
customer (e.g., requirements specification or the
documentation of the software system). These artifacts
are connected to other artifacts of other artifact models
(e.g., the requirements specification artifact is
connected to use case artifacts, interview artifacts, etc.,
that are used as input).

Process models can be seen as specialization of
artifact models because they base on the same concepts
but have a few more characteristics, which are fully
described in [17]. The semantic relationships in the
process description also offer many other opportunities.
The semantic information moreover can be used to
include process-related experiences and best practices
in the platform view of the processes.

The inner structure of artifacts (i.e., attributes) as
well as the relationships to other artifacts (see Figure 2
as an example) constitutes semantic data that are
implicitly part of the generated visual templates. In the
artifact instantiation process, the users complete the
templates and link artifact instances and might provide
manual semantic annotations via tags. The semantic
data are the foundation for the proactive
recommendation facilities [16]. The templates support
an easy way to capture and package experience.

The MDA Organization Platform (MOP) will be a
model-specific implementation of the SPACE
approach. Overall, process models will be used for
software development processes as well as change
management or knowledge management processes.
Especially, transformation tasks are in the focus of
these process models. First of all, all model artifacts
specified and generated in an MDA are artifacts in the
context of MOP. However, as MOP seeks to be a
holistic approach, also any relevant object in the

context of the original artifacts will be also regarded as
an artifact in the context of MOP. The respective
process owners for transformation tasks will be
modeled and assigned to their respective
transformation processes and the associated model
artifacts.

In the context of the Software Organization Platform
(SOP) [19] a prototype has been developed that
facilitates the management of artifacts throughout the
entire software lifecycle. The concepts of SOP will be
partially adapted to MOP.

Fig. 1. Architecture of the Software Organization

Platform [18]
The artifacts are represented by wiki documents

stored in MediaWiki. The extension Semantic
MediaWiki [20] facilitates the semantic annotation of
these artifacts, and allows for the linkage of related
MDA artifacts. The user interface empowers software
engineers to create, modify and associate artifacts. The
Adobe Flex UI facilitates end-user-friendly support for
the graphical modeling of process and artifact models.
The PHPinChains [18] framework along with the XML
Service Extension allows for the integration with any
kind of applications. By this means, code generation or
external tools can be triggered within the MDA
Organization Platform.

The focus of this paper is to show the concept of the
MDA Organization Platform. Further research should
describe the processes and artifacts for model-driven
architectures that need to be modeled within MOP.

5. Second and following pages

As stated in the introduction change management
implies the need for a flexible and simple yet
completely traceable management of artifacts within a
model-driven architecture. In this section, we will show
what traceability means within the context of the MDA
Organization Platform (MOP). Then according to that,
we will demonstrate how traceability can improve
transformations corresponding to changes that occur
during the lifecycle of a model-driven architecture.

Traceability in Model-driven Architectures
Traceability originates from the domain of

requirements engineering and describes the
relationships between requirement artifacts. Literature
distinguishes between horizontal and vertical
traceability [15]. Horizontal traceability analyses the
relationships among requirements, whereas vertical
traceability explores how requirements are used in
consequent phases of the software development
process. Newer approaches also define traceability
more shallow, in a sense that it analyses the traceability
among all artifacts.

In the context of the MDA Organization Platform
traceability is the main property among different
artifacts that allows for analyses according to changes.
The artifacts can be different types of artifact
documents as in the commonly known software
engineering understanding of traceability. Moreover, it
enables to incorporate additional information from the
context such as associated roles, persons or help
documents, etc. Thus, traceability is the key enabler for
the MDA Organization Platform.

MDA Management Use Cases
Changes are considered to be an important cost

factor. Often, maintenance is considered to be the most
expensive phase in the software development lifecycle.
With MDA as a top-down approach, this is often
neglected. [21]

The following use cases will demonstrate how
change management can be applied to model-driven
architectures, and how MOP supports change
management scenarios for model-driven architectures.

Horizontal Traceability
In the context of model-driven architectures we

define horizontal traceability on artifacts within a
specific model level. All semantic relationships that are
analyzed with respect to horizontal traceability describe
two or more artifacts on the same model layer.

Fig. 2. Horizontal Traceability in the MDA

Organization Platform

The figure shows how the different artifacts are
interrelated in a Platform Independent Model (PIM).
Artifact B depends on artifact A, i.e. if a change occurs
to A, B must be adapted accordingly. However, there
are also artifacts that do not participate in any kind of
semantic relationship on a specific model layer and
thus do not cause any effects on other artifacts, e.g., C.

The semantic relationships can be unidirectional or
bidirectional. For outgoing unidirectional and
bidirectional relationships the related artifacts must be
changed as well. E.g., if B changes, the related artifacts
D, E, F, and G must be changed accordingly. This is
not the case for incoming unidirectional relationships
such as for B and A. If B changes, A does not need to
be updated. In case of the bidirectional relationship
between D and E, a change on E would also cause
changes for D, and consequently, also for F and G.

Vertical Traceability
From our point of view, vertical traceability

addresses not a single model layer, but semantic
relationships between artifacts on different model
layers. E.g., a specific goal defined in the Computation
Independent Model can be represented by different
model elements, such as classes, processes, etc., on the
Platform Independent Model.

The following figure shows how vertical traceability
can be shown between artifacts on different model
levels in a model-driven architecture. The figure
depicts just the CIM and PIM level for simplicity
reasons.

Fig. 3. Vertical traceability in the MDA

Organization Platform
The figure shows unidirectional as well as

bidirectional semantic relationships between artifacts
on different model levels of the model-driven
architecture.

Due to the nature of these relationships, there are
significant differences for the classical top-down
approach or for the bottom-up perspective. The
following subsections will describe, in which scenarios
the respective approach is useful and how traceability

is supported in these scenarios by the MDA
Organization Platform.

Top-Down Traceability
The traditional MDA approach derives the system

via transformations on different model layers. The
business goals and user requirements (CIM level) are
aggregated in a conceptual design of the system (PIM).
This design is refined for the ultimate goal of
implementation on the PSM level and then code is
generated according to the information provided in the
models.

When developing with MDA, the traceability of
artifacts can be helpful in different situations. It can
identify further courses of action that can be taken by
the respective engineer / developer. Furthermore, it can
provide a full overview of all artifacts that have to be
changed according to the changes already applied.

Overall, the top-down traceability enables to apply
the needed transformation tasks whenever changes
occur.

Bottom-Up Traceability
Despite the nature of model-driven architectures, it

is also desirable to have bottom-up views on the model-
driven architecture and its contained artifacts. First of
all, there are bidirectional relationships that could
cause changes on higher-level model layers. E.g., in
figure 6, the artifacts C in the CIM and PIM level are
connected by a semantic relationship; i.e., if a change
occurs to C on the PIM level, it must also be applied to
C on the CIM level.

Moreover, this implies a new question: Can we
(automatically) decide what to do on higher-level
model layers. Model-driven architectures heavily take
advantage of automatic transformation tasks and code
generation. However, this works fine for top-down
approaches, as information gets extended but not
reduced. When looking at the bottom-up approach,
there are both fuzziness in the transformation, and
manual transformation tasks. The fuzziness results from
the fact, that lower-level information are usually richer
in content than information on the higher levels.
Therefore it is hard to decide automatically, what do in
these cases.

One approach to overcome this problem would be to
refine the metadata representation, i.e. the templates in
MOP, for describing the MDA artifacts. It could be
defined, which data can be transferred from one level
to the next. However, this leads to a considerable
amount of effort for describing the artifacts. Moreover,
it is questionable, whether such a solution could cover
the majority of use cases in this area.

When also considering manual transformation tasks,
obviously human decisions are necessary to proceed.

People in MDA: Manual Transformation Tasks
Manual transformation tasks are a crucial part of

transformations in model-driven architectures [3].
Many transformations cannot be decided automatically,
because the underlying information is too abstract to be
formalized in a machine-readable way.

Thus, people have to perform these tasks
themselves. As MOP seeks to be a collaboration
platform that allows for editing the model-driven
architecture and its related artifacts in groups, it
incorporates role concepts. The roles can either be
defined explicitly or can be gathered manually by the
actions of the user. E.g., if a user creates an artifact, he
is automatically assigned as the contact person for this
artifact, unless it is explicitly changed.

These role concepts can be linked to certain
processes, i.e. transformation tasks, and artifacts. So
whenever a change occurs to related artifacts respective
transformation tasks are triggered. Whenever a
transformation needs human input, the role information
along with the semantic relationships to artifacts and
processes, can be leveraged to proactively notify the
process owners.

This is not only helpful in change management
scenarios, but also for developers in a collaborative
project, that need input to a specific transformation task
or artifact.

Analysis of Impacts and Costs
As we already saw, semantics do not only support

better opportunities for handling change management
issues in model-driven architectures, but also helps to
analyze the model-driven architecture itself and to
organize its project context. In software projects the
monetary costs and also timeliness are crucial success
factors [21].

Traceability provides the technique to analyze all
changes that have to be performed, when a certain
event occurs. However, it does not make any
assumptions about the costs.

Costs models can either be explicitly assigned to
certain transformation tasks or can be gathered by
monitoring the actions of users within the MDA
Organization Platform. Consequently, the costs in
terms of money and time can be estimated for (a set of)
transformation tasks.

Especially, when design decisions have to be made,
this can be a helpful assistance. If transformation task
A and transformation task B would both resolve a
conflict, a cost estimation could help to decide, if it is
better to perform task A or task B.

6. Conclusions and Outlook

The MDA Organization Platform allows for the
seamless management of artifacts of a model-driven
architecture throughout the entire software
development lifecycle. It empowers developers and
software engineers to keep track of all the changes
occurring in the context of a model-driven architecture.
Furthermore, it helps to understand the MDA much
better through the extensive traceability support. It aids
with identifying appropriate contact persons for
problems and enables easy-to-use cost estimations for
transformation tasks. Overall, this makes decisions
more transparent for the user.

For future work additional considerations have to be
made. The better the context of MDA artifacts is
described, the more effective the support provided by
MOP can be. Thus, the context must be described with
appropriate artifact models and must be semantically
intertwined with the descriptions of MDA artifacts.

The integration with existing MDA tools will also
be of utmost importance, as MOP will not be focused
on the actual modeling within MDA. The MOP
concept describes an approach for the semantic
management and organization of MDA artifacts. The
artifacts themselves are edited with external MDA tools
which are integrated with MOP. This also implies that
these tools expose appropriate interfaces in order to be
interoperable with MOP.

Overall, the concept of the MDA Organization
Platform, as presented in this paper, enables models to
be steadier against changes throughout the software
lifecycle and thus lowers the effort for maintenance of
MDAs. It not only seeks the technical integration with
several existing MDA tools but also has a strong focus
on the user: Users are proactively informed when
relevant changes occur and get recommendations for
appropriate courses of actions. Therefore, MOP is a
holistic approach for the management of model-driven
architectures, as it incorporates social and technical
solutions for the integration in the respective
organization and its tool landscape.

7. References

[1] Fettke, P.; Loos, P.: Model Driven Architecture (MDA).

In: Wirtschaftsinformatik, Bd. 45, 2003, Nr. 5, pp. 555-
559.

[2] Frankel, D.: Model Driven Architecture. Applying
MDA to Enterprise Computing, Wiley & Sons, 2003.

[3] Frankel, D.: Toward a Business Process Platform. In:
MDA Journal, July 2005, pp. 1-7, 2005.

[4] Object Management Group: Model Driven Architecture
(MDA) http://www.omg.org/docs/ormsc/01-07-01.pdf,
2001.

[5] Gruhn, V.; Pieper, D.; Röttgers, C.: MDA. Effektives
Software-Engineering mit UML 2 und Eclipse.
Springer, Heidelberg 2006

[6] Fischer, R., Aier, S., Winter, R.: A Federated Approach
to Enterprise Architecture Model Maintenance. In: 2nd
International Workshop EMISA, pp. 9-23.Gesellschaft
für Informatik, Bonn (2007)

[7] AndroMDA MDA Toolkit, http://andromda.org/
[8] Sybase PowerDesigner,

http://www.sybase.com/products/modelingmetadata
[9] IBM Rational Software, http://www-

01.ibm.com/software/rational/
[10] Modelio Modeling Solutions,

http://www.modeliosoft.com/
[11] KnowGravity CASSANDRA knowledge engineering

tool,
http://www.knowgravity.com/eng/value/cassandra.htm

[12] KnowGravity KnowEnterprise enterprise-scale
modeling environment,
http://www.knowgravity.com/eng/value/knowEnterprise
.htm

[13] Object Management Group: Business Motivation Model
(BMM) Specification.
http://www.omg.org/spec/BMM/1.0

[14] Object Management Group: Service oriented
architecture Modeling Language (SoaML) –
Specification for the UML Profile and Metamodel for
Services (UPMS). http://www.omg.org/docs/ad/08-08-
04.pdf

[15] Gotel, O.; Finkelstein, A.: An Analysis of the
Requirements Traceability Problem Proc. of First
International Conference on Requirements Engineering,
1994, pp. 94-101

[16] Emrich, A.; Weber, S.; Ras, E.: Towards Proactive and
Intelligent Assistance in the Software Organization
Platform. 11th Workshop on Learning Software
Organizations (LSO 2009). Oulu, Finland, 2009.

[17] Weber, S.; Emrich, A.; Broschart, J.; Ras, E.; Ünalan,
Ö.: Supporting Software Development Teams with a
Semantic Process- and Artifact-oriented Collaboration
Environment. Proc. of the SOFTEAM’09 Workshop.
Kaiserslautern / Germany, 2009

[18] Linnenfelser, M.: Realisierung einer flexiblen Pattern-
und Plug-in-basierten Architektur für die Software
Organization Platform (SOP) zur verteilten
kooperativen Softwareentwicklung auf Basis von Adobe
Flex. Master Thesis, Fraunhofer Institute for
Experimental Software Engineering, Kaiserslautern /
Germany, 2008

[19] Weber, S; Thomas, L.; Armbrust, A.; Ras, E.; Rech, J.;
Ünalan, Ö.; Wessner, M.; Linnenfelser, M.; Decker, B.:
"A Software Organization Platform (SOP)," in 10th
Workshop on Learning Software Organizations (LSO
2008). Rome, Italy, 2008.

[20] Vrandecic, D.; Krötzsch, M.: Semantic MediaWiki. In:
Davies, J. et al.: Semantic Knowledge Management.
Springer, 2009, pp. 171-179

[21] Sommerville, I.: Software Engineering. Addison
Wesley, 2001

