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Abstract

Coalgebras provide a unifying semantic framework for a wide variety of modal logics. It
has previously been shown that the class of coalgebras for an endofunctor can always be
axiomatised in rank 1. Here we establish the converse, i.e. every rank 1 modal logic has a
sound and strongly complete coalgebraic semantics. This is achieved by constructing for a
given modal logic a canonical coalgebraic semantics, consisting of a signature functor and
interpretations of modal operators, which turns out to be final among all such structures. The
canonical semantics may be seen as a coalgebraic reconstruction of neighbourhood semantics,
broadly construed. A finitary restriction of the canonical semantics yields a canonical weakly
complete semantics which moreover enjoys the Hennessy-Milner property.

As a consequence, the machinery of coalgebraic modal logic, in particular generic decision

procedures and upper complexity bounds, becomes applicable to arbitrary rank 1 modal

logics, without regard to their semantic status; we thus obtain purely syntactic versions of

such results. As an extended example, we apply our framework to recently defined deontic

logics. In particular, our methods lead to the new result that these logics are strongly

complete.
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Introduction

In recent years, coalgebras have received a steadily growing amount of attention as
general models of state-based systems [32], encompassing such diverse systems as
labelled transition systems, probabilistic systems, game frames, and neighbourhood
frames [36]. On the logical side, modal logic has emerged as the adequate specification
language for coalgebraically modelled systems. A variety of different frameworks
have been proposed [24, 31, 16]. Here, we work with coalgebraic modal logic [27],
which allows for a high level of generality while retaining a close relationship to the
established syntactic and semantic tradition of modal logic.

Reversing the viewpoint that modal logic is a suitable specification language for
coalgebra, coalgebraic semantics captures, in a uniform way, the structural similarities
of a large variety of different modal logics. In its most traditional form, modal logic
comprises a unary operator 2, read as “necessarily”, in addition to propositional
connectives, and is interpreted over relational (Kripke) models. But there are many
variations: probabilistic modal logic [21, 13] features operators that speak about the
likelihood of events, with relational successors annotated with probabilities on the
semantical side. The modalities of Pauly’s coalition logic [29] formalise coalitional
power in strategic games and provide the syntactic means to reason about so-called
game frames that involve strategies of participating agents. Yet another example is
conditional logic [5] that adds a binary non-monotonic conditional to propositional
logic and is commonly interpreted over selection function models. In a broad sense,
the semantics of all the above logics comprise a notion of state or world and operators
that describe the dynamics of state transitions.

The purpose and main idea of a coalgebraic treatment of modal logics is to lift these
similarities to a formal level with the goal of deriving meta-theorems that uniformly
apply to many structurally different logics. We illustrate this viewpoint by re-visiting
the above examples in more detail.

Kripke Frames. The traditional textbook semantics of the modal logic K and its
extensions is usually presented in relational form: a Kripke model is a pair (W,R)
where W is a set of worlds and R ⊆W ×W is an accessibility relation. Kripke frames
are easily seen to be in 1-1 correspondence to powerset coalgebras, i.e. pairs (W,ρ)
where ρ : W → P(W ) is the transition function that assigns the set of successors
{w′ ∈ W | wRw′} to each world w. In this example, ρ(w) is the unstructured set
of successors of a single point, and as we will see shortly, the coalgebraic approach
deploys its full power when structured sets of successors are considered.

In the coalgebraic setting, it is most appropriate to think of modal operators as
specifying properties of (possibly structured) successor sets. For example, if φ is a
modal formula with extension JφK ⊆ W , then a world w satisfies 2φ if the successor
set of w is contained in JφK. In other words,

w |= φ ⇐⇒ ρ(w) ∈ {B ∈ P(W ) | B ⊆ JφK}.

Conceptually, this epitomises the interpretation of the modal operator as a predicate
lifting, that is, an operation that transforms predicates on states to predicates on
(for now unstructured) successor sets. As we shall see in the examples to follow, this
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re-formulation of modal semantics provides a common denominator for a broad class
of structurally different modal logics.

Probabilistic Transition Systems. In its simplest form [21, 13], probabilistic
modal logic (PML) extends propositional logic with operators Lp where p ∈ [0, 1]
is a rational number. The intended reading of Lpφ is ‘φ holds with probability at
least p in the next state’. PML is interpreted over probabilistic transition systems
(W,P ) where W is a set of worlds and P = (Pw)w∈W is a family of probability
distributions on W , indexed by the set of worlds. In the spirit of the coalgebraic
re-formulation of Kripke frames above, we readily recognise probabilistic transition
systems as coalgebras (W,ρ) where ρ : W → D(W ) assigns a probability distribution
ρ(w) ∈ D(W ) over W to each world w. The main difference lies in the fact that
collections of successors are now structured : moving from frames to probabilistic
models entails a shift from successor sets to distributions. The classical interpretation
of probabilistic formulas, i.e.

w |= Lpφ ⇐⇒ Pw(JφK) ≥ p

can now be re-phrased in terms of successor distributions:

w |= Lpφ ⇐⇒ ρ(w) ∈ {µ ∈ D(W ) | µ(JφK) ≥ p},

i.e. a state w satisfies Lpφ if its successor distribution assigns probability at least p
to the event JφK. Again, the quintessential nature of a probabilistic modal operator
manifests itself as providing a passage from properties of states (subsets of W ) to
properties of successor distributions.

Conditional Logic. The language of conditional logic [5] extends propositional
logic with a binary connective that we write ⇒, using infix notation. The operator
⇒ represents a non-monotonic conditional, and the intended reading of φ ⇒ ψ is
“ψ holds under the condition φ”. Note that this operator is in general distinct from
implication→. For example, the validity of φ⇒ ψ does not imply that of φ∧φ′ ⇒ ψ.
Conditional logic is usually interpreted in so-called (standard) conditional frames
(or selection function frames), that is, tuples (W, f) where W is a set of worlds and
f : W×P(W )→ P(W ) is a selection function that assigns a proposition f(w,A) ⊆W
to each world w and condition A ⊆ W . In coalgebraic parlance, we understand
conditional frames as structures (W,ρ) where ρ : W → (P(W ) → P(W )) maps each
world w ∈ W to a function ρ(w) : P(W ) → P(W ) from conditions to propositions,
both formalised as subsets of W . That is, successor structures of worlds are now
(selection) functions of type P(W )→ P(W ).

In a conditional frame (W, f), the standard semantics of the conditional operator
takes the form

w |= φ⇒ ψ ⇐⇒ f(w, JφK) ⊆ JψK.

Again, the semantics of the conditional operator can be understood as specifying a
property of successor structures, i.e. selection functions: under the coalgebraic reading
we have

w |= φ⇒ ψ ⇐⇒ ρ(w) ∈ {f : P(W )→ P(W ) | f(JφK) ⊆ JψK)}
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where JφK and JψK are again the truth-sets of φ and ψ, respectively. We note that, as
in the other examples above, the semantics of the conditional operator is embodied
by an operation, in this case binary, that maps predicates on the set of worlds to
predicates on the set of successor structures, in this case selection functions.

The above examples suggest that a great variety of structurally different modal
logics can be studied in a uniform and more abstract setting. Models take the form
of coalgebras, i.e. pairs (W,ρ : W → T (W )) where ρ assigns a successor structure
ρ(w) ∈ T (W ) to every world w ∈ W . By varying the notion of successor structure,
one captures Kripke frames (T (W ) consists of the subsets of W ), probabilistic transi-
tion systems (T (W ) are the probability distributions over W ) and conditional frames
(where T (W ) are the selection functions over W ).

In all cases, the link to the semantics of modal languages is provided by the ab-
stract notion of predicate liftings, i.e. operations P(W ) → P(TW ) that single out
properties of successor structures in terms of predicates on the state set. This is the
starting point of coalgebraic modal logic: the study of abstract properties of modal
logics based on a coalgebraic formulation in terms of predicate liftings. Rather than
dealing with modal languages and their semantics on a case-by-case basis, the goal
is to find easy-to-check general coherence conditions between a modal logic and its
semantics that guarantee properties like completeness or decidability. In other words,
the theory abstracts from the particular definition of successor structures and lift-
ings. Results on particular logics can then be obtained by checking these coherence
conditions for a specific instance of the general theory. The meta-theory of coalge-
braic modal logic in this sense has been expanding rapidly in recent years; prominent
results include the Hennessy-Milner property [33], bisimulation-somewhere-else [18],
and generic decidability and complexity criteria [34, 36].

It has been shown in [34] that every coalgebraic modal logic, when interpreted
over all coalgebras of a given type, can be axiomatized by formulas of rank 1, i.e.
with nesting depth of modal operators uniformly equal to 1 (logics of arbitrary rank
are obtained by restricting the relevant class of coalgebras); such axioms may be
regarded as concerning precisely the single next transition step. Here, we establish
the converse: given a modal logic L of rank 1, we construct a functor ML that
provides a sound and strongly complete semantics for L; i.e. coalgebraic modal logic
subsumes all rank-1 modal logics. The functor ML can be viewed as a generalization
of the neighbourhood frame functor, so that in traditional terms, our results imply in
particular that every rank-1 modal logic is strongly complete for the associated class
of neighbourhood frames. The semantics over ML is moreover canonical in a precise
categorical sense: it is final among all possible coalgebraic semantics of L, i.e. we
obtain an adjunction between modal syntax and semantics. A finitary modification
of ML provides a canonical finitely branching semantics, which necessarily (i.e. due
to finite branching) fails to be strongly complete, but is still weakly complete and
moreover, unlike ML itself, satisfies the Hennessy-Milner property, which states that
logically indistinguishable states are behaviourally equivalent.

Besides rounding off the picture in a pleasant way, these results make the extensive
generic machinery of coalgebraic modal logic applicable to arbitrary rank-1 modal
logics, even when the latter are given purely syntactically or equipped with a semantics
that fails to be, or has not yet been recognized as, coalgebraic. For instance, we obtain
a purely syntactic version of the decidability criterion of [34]. As an extended example,
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we discuss applications of these results to recently defined variants of deontic logic [11].
In particular, our results immediately imply that these logics are strongly complete,
while only weak completeness is proved in loc. cit.

The material is organised as follows. We recall the fundamental concepts of coal-
gebraic modal logic in Section 1. We then describe the construction of the canonical
semantics and its finitely branching variant in Sections 2 and 3, and in Section 4
lay out how these constructions form part of an adjunction between modal syntax
and coalgebraic semantics. Applications to decidability and complexity issues are
discussed in Section 5, and the extended example is presented in Section 6. We have
taken care to explain the required basic categorical terminology at first use, so that
Sections 1, 5, 6, and most of Section 2 should be accessible also to readers without
previous knowledge of category theory. Section 4 does assume a more extensive cate-
gorical background, but is not required for the understanding of the following sections.
This work is an extended version of [38].

1 Coalgebraic Modal Logic

We briefly recapitulate the basics of the coalgebraic semantics of modal logic. Coalge-
braic modal logic in the form considered here has been introduced in [27], generalising
previous frameworks [15, 30, 19, 25]. We work in an extended setting with polyadic
modal operators [33], found e.g. in conditional and default logics.

A (modal) similarity type is a set Λ of modal operators with associated finite
arities. The set F(Λ) of Λ-formulas φ is defined by the grammar

φ ::= ⊥ | φ1 ∧ φ2 | ¬φ | L(φ1, . . . , φn),

where L ranges over all modalities in Λ and n is the arity of L. Other Boolean opera-
tions are defined as usual; propositional atoms can be expressed as nullary modalities.

Remark 1 Admitting modal operators of arity greater than 1 causes some notational
overhead, but otherwise no actual additional technical problems. Many modal logics
of interest have polyadic operators, including conditional logic (Example 12.5 below),
Presburger modal logic [8], and some forms of probabilistic modal logic [9].

Generally, we denote the set of propositional formulas over a set V by Prop(V ),
generated by the basic connectives ¬ and ∧. Moreover, we denote by Λ(V ) the set
{L(a1, . . . , an) | L ∈ Λ n-ary, a1, . . . , an ∈ V }. A literal over V is a formula of the
form either a or ¬a, with a ∈ V . A (conjunctive) clause is a finite, possibly empty,
disjunction (conjunction) of literals. Although we regard clauses as formulas rather
than sets of literals, we shall sometimes use terminology such as ‘a literal is contained
in a clause’ or ‘a clause contains another’, with the obvious meaning.

If V ⊆ F(Λ), we also regard propositional formulas over V as Λ-formulas. A Z-
substitution for a set V is a map V → Z into some set Z; for a formula φ over V , we
call the result φσ of applying the substitution σ to φ a Z-instance of φ. If Φ ⊆ Prop(V )
and ψ ∈ Prop(V ), we say that ψ is a propositional consequence of Φ, written Φ `PL ψ,
if there are finitely many φ1, . . . , φn ∈ Φ such that φ1∧· · ·∧φn → ψ is a propositional
tautology over V , regarded as a set of atoms; e.g. {2a,2a→ 2b} `PL 2b.
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Definition 2 (Rank-1 logic) A one-step rule R over a set V of propositional vari-
ables is a rule φ/ψ, where φ ∈ Prop(V ) and ψ ∈ Prop(Λ(V )). In an extended one-step
rule φ/ψ, we more generally allow ψ ∈ Prop(Λ(Prop(V ))). We will refer to extended
one-step rules just as rules when this is unlikely to cause confusion. An axiom or a
one-step formula is an extended one-step rule with empty premise, i.e. an element of
Prop(Λ(Prop(V ))). A rank-1 (modal) logic is a pair L = (Λ,R) consisting of a simi-
larity type Λ and a set R of extended one-step rules. We identify rules up to injective
renaming of variables; e.g. if a/2a is in R, then b/2b is also in R and denotes the
same rule.

Note that the definition of one-step formula rules out axioms involving propositional
variables at the top level, such as 2a→ a; first results concerning these more general
logics have appeared in [28]. The archetypal rank-1 logic is K (Example 12.1 below),
whose main axiom is the one-step formula 2(a → b) → 2a → 2b where one has
propositional connectives above and below a single layer of boxes.

Given a rank-1 logic L = (Λ,R), we say that a Λ-formula φ is L-derivable, and
write `L φ, if φ is derivable by the following rules:

(P )
φ1; . . . ;φn

ψ
({φ1, . . . , φn} `PL ψ)

(R)
φσ

ψσ
(φ/ψ ∈ R;σ an F(Λ)-substitution)

(C)
φ1 ↔ ψ1; . . . ;φn ↔ ψn

L(φ1, . . . , φn)↔ L(ψ1, . . . , ψn)
(L ∈ Λ n-ary).

The last rule above is referred to as the congruence rule. For a set Φ ⊆ F(Λ), we
write Φ `L ψ if `L φ1 ∧ · · · ∧ φn → ψ for suitable φ1, . . . , φn ∈ Φ. Of course, the
premise of rule (R) is vacuous in the case of axioms. The propositional reasoning
rule (P ) may be replaced by the more traditional combination of modus ponens and
introduction of substitution instances of propositional tautologies.

It has been shown that axioms, one-step rules, and extended one-step rules may
equivalently replace each other [34]. We shall thus on occasion assume that a given
rank-1 logic is presented only in terms of one-step rules or only in terms of axioms when
convenient. In more detail, extended one-step rules are by definition more general than
axioms, and in turn may trivially be replaced by equivalent one-step rules in which
propositional formulas under modal operators in the conclusion are abbreviated as
single propositional variables by introducing suitable additional premises. The non-
trivial step is to replace one-step rules by equivalent axioms; this is discussed in detail
in [34]. A typical (and easy) example is the monotonicity rule a→ b/2a→ 2b, which
may be replaced by the axiom 2(a ∧ b)→ 2a.

Remark 3 We can always assume that every propositional variable a appearing in
the premise φ of a one-step rule appears also in the conclusion: otherwise, we can
eliminate a by passing from φ to φ[>/a] ∨ φ[⊥/a].

Coalgebraic modal logic interprets modal formulas over coalgebras, which abstract
from concrete notions of reactive system:
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Definition 4 (Coalgebras) Let T : Set → Set be a functor, referred to as the
signature functor, where Set is the category of sets. Explicitly, T maps sets X to
sets TX, and maps f : X → Y to maps Tf : TX → TY , preserving identities and
composition. A T -coalgebra is a pair C = (X, ξ) where X is a set (of states) and ξ is
a function X → TX called the transition function. A morphism (X1, ξ1)→ (X2, ξ2)
of T -coalgebras is a map f : X1 → X2 such that ξ2 ◦ f = Tf ◦ ξ1. States x, y
in coalgebras C, D are behaviourally equivalent if there exist coalgebra morphisms
f : C → E and g : D → E such that f(x) = g(y).

We view coalgebras as generalised transition systems: the transition function maps
states to structured sets of successors and observations, with the structure determined
by the signature functor; correspondingly, we refer to elements of TX as successor
structures.

Example 5 We give examples of functors and the system types modelled by their
coalgebras.

1. Kripke frames: The covariant powerset functor P : Set→ Set takes a set X to
its powerset P(X), and for f : X → Y , the map P(f) : P(X) → P(Y ) takes direct
images. Coalgebras ξ : X → P(X) for P(X) can be identified with Kripke frames
(X,R) by putting R = {(x, y) | y ∈ ξ(x)}. Morphisms of P-coalgebras are precisely
bounded morphisms of Kripke frames. The finite powerset functor Pfin takes a set
X to the set Pfin(X) of finite subsets of X; Pfin -coalgebras are finitely branching
Kripke frames.

2. Neighbourhood frames: The covariant powerset functor is distinguished from
the contravariant powerset functor Q : Setop → Set, which also maps a set X to
its powerset, denoted Q(X) in this case, but which takes a map f : X → Y , i.e. a
morphism Y → X in Setop, to the map Q(f) : Q(Y )→ Q(X) which takes preimages.
(Generally, contravariant functors, indicated by the notation Setop → Set, are like
functors, but reverse the direction of maps.) Being contravariant, Q does not itself
have coalgebras according to Definition 4. However, composing Q with itself, we
obtain the (covariant) neighbourhood functor

N = Q ◦ Qop : Set→ Set.

Coalgebras ξ : X → N(X) for N are precisely neighbourhood frames: for each state x,
ξ determines a set ξ(x) ⊆ Q(X) = P(X) of neighbourhoods. Note that while the
action of the neighbourhood functor on objects is identical to that of P ◦ P, the
action on morphisms differs. This impacts on the definition of modalities, where it
turns out that N is the right choice for modelling neighbourhood semantics.

3. Multigraphs: The finite multiset functor B takes a set X to the set of maps
B : X → N with finite support, where B(x) = n is read ‘multiset B contains x
with multiplicity n’. We extend B to an integer-valued measure on P(X) by putting
B(A) =

∑
x∈AB(x). The action of B on morphisms is then defined by B(f)(y) =

B(f−1[{y}]). Coalgebras ξ : X → B(X) for B are multigraphs [7], i.e. directed graphs
with N-weighted edges: the transition weight from x to y in X is ξ(x)(y).

4. Markov chains: The finite distribution functor D takes a set X to the set D(X)
of finitely supported probability distributions over X; for f : X → Y , D(f) : D(X)→
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D(Y ) takes image measures. Coalgebras ξ : X → D(X) are Markov chains: for
x, y ∈ X, ξ(x)({y}) is the transition probability from x to y.

5. Conditional frames: The conditional frame functor Cf is defined by Cf(X) =
Q(X)→ P(X), where → denotes function space. Note that the negative occurrence
of the contravariant powerset functor Q makes the overall action of Cf on functions
covariant. Coalgebras ξ : X → Cf(X) associate to each x ∈ X and each A ⊆ X a set
ξ(x)(A) ⊆ X; i.e. they are precisely the conditional frames appearing in the semantics
of conditional logic [5], also known as selection function models.

Assumption 6 We can assume w.l.o.g. that T : Set → Set preserves injective maps
([2], proof of Theorem 3.2). For convenience, we will in fact sometimes assume that
TX ⊆ TY if X ⊆ Y . Moreover, we assume that T is non-trivial, i.e. TX = ∅ =⇒
X = ∅ (otherwise, TX = ∅ for all X).

While the type of system underlying the semantics is encapsulated in the chosen
signature functor, the interpretation of modalities is given by a choice of predicate
liftings, so named because they lift predicates on the state space to predicates on the
set of successor structures:

Definition 7 (Predicate liftings) An n-ary predicate lifting for T is a natural
transformation

λ : Qn → Q ◦ T op,

where Q : Setop → Set is the contravariant powerset functor as before, and Qn denotes
its (pointwise) n-th power, i.e. Qn(X) = (Q(X))n. Moreover, T op : Setop → Setop is
the dual of T . Explicitly, λ is a family of maps λX : Q(X)n → Q(TX), indexed over
all sets X, satisfying the naturality equation

λX(f−1[A1], . . . , f−1[An]) = (Tf)−1[λY (A1, . . . , An)]

for all f : X → Y and all A1, . . . , An ⊆ Y .

Example 8 The basic example of a predicate lifting is the following unary lifting
for the covariant powerset functor P inducing the standard box modality on Kripke
frames (Example 12.1 below): for a set X, let λX : Q(X) → Q(P(X)) be the map
defined by

λX(A) = {B ∈ P(X) | B ⊆ A};

i.e. λX lifts a predicate A on X to the predicate λX(A) on P(X) satisfied by B ∈ P(X)
iff B ⊆ A. The family (λX) is a predicate lifting for P: the naturality equation
translates into the set-theoretic fact that for f : X → Y , B ∈ P(X), and A ⊆ Y ,

B ⊆ f−1[A] ⇐⇒ P(f)(B) = f [B] ⊆ A.

More examples of predicate liftings are found in Example 12 below.

The coalgebraic semantics of modal logics is now defined as follows. Given a similarity
type Λ, a Λ-structure M = (T, (JLKM)L∈Λ) consists of a signature functor T and an
assignment of an n-ary predicate lifting JLKM for T to every modal operator L ∈ Λ
of arity n. We say that M is based on T , or that T is the underlying functor of M.
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If there is no danger of confusion, we drop the superscripts on the liftings. Given
a Λ-structure M, the satisfaction relation |=MC between states x of T -coalgebras
C = (X, ξ) and Λ-formulas is defined inductively, with the usual clauses for the
Boolean operations. The clause for an n-ary modal operator L is

x |=MC L(φ1, . . . , φn) ⇐⇒ ξ(x) ∈ JLKM(Jφ1KMC , . . . , JφnKMC )

where JφKMC = {x ∈ X | x |=MC φ}. Again, we drop sub- and superscripts if they are
clear from the context. When we speak of a coalgebraic modal logic informally, we
formally refer to a Λ-structure.

Remark 9 The reason for restricting the exposition to rank-1 logics is that we are
going to construct a coalgebraic semantics for a given logic in which the logic is
interpreted over all coalgebras for a given functor; it has been shown that all such
logics can be completely axiomatised in rank-1 [34]. Extensions of our results to
logics outside rank-1, in particular employing axioms with nested modalities, are the
subject of ongoing [28] and future work; they will necessarily concern completeness
over suitable restricted classes of coalgebras.

Remark 10 Note that a nullary predicate lifting for T is just a family of subsets
λX ⊆ TX for all sets X such that λX = (Tf)−1[λY ] for all maps f : X → Y . If
L ∈ Λ is a nullary modal operator, then a state x in a coalgebra (X, ξ) satisfies the
formula L iff ξ(x) ∈ JLKX . E.g. we can interpret a nullary deadlock operator δ over
the covariant powerset functor P by JδKX = {∅} ⊆ P(X), and then a state x in a
P(X)-coalgebra (X, ξ) satisfies δ iff ξ(x) = ∅, i.e. iff x does not have any successors
in the corresponding Kripke frame.

The next definition introduces the semantic consequence relations that we are using
in the remainder of the paper.

Definition 11 (Soundness and completeness) Given a Λ-structureM based on
T , a formula φ ∈ F(Λ) is a local semantic consequence of a set Φ ⊆ F(Λ), written
Φ |=M ψ, if, for every state x in every T -coalgebra, x |= ψ whenever x |= Φ (i.e.
x |= φ for all φ ∈ Φ). The logic L is sound for M if Φ |=M ψ whenever Φ `L ψ,
strongly complete if Φ `L ψ whenever Φ |=M ψ, and weakly complete if `L ψ whenever
∅ |=M ψ.

Example 12 We give a brief description of some coalgebraic modal logics, illustrating
in particular the fact that many interesting modal logics are axiomatised in rank 1.

1. The modal logic K has a single unary modal operator 2 and rank-1 axioms
2> and 2(a → b) → 2a → 2b. Note that 2> together with the congruence rule
entails the usual necessitation rule. The standard Kripke semantics of K is obtained
as the K-structure based on the covariant powerset functor P that interprets 2 by
the predicate lifting of Example 8, i.e.

J2KX(A) = P(A) ⊂ P(X)

for A ⊆ X. Indeed, under the correspondence between P-coalgebras and Kripke
frames described in Example 5.1, the coalgebraic semantics for 2 is transformed into
the usual semantic clause

x |=(X,R) 2φ iff ∀y ∈ X.xRy =⇒ y |=(X,R) φ.



1 COALGEBRAIC MODAL LOGIC 9

2. The neighbourhood semantics of the minimal modal logic E, i.e. the modal logic
with a single operator 2 and no rules or axioms (except replacement of equivalents,
i.e. the congruence rule) is captured as an E-structure based on the neighbourhood
functor N (Example 5.2) by

J2KX(A) = {A ∈ N(X) | A ∈ A}.

3. Graded modal logic (GML) [10] has operators 3k for k ∈ N of the nature ‘in more
than k successor states, it is the case that’. GML has originally been interpreted over
Kripke frames by just counting successor states. This semantics fails to be coalgebraic,
as it violates the naturality equation: for f : X → Y , A ⊆ Y , and B ∈ P(X),
#(B ∩ f−1[A]) > k is not in general equivalent to #(f [B] ∩ A) > k. Following [7],
we may however equip GML with a coalgebraic semantics in the shape of a GML-
structure based on the finite multiset functor B (Example 5.3); the interpretation of
the modal operators is then defined by

J3kKX(A) = {B ∈ B(X) | B(A) > k}

This satisfies the naturality equation because Bf(B)(A) = B(f−1[A]). This semantics
induces the same notion of satisfiability as the original Kripke semantics [34]. The fol-
lowing rank-1 axiomatisation of GML has been given in [10]; it uses the abbreviations
2kφ :≡ ¬3k¬φ and 3−1φ :≡ >:

20(a→ b)→ 20a→ 20b 3ka→ 3la (k > l)

3ka↔
∨k+1
i=0 (3i−1(a ∧ b) ∨3k−i(a ∧ ¬b)) 20(a→ b)→ 3ka→ 3kb

4. Probabilistic modal logic (PML) [21, 13] has modal operators Lp for p ∈ [0, 1]∩Q,
read ‘in the next step, it is with probability at least p the case that’. A PML-structure
based on the finite distribution functor D (Example 5.4) is defined by

JLpKX(A) = {P ∈ D(X) | P (A) ≥ p}.

A complete rank-1 axiomatisation of PML has been given in [13].
5. Conditional logic [5] has a binary infix modal operator ⇒, with φ ⇒ ψ read

e.g. ‘if φ, then normally ψ’ (further readings include e.g. relevant implication); i.e. ⇒
is a non-monotonic conditional. The conditional logic CK has axioms a ⇒ > and
(a ⇒ (b → c)) → (a ⇒ b) → (a ⇒ c), i.e. behaves like K in the second variable and
like E in the first. A CK -structure based on Cf is defined by

J⇒KX(A,B) = {f ∈ Cf(X) | f(A) ⊆ B}.

This induces precisely the conditional frame semantics described in [5].

In this work, we expand on the fact that there may be different structures for a
given similarity type (and indeed for a given logic, as defined further below). We
compare structures by means of morphisms: A morphism µ : N → M between two
Λ-structures N = (S, (JLKN )L∈Λ), M = (T, (JLKM)L∈Λ) is a natural transformation
µ : S → T that commutes with predicate liftings, i.e. JLKN = Qµ◦JLKM for all L ∈ Λ
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(explicitly, JLKNX (A1, . . . , An) = µ−1
X [JLKMX (A1, . . . , An)] for L n-ary, A1, . . . , An ⊆

X):

Qn(X)
JLKMX //

JLKNX %%JJJJJJJJJ
Q(TX)

Q(µx)yyttttttttt
TX

Q(SX) SX

µx

;;wwwwwwwwww

A morphism µ : N → M induces a translation of S-coalgebras C = (X, ξ) into
T -coalgebras

µ(C) = (X,µX ◦ ξ).

It is easy to see that the semantics of formulas is invariant under morphisms of
structures:

Lemma 13 Let µ : N → M be a morphism of Λ-structures N = (S, (JLKN )L∈Λ)
and M = (T, (JLKM)L∈Λ), and let C = (X, ξ) be an S-coalgebra. Then

JφKNC = JφKMµ(C)

for all φ ∈ F(Λ). 2

Related to these notions is the concept of substructure: recall that a functor S is a
subfunctor of a functor T if SX ⊆ TX for all setsX, and for every map f : X → Y , Sf
is the restriction of Tf : TX → TY to a map SX → SY ; in other words, S consists
in a choice of subsets SX ⊆ TX such that Tf [SX] ⊆ SY for all f : X → Y . If
M = (T, (JLKM)L∈Λ) is a Λ-structure, then every subfunctor S of T can be uniquely
completed to a Λ-structure N = (S, (JLKN )L∈Λ) in such a way that the inclusion
natural transformation S → T becomes a morphism N → M, namely by putting
JLKNX (A1, . . . , An) = SX ∩ JLKMX (A1, . . . , An) for L ∈ Λ n-ary and A1, . . . , An ⊆ X;
we call N the substructure of M induced by S.

We note that every Λ-structure, via the associated predicate liftings, gives rise to
a translation in the above sense between T -coalgebras and neighbourhood frames.

Lemma and Definition 14 (Neighbourhood structure, canonical translation)
Given a similarity type Λ, the Λ-structure NΛ consisting of the endofunctor

NΛ =
∏

L∈Λ n-ary

Q ◦ (Qop)n

(where Q : Setop → Set is contravariant powerset) and the liftings

JLKNΛ
X (A1, . . . , An) = {(AL)L∈Λ ∈ NΛ(X) | (A1, . . . , An) ∈ AL}

is the neighbourhood structure of Λ. For every Λ-structureM based on T , the canon-
ical translation defined by

µX : T (X) → NΛ(X)
t 7→ ({(A1, . . . , An) ∈ Q(X)n | t ∈ JLKX(A1, . . . , An)})L∈Λ n-ary

is a morphism µ :M→NΛ of structures.
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Proof Straightforward unravelling of the definitions. 2

By virtue of the neighbourhood frame translation, we can convert T -coalgebras into
multi-neighbourhood frames, i.e. coalgebras for products of n-ary neighbourhood func-
tors Q ◦ (Qop)n; by Lemma 13, this translation is compatible with the interpretation
of Λ-formulas.

We now introduce a single-step version of the logic induced by a Λ-structure,
the one-step logic, which is characterised syntactically by excluding nested modal
operators, and semantically does not involve state transitions in the sense that it
speaks about single successor structures rather than entire coalgebras. Below, we
introduce notions of formula and satisfaction for the one-step logic; we shall later
consider variants of these notions.

Definition 15 (One-step logic) Given a set X, the set of one-step formulas over
X is the set Prop(Λ(P(X))). By means of the interpretation map J K : Prop(P(X))→
P(X) that assigns to φ ∈ Prop(P(X)) its extension JφK ∈ P(X) arising from
the Boolean algebra structure of P(X), we identify Prop(Λ(Prop(P(X)))) with
Prop(Λ(P(X))), i.e. we regard also elements of Prop(Λ(Prop(P(X)))) as one-step for-
mulas over X, but immediately evaluate the inner propositional layer. For a one-step
formula ψ over X, we define an interpretation JψK ⊆ TX by extending the interpreta-
tion JL(φ1, . . . , φn)K = JLK(Jφ1K, . . . , JφnK) of Λ(P(X)) to Prop(Λ(P(X))) according
to the Boolean algebra structure of P(TX). We then write X |= φ if JφK = X, and
TX |= ψ if JψK = TX. For t ∈ TX, we say that t satisfies ψ, and write t |=X ψ,
if t ∈ JψK. The one-step theory of t is the set {ψ ∈ Prop(Λ(P(X))) | t |=X ψ}. We
say that ψ is (one-step) satisfiable if JψK 6= ∅, i.e. if there exists t ∈ TX such that
t |=X ψ.

Note that one-step formulas over X mix syntax and semantics by treating the inner
propositional layer semantically while the modal layer and the outer propositional
layer are treated syntactically; this will be convenient in the construction of canonical
structures below.

The requirement that axioms are of rank 1 means that every axiom makes asser-
tions precisely about the next transition step. This allows us to capture soundness as
a property exhibited in a single transition step as follows.

Definition 16 (One-step soundness, L-structures) Given a set X, a P(X)-
valuation for V is just a P(X)-substitution for V , i.e. a map V → P(X). An extended
one-step rule φ/ψ is one-step sound for a Λ-structureM based on T if TX |= ψτ for
each set X and each P(X)-valuation τ such that X |= φτ (of course, the latter condi-
tion is void for axioms). An L-structure for a rank-1 logic L = (Λ,R) is a Λ-structure
for which all rules in R are one-step sound.

It is easy to see that one-step soundness implies soundness, i.e.

Proposition 17 A rank-1 logic L is sound for all L-structures.

Additional conditions guarantee weak completeness; see Section 2. In general, this
is all one can hope for, as many coalgebraic modal logics fail to be compact [34].
However, it will turn out that L is indeed strongly complete for the canonical L-
structure constructed below.
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Example 18 We give some examples of one-step sound and unsound rules for the
structures in the running examples.

1. Kripke frames (Example 12.1) The rule

a ∧ b→ c

2a ∧2b→ 2c

is one-step sound: let X be a set and let τ be a P(X)-valuation such that X |=
((a∧b)→ c)τ , i.e. τ(a)∩τ(b) ⊆ τ(c). We have to show that P(X) |= (2a∧2b→ 2c)τ ,
i.e. that J2KXτ(a) ∩ J2KXτ(b) ⊆ J2KXτ(c). This is clear: if A ∈ P(X) satisfies
A ⊆ τ(a) and A ⊆ τ(b), then A ⊆ τ(a) ∩ τ(b) ⊆ τ(c).
Contrastingly, the rule ¬a/¬2a fails to be one-step sound: if τ(a) = ∅, then X |=
(¬a)τ , but not P(X) |= (¬2a)τ , as J¬2aKτ = X − J2KXτ(a) = X − {∅}.

2. Multigraphs (Example 12.3) The rule φ/ψ =

¬(a ∧ b) ∧ (a ∨ b→ c)
3ka ∧3lb→ 3k+l+1c

is one-step sound: let X be a set and let τ be a P(X)-valuation such that X |= φτ ,
i.e. τ(a) ∩ τ(b) = ∅ and τ(a) ∪ τ(b) ⊆ τ(c). Let B ∈ B(X) be a multiset such that
B |= (3ka∧3lb)τ , i.e. B(τ(a)) > k and B(τ(b)) > l. Since τ(a) and τ(b) are disjoint,
it follows that B(τ(c)) > k + l + 1, i.e. B |= (3k+l+1c)τ as required.
An obviously one-step unsound variant of the above rule is the rule

a ∨ b→ c

3ka ∧3lb→ 3k+l+1c
,

for which the above one-step soundness proof fails as τ(a) and τ(b) need not be
disjoint; a counterexample to one-step soundness is τ(a) = τ(b) = τ(c) 6= ∅ and
k = l = B(τ(a))− 1.

2 From Rank-1 Logics to Coalgebraic Models

In this section we construct for a given rank-1 modal logic L a canonical L-structure
ML for which L is (sound and) strongly complete. (Recall that by results of [34],
this result will not generalise directly to non-rank-1 logics, as every structure can
be axiomatised in rank-1). Moreover, we consider a finitely branching substructure
Mfin
L ofML which is canonical among the finitely branching L-structures. ForMfin

L ,
L is (sound and) weakly complete and has the Hennessy-Milner property, i.e. states
satisfying the same formulas are behaviourally equivalent. This tradeoff is typical:
the Hennessy-Milner property holds only over finitely branching systems, while strong
completeness will fail over such systems due to the breakdown of compactness. For
the remainder of the section, we fix a rank-1 modal logic L = (Λ,R).

The construction of the canonical structure resembles the construction of canonical
models using maximally consistent sets, but works, like many concepts of coalgebraic
modal logic, at the single step level. We begin by fixing a notion of derivability
at the one-step level, i.e. for one-step formulas over a set X. Informally speaking,
a one-step formula is one-step derivable over X if it can be propositionally derived
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from a set of conclusions of rules whose premises hold in X. That is to say, one-step
derivations formalise information that becomes apparent after one transition step.
Like the syntax of one-step formulas, one-step deduction works semantically on the
inner propositional layer and syntactically on the outer layers.

Definition 19 (One-step derivations) Let X be a set. We say that a one-step
formula ψ over X, i.e. ψ ∈ Prop(Λ(P(X))), is one-step derivable (over X), and write
`XL ψ, if ψ is propositionally entailed by conclusions of P(X)-instances of rules in R
whose premises hold in X, formally: if

Θ `PL ψ,

where
Θ = {χτ | φ/χ ∈ R; τ a P(X)-valuation;X |= φτ}.

The condition X |= φτ in the definition of Θ is, of course, vacuous in the case of
axioms. Formulas ρ ∈ Prop(P(X)) occurring as subformulas in χτ ∈ Θ are implicitly
interpreted as their extension JρK ∈ P(X). We say that ψ is one-step derivable from
Φ ⊆ Prop(Λ(P(X))), Φ `XL ψ, if there are φ1, . . . , φn ∈ Φ such that `XL φ1∧· · ·∧φn →
ψ. The set Φ is one-step consistent if Φ 6`XL ⊥, and maximally one-step consistent if
Φ is maximal w.r.t. ⊆ among the one-step consistent subsets of Prop(Λ(P(X))).

Remark 20 Of course, the notion of one-step derivation may equivalently be pre-
sented in the shape of two rules for propositional entailment and the application of
R; the formulation above emphasises the trivial fact that all one-step derivations have
a normal form where applications of R precede propositional reasoning. There is no
rule for congruence (i.e. replacement of equivalents) in the one-step derivation system
presented above. Such a rule is unnecessary, as the ‘formulas’ under modal opera-
tors are already subsets. Further below (Definition 49), we will consider a variant of
one-step deduction that works with propositional variables instead of sets, and hence
does include a congruence rule.

Note that unlike in previous definitions [26, 34, 36], we do not require that a one-step
derivation of ψ ∈ Prop(Λ(P(X))) uses only Boolean combinations of sets occurring
in ψ. In the cited contexts, i.e. when a coalgebraic semantics of L is already given,
this requirement is essentially justified by Proposition 3.10 of [36]. For purposes of
the present work, we need to establish this form of proof normalisation directly. The
crucial ingredient is a fact on solvability of Boolean equations, proved using a strategy
recently employed in [22], which ultimately relies on Boole’s expansion method [4]:

Lemma 21 Let φi, ψi ∈ Prop(V ∪ W ), i = 1, . . . , n, where V and W are disjoint
finite sets of variables, let A be a Boolean algebra, and let τ be an A-valuation for V .
If the system of equations

φiτ = ψiτ (i = 1, . . . , n)

is solvable in A, i.e. there exists an A-valuation κ for W such that φiτκ = ψiτκ for all
i, then there exists a Prop(V )-substitution σ for W such that φiστ = ψiστ for all i.

In other words, if a system of Boolean equations with coefficients in a Boolean algebra
A is solvable in A, then it is solvable by Boolean combinations of the coefficients.
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Proof It is straightforward to reduce to a single equation of the form

φτ = >.

We then proceed by induction on the size of W . For |W | = 0, there is nothing to
prove. For x ∈W , we apply Boole’s expansion method to obtain

φ ≡ (x→ φ[>/x]) ∧ (¬x→ φ[⊥/x])
≡ (x→ φ[>/x]) ∧ (¬φ[⊥/x]→ x) (∗)

(with ≡ denoting propositionally equivalent transformation steps). In particular, φ
propositionally entails ¬φ[⊥/x]→ φ[>/x], and hence the equation

(¬φ[⊥/x]→ φ[>/x])τ = >

over W − {x} is solvable in A. By induction, this equation is solvable by a Prop(V )-
substitution σ for W − {x}, and by (∗), the Prop(V )-substitution

σ[φ[>/x]/x]

for W solves φτ = >, i.e. satisfies φστ = >. 2

For reference, we moreover note the following trivial fact, which states that proposi-
tional entailment is invariant under exchanging atoms as long as equality of atoms is
respected.

Lemma 22 Let Φ ⊆ Prop(V ), let ψ ∈ Prop(V ), let σ be a W -substitution, and let τ
be a U -substitution such that σ(a) = σ(b) implies τ(a) = τ(b) for all a, b ∈ V . Then
Φσ `PL ψσ implies Φτ `PL ψτ .

Proof By the assumptions, one can find a U -substitution κ for W such that τ = σκ.
Let Φσ `PL ψσ. By the substitution lemma of propositional logic, it follows that
Φσκ `PL ψσκ, i.e. Φτ `PL ψτ . 2

Of this fact, we need the following slight variant:

Lemma 23 Let Φ ⊆ Prop(V ), let ψ ∈ Prop(W ), and let σ, τ be W -substitutions such
that σ(a) = σ(b) implies τ(a) = τ(b) for all a, b ∈ V and σ(a) = c implies τ(a) = c
for all a ∈ V and all c ∈W occurring in ψ. Then Φσ `PL ψ implies Φτ `PL ψ.

Proof Apply the previous lemma to W -substitutions σ′, τ ′ for the disjoint union
V +W which extend σ and τ , respectively, by the identity substitution on W . 2

This allows us to establish the desired normalisation result, essentially a subformula
property for the one-step logic (whose proof however does not rely on any form of cut
elimination):

Proposition 24 Let ψ ∈ Prop(Λ(P(X))) such that `XL ψ, and let A ⊆ P(X) be
the set of sets occurring in ψ. Then there exists a one-step derivation of ψ that uses
only Prop(A)-instances of rules, where we identify Prop(A) with a subset of P(X);
formally: Θ `PL ψ, where Θ = {χτ | φ/χ ∈ R; τ a Prop(A)-valuation;X |= φτ}.
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Proof By the results of [34], we can assume (purely for ease of notation) that R
consists only of axioms. By the definition of one-step derivation, ψ is propositionally
entailed by (finitely many) formulas of the form φiσi ∈ Prop(Λ(P(X))), i = 1, . . . , n,
where Prop(Λ(Prop(Vi))) 3 φi ∈ R and σi is a P(X)-valuation; by renaming variables
and discarding unused variables, we may assume a single finite set V of propositional
variables and a single P(X)-valuation σ. By Lemma 23, it suffices to find a Prop(A)-
valuation τ for V such that

1. for all formulas L(ρ1, . . . , ρk), L(ρ′1, . . . , ρ
′
k) occurring in the φi, equality of

L(ρ1, . . . , ρk)σ and L(ρ′1, . . . , ρ
′
k)σ in Λ(P(X)) (i.e. with the inner propositional

level evaluated in P(X)) implies equality of L(ρ1, . . . , ρk)τ and L(ρ′1, . . . , ρ
′
k)τ

in Λ(P(X)), and

2. for every formula L(A1, . . . , Ak) ∈ Λ(A) ⊆ Λ(P(X)) occurring in ψ and ev-
ery formula L(ρ1, . . . , ρk) occurring in the φi, equality of L(ρ1, . . . , ρk)σ and
L(A1, . . . , Ak) in Λ(P(X)) implies equality of L(ρ1, . . . , ρk)τ and L(A1, . . . , Ak)
in Λ(P(X)).

As equality of e.g. L(ρ1, . . . , ρk) and L(ρ′1, . . . , ρ
′
k) in Λ(P(X)) under some P(X)-

valuation amounts to equalities ρ1 = ρ′1, . . . , ρk = ρ′k in P(X), the above conditions
amount to solving a finite system of Boolean equations in P(X), with constants from
A appearing on some of the right-hand sides (due to condition 2). The system is, by
construction, solvable in P(X) (by the given valuation σ), and hence in Prop(A) by
Lemma 21. 2

We continue our preparations for the definition of the canonical structure:

Notation 25 For f : X → Y , let σf denote the substitution replacing A ⊆ Y with
f−1[A] ⊆ X.

Lemma 26 Let f : X → Y . If Φ `YL ψ, then Φσf `XL ψσf .

Proof One immediately reduces to the case Φ = ∅. If `YL ψ, then ψ is propositionally
entailed by formulas χiτi, i = 1, . . . , n, where φi/χi ∈ R for some φi and τi is a P(Y )-
valuation such that Y |= φiτi. Because σf is a homomorphism P(Y ) → P(X) of
Boolean algebras, we have X |= φiτiσf for all i. Moreover, by the substitution lemma
of propositional logic, ψσf is propositionally entailed by the χiτiσf ; hence `XL ψσf .
2

The canonical L-structure ML for L will be based on the functor ML that takes a
set X to the set of maximally one-step consistent subsets of Prop(Λ(P(X))). For a
map f : X → Y , ML(f) is defined by

ML(f)(Φ) = {φ ∈ Prop(Λ(P(Y ))) | φσf ∈ Φ}.

This definition is justified by

Lemma 27 For Φ ∈ML(X), the set ML(f)(Φ) is maximally one-step consistent.

Proof Consistency of ML(f)(Φ) is immediate by Lemma 26. To prove maximality,
let ψ /∈ ML(f)(Φ) for some ψ ∈ Prop(Λ(P(Y ))). Then ψσf /∈ Φ, hence ¬ψσf ∈ Φ,
and thus ¬ψ ∈ML(f)(Φ). 2
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From the perspective of Stone duality, the functor ML is the imperfect dual of the
functorial presentation L : BA → BA of a rank-1 logic L = (Λ,R). We think of it as
imperfect because the (perfect) duality between Stone spaces and Boolean algebras is
replaced by a dual adjunction between sets and Boolean algebras. The latter is given
by functors

Q̄ : Setop → BA and S : BAop → Set

where Q̄ takes a set to its Boolean algebra of subsets, and S takes a Boolean algebra
to the set of its ultrafilters. We review the terminology of [17]:

Definition 28 (Functorial presentation of a logic) The functorial presentation
of L = (Λ,R) is the functor LL : BA → BA defined by LLA = F (Λ(A))/∼ where
F : Set→ BA is the free construction and ∼ is the congruence generated by

ψσ ∼ >

for all φ/ψ ∈ R and all A-substitutions σ such that φσ = > (where we assume
that applying the A-substitution σ to ψ ∈ Prop(Λ(Prop(V ))) evaluates propositional
formulas over A to elements of A).

Example 29 The standard example of a functorial presentation is the functorial
presentation of K: LK(A) is the quotient of the free Boolean algebra over the set
{2a | a ∈ A} of atoms modulo the congruence generated by the equations 2> = >
and 2(a ∧ b) = 2a ∧2b for all a, b ∈ A.

Remark 30 It has been shown in [17] that the category of LL-algebras is isomorphic
to the category of Boolean algebras with operators for the similarity type Λ that
satisfy all the axioms corresponding to rules of R. As a consequence, the initial LL-
algebra is precisely the Lindenbaum-Tarski algebra of the logic (Λ,R), i.e. the set of
closed L-formulas modulo logical equivalence.

We have the following close relationship between ML and the functorial presentation
of L:

Proposition 31 Let LL be the functorial presentation of L. Then

ML ∼= SLLQ̄,

where Q̄ and S constitute the dual adjunction between BA and Set described above.

Proof Given a set X, SLLQ̄(X) consists of the ultrafilters in the Boolean alge-
bra LLQ̄(X). We can regard LLQ̄(X) as consisting of equivalence classes [φ]≡ in
Prop(Λ(P(X))) modulo the equivalence φ ≡ ψ iff `XL φ ↔ ψ. We then define an
injective natural transformation ν : SLLQ̄ →ML by

νX(u) = {φ ∈ Prop(Λ(P(X))) | [φ]≡ ∈ u}.

To see that νX is also surjective, let Φ ∈ ML(X), and define an ultrafilter u in
LLQ̄(X) by

[φ]≡ ∈ u ⇐⇒ φ ∈ Φ.

This is well-defined, as by maximal one-step consistency of Φ, φ ∈ Φ ⇐⇒ ψ ∈ Φ
whenever φ ≡ ψ. It is then clear that νX(u) = Φ. 2
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We now complete the definition of ML as a Λ-structure (ML, (JLKML)L∈Λ) by

JLK(A1, . . . , An) = {Φ ∈ML(X) | L(A1, . . . , An) ∈ Φ}

for L ∈ Λ n-ary; it is easy to check that the above indeed defines a predicate lifting.
We then have a single-step version of the truth lemma:

Lemma 32 (One-step truth lemma) For every set X and every one-step formula
ψ ∈ Prop(Λ(P(X))),

Φ |=X ψ iff ψ ∈ Φ

for all Φ ∈ML(X).

Proof Induction over ψ, where the steps for Boolean operators are by maximal
consistency of Φ and the step for modal operators is by construction. 2

Theorem and Definition 33 (Canonical structure) The Λ-structure ML is an
L-structure, the canonical L-structure.

Proof One-step soundness is immediate by the one-step truth lemma. 2

Remark 34 The construction of ML always gives rise to subclasses of neighbourhood
models and can be viewed from a more general perspective, as follows. Given a
similarity type Λ and a Λ-structureM based on T , we can regard a set R of extended
one-step rules as a set of frame conditions to be satisfied by T -coalgebras, where we
assume w.l.o.g. that R consists only of axioms. To this end, we interpret L-formulas
with propositional variables over T -models ((X, ξ), τ), consisting of a T -coalgebra
C = (X, ξ) and a P(X)-valuation τ for a set V of propositional variables as usual,
thus inducing a satisfaction relation |=τ

C between states of C and formulas over V .
We say that a T -model (C, τ) satisfies an L-formula φ over V (C, τ |= φ) if x |=τ

C φ for
all states x in C, and that C satisfies φ (C |= φ) if C, τ |= φ for all P(X)-valuations
τ for V . The set R of axioms defines the class of T -coalgebras C such that C |= φ for
all φ ∈ R.

The crucial observation is then that frame conditions in rank 1 can always be
pushed into the functor: putting

TR(X) = {t ∈ TX | t |=X φτ for all φ ∈ R and all P(X)-valuations τ}

defines, due to naturality of predicate liftings, a subfunctor TR of T . It then turns out
that a T -coalgebra C = (X, ξ) satisfies the frame conditions in R iff its structure map
ξ factors through TR(X), i.e. iff C is a TR-coalgebra, the crucial lemma being that

x |=τ
C φ iff ξ(x) |=X φτ

for every one-step formula φ over V , every P(X)-valuation τ for V , and every state
x in C. (This lemma implies also that rank-1 axioms are one-step sound for a Λ-
structure M iff they are frame-valid over M, i.e. satisfied by all T -coalgebras.) In
other words, R defines the class of TR-coalgebras. (However, this construction does
not necessarily preserve completeness of logics, see Example 54 below.)

In this setting, the construction of ML for L = (Λ,R) may be decomposed as
follows. To begin, let MΛ denote the functor defined by taking MΛ(X) to be the
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set of maximally propositionally consistent subsets of Prop(Λ(P(X))), with the ac-
tion on morphisms as above. Then in the above notation, (MΛ)R = M(Λ,R) = ML:
given Φ ∈ MΛ(X), Φ is one-step L-consistent iff φτ ∈ Φ for all φ ∈ R and all
P(X)-valuations τ iff (by the one-step truth lemma) Φ |=X φτ for all φ ∈ R, τ iff
Φ ∈ (MΛ)R(X). It is moreover easy to see that the canonical translation µ : MΛ → NΛ

into the neighbourhood structure of Λ (Lemma and Definition 14) is an isomor-
phism: unravelling the definitions, µX maps Φ ∈ MΛ(X) to the family of sets
({(A1, . . . , An) ∈ Q(X)n | L(A1, . . . , An) ∈ Φ})L∈Λ n-ary, and the inverse transforma-
tion NΛ(X)→MΛ(X) maps a family of sets (AL)L∈Λ, where AL ⊆ Q(X)n for L n-ary,
to its one-step theory (Definition 15), explicitly described as the unique maximally
one-step consistent extension of the set {L(A1, . . . , An) | L ∈ Λ n-ary, (A1, . . . , An) ∈
AL} ∪ {¬L(A1, . . . , An) | L ∈ Λ n-ary, (A1, . . . , An) /∈ AL}. Hence we can, by the
above, equivalently describe ML as (NΛ)R. That is, ML-coalgebras are those neigh-
bourhood frames that satisfy all frame conditions prescribed by L. Of course, satis-
faction of rank-1 frame conditions in a neighbourhood frame translates immediately
into obvious closure conditions on sets of neighbourhoods.

Example 35 We discuss the concrete shape of the canonical structure by re-visiting
some of the logics introduced in Example 12.

1. For the minimal modal logic E (Example 12.2), ME is the neighbourhood func-
tor N = Q ◦ Qop: the natural transformation ME → N which takes Φ ∈ ME(X)
to {A ⊆ X | 2A ∈ Φ} ∈ N(X) is easily seen to be a natural isomorphism. This
is an instance of a more general fact on neighbourhood structures noted in Re-
mark 34. In particular, the inverse natural isomorphism takes A ∈ N(X) to the
one-step theory Φ of A w.r.t. the structure described in Example 12.2; explicitly,
Φ ⊆ Prop({2}(P(X))) is the unique maximally one-step consistent extension of the
set {2A | A ∈ A} ∪ {¬2A | A ∈ P(X) \ A}.

2. For the modal logic K (Example 12.1), MK is the filter functor [12], i.e. the sub-
functor F of N where F(X) consists of all (not necessarily proper, or augmented) filters
on X; this is witnessed by a natural isomorphism MK → F obtained by restricting
the isomorphism ME → N from the previous example.

3. The canonical structureMCK for the conditional logic CK (see Example 12.5)
is equivalently described by a subfunctor FCK of Q◦(Qop)2. The elements of FCK (X)
are those subsets A of Q(X)2 such that for every A ⊆ X, the set {B | (A,B) ∈ A} is a
filter. This functor is isomorphic to the functor T defined by T (X) = Q(X)→ F(X).

Recall that the fact that ML is a structure for L implies soundness of L over ML.
We now turn to strong completeness, which is established by a canonical model con-
struction that generalises the standard notion of canonical neighbourhood frame. As
usual, we call a set Φ ⊆ F(Λ) of Λ-formulas L-consistent (or just consistent) if there
do not exist formulas φ1, . . . , φn ∈ Φ such that `L ¬(φ1 ∧ · · · ∧ φn). The set Φ is
maximally L-consistent if it is maximal w.r.t. ⊆ among the L-consistent sets. The
carrier of the canonical model is then the set CL of maximally L-consistent sets of Λ-
formulas. The key to the construction is the existence proof (rather than the explicit
construction) of a suitable ML-coalgebra structure on CL, a technique first employed
in [34]:
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Definition 36 (Coherent coalgebra structure, canonical model) An ML-co-
algebra structure ζ : CL →ML(CL) on CL is coherent if

ζ(Φ) ∈ JLK(ψ̂1, . . . , ψ̂n) iff L(ψ1, . . . , ψn) ∈ Φ

for all F(Λ)-formulas L(ψ1, . . . , ψn) and all Φ ∈ CL, where ψ̂ = {Ψ ∈ CL | ψ ∈ Ψ}.
In this case, (CL, ζ) is a canonical model.

Lemma 37 (Existence lemma) There exists a coherent coalgebra structure on CL.

The proof of the existence lemma relies on a number of additional lemmas.

Lemma 38 (Lindenbaum lemma) Every consistent set of Λ-formulas is contained
in a maximally consistent set.

Lemma 39 (One-step Lindenbaum lemma) Every one-step consistent subset of
Prop(Λ(P(X))) is contained in a maximally one-step consistent set.

Both the global and the one-step version of the Lindenbaum lemma are proved by
appealing to Zorn’s lemma (note that we do not assume that Λ is countable).

Lemma 40 Let φ ∈ Prop(V ), and let σ be an F(Λ)-substitution. Then `L φσ iff
CL |= φσ̂, where σ̂ is the P(CL)-valuation given by σ̂(a) = σ̂(a) = {Ψ ∈ CL | σ(a) ∈
Ψ}.

Proof This is a special case of [34], Lemma 27 (take the closed set Σ of loc. cit. to
be all of F(Λ)). 2

The following is another piece of propositional logic, an obvious variant of Lemma 22.

Lemma 41 Let Φ ⊆ Prop(V ), let ψ ∈ Prop(V ), let σ be a W -substitution, and let τ
be a U -substitution. If Φσ `PL ψσ then Φτ ∪ Ψ `PL ψτ , where Ψ = {τ(a) ↔ τ(b) |
a, b ∈ V, σ(a) = σ(b)}.

Proof Let ∼ be the equivalence relation on V induced by σ, i.e. a ∼ b iff σ(a) = σ(b).
For every a ∈ V , fix a representative ν(a) of the equivalence class of a under ∼. For
a ∈ V , put τ ′(a) = τ(ν(a)). By Lemma 23, Φσ `PL ψσ implies Φτ ′ `PL ψτ ′. The
proof is finished by noting that by replacement of equivalents, Φτ ∪Ψ propositionally
entails Φτ ′, and Ψ ∪ {ψτ ′} propositionally entails ψτ . 2

Lemma 42 Let VΛ be the set {aφ | φ ∈ F(Λ)} of propositional variables, let Φ ⊆
Prop(Λ(VΛ)), let σΛ be the F(Λ)-substitution taking aφ to φ, and let σ̂Λ be the
P(CL)-valuation given by σ̂Λ(aφ) = φ̂. If ΦσΛ is consistent, then Φσ̂Λ is one-step
consistent.

Proof We may assume, purely for ease of notation, that L = (Λ,R) is given in terms
of a set R of one-step rules. Proceeding by contraposition, assume that Φσ̂Λ `CLL
⊥. By Proposition 24, we can assume that this one-step derivation uses only A-
instances of rules, where A = {φ̂ | φ ∈ F(Λ)} (this set is already closed under
Boolean operations); by suitable renaming of variables we may even assume that all
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rules appearing in the one-step derivation use the set VΛ of propositional variables
and are instantiated using the valuation σ̂Λ. This means that (Φ ∪ Θ)σ̂Λ `PL ⊥,
where Θ is the set of all conclusions χ of rules φ/χ ∈ R over VΛ such that CL |= φσ̂Λ.
By Lemma 40, the latter implies `L φσΛ; hence all formulas in ΘσΛ are L-derivable.
By Lemma 41, we have moreover

(Φ ∪Θ)σΛ ∪Ψ `PL ⊥, (∗)

where
Ψ = {L(ρ1, . . . , ρn)↔ L(ρ′1, . . . , ρ

′
n) | ρ̂1 = ρ̂′1, . . . , ρ̂n = ρ̂′n}.

Since by Lemma 40, ρ̂ = ρ̂′ implies `L ρ↔ ρ′, all formulas in Ψ are derivable by the
congruence rule. Thus, (∗) implies that ΦσΛ `L ⊥ as required. 2

Proof (Existence lemma) We obtain ζ(Φ) with the required property by the one-
step Lindenbaum lemma (Lemma 39) and by the definition of the interpretation of
modal operators in ML once we show that the set

{L(φ̂1, . . . , φ̂n) | L(φ1, . . . , φn) ∈ Φ} ∪ {¬L(φ̂1, . . . , φ̂n) | ¬L(φ1, . . . , φn) ∈ Φ}

is one-step consistent. This follows from consistency of Φ and Lemma 42. 2

Lemma 43 (Truth lemma) In a canonical model (CL, ζ), Φ |=(CL,ζ) φ iff φ ∈ Φ.

Proof Induction on φ; coherence is precisely the induction step for modal operator
application. 2

Theorem 44 (Strong completeness) The logic L is strongly complete for ML.

Proof By the existence lemma, there exists a canonical model (CL, ζ). Now suppose
Φ 6`L ψ. Then Φ ∪ {¬ψ} is consistent, hence contained in a maximally consistent set
Ψ by the Lindenbaum lemma (Lemma 38). By the truth lemma, we have Ψ |=(CL,ζ)

Φ ∪ {¬ψ} for (CL, ζ) canonical, thus Φ 6|=ML ψ. 2

Remark 45 Alternatively, existence of canonical models and strong completeness
may by established using the coalgebraic Jónsson-Tarski theorem as proved in [18].
The crucial prerequisite for application of this theorem is to define a family of maps,
not necessarily natural,

hA : SLLA→ SLLQ̄SA

for all Boolean algebras A, where LL is the functorial presentation of L (Definition 28)
and S and Q̄ constitute the dual adjunction between sets and Boolean algebras as
explained above. The hA are subject to a requirement that in this concrete case
translates into the condition hA(u) ⊇ {LLjA(a) | a ∈ u} =: v0 for all u ∈ SLLA,
where jA : A → Q̄SA, the unit of the mentioned adjunction, maps a ∈ A to {u ∈
SA | a ∈ u}. To show that hA(u) exists as required, one has to show that v0 has
the finite intersection property, i.e. is consistent. As jA is injective, this amounts to
proving that LL preserves injective Boolean homomorphisms; the latter follows by
essentially the same arguments as employed in the proof of Proposition 24.

By virtue of hA, every LL-algebra α : LLA → A gives rise to an ML-coalgebra
hA ◦Sα : SA→ SLLQ̄SA = MLA (applying this construction to the initial L-algebra
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yields a canonical model), whose complex algebra is the canonical extension of A, an
LL-algebra on Q̄SA. The coalgebraic Jónsson-Tarski theorem then guarantees that
jA is an LL-algebra homomorphism from α into its canonical extension; strong com-
pleteness follows as a direct corollary. In the development above, we have preferred
a more explicit treatment that works entirely on the coalgebraic side, i.e. in terms of
neighbourhood frames.

3 Finite Branching

We proceed to consider finitely branching structures, with a view to obtaining a
Hennessy-Milner type result. The resulting finitely branching canonical structures
will turn out to be closely related to the natural semantics of many modal logics.
Finite branching generally implies non-compactness and hence the failure of strong
completeness; we shall however prove that weak completeness continues to hold.

Due to naturality of predicate liftings, satisfaction of Λ-formulas is invariant under
morphisms of coalgebras and hence under behavioural equivalence [27]. Conversely,
by results of [33], Λ has the Hennessy-Milner property for a Λ-structure M based on
T , i.e. states that satisfy the same Λ-formulas are behaviourally equivalent, if T is
ω-accessible and Λ is separating in the sense that t ∈ TX is uniquely determined by
the set

{(L, (A1, . . . , An)) | L ∈ Λ n-ary, A1, . . . , An ∈ P(X), t ∈ JLK(A1, . . . , An)},

equivalently if t is uniquely determined by its one-step theory. Recall here that
a functor is ω-accessible if it preserves directed colimits; the following alternative
characterisations will be useful below:

Lemma 46 ([1], Proposition 5.2) For a functor T : Set → Set, the following are
equivalent:

(i) T is ω-accessible

(ii) T preserves directed unions

(iii) For every set X, TX =
⋃
Y⊆X finite TY (recall Assumption 6).

For those unfamiliar with the notion of directed colimit, it will suffice to think of
ω-accessibility as defined by condition (iii) for purposes of the further development.
We say that a Λ-structure is ω-accessible if its underlying functor is ω-accessible.

Example 47 The covariant powerset functor P fails to be accessible, as infinite sub-
sets of an infinite set X fail to be belong to any of the subsets P(Y ) ⊆ P(X) for Y ⊆ X
finite. Contrastingly, the finite powerset functor Pfin is obviously ω-accessible.

The functor ML fails to be ω-accessible for obvious cardinality reasons. Intuitively,
ML-models have unbounded branching, while the Hennessy-Milner property can only
be expected for finitely branching systems (as is the case already for standard Kripke
models). We thus consider a subfunctor Mfin

L of ML that captures precisely the
finitely branching models.
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In order to construct Mfin
L , we can rely on the following general mechanism. We

define the ω-accessible part Tfin of a set functor T by

TfinX =
⋃
Y⊆X finite TY ⊆ TX

(recall Assumption 6). It is easy to see that Tfin is a subfunctor of T . By Lemma 46,
Tfin is ω-accessible. Moreover, Tfin agrees with T on finite sets. Given any structure
M based on T , we denote byMfin the substructure ofM induced by Tfin (Section 1).
Then, we define the canonical finitely branching L-structure to be the structureMfin

L .
One-step soundness of L for Mfin

L is immediate, as Mfin
L is a substructure of ML.

We then obtain

Theorem 48 The logic L is weakly complete and has the Hennessy-Milner property
for Mfin

L .

The proof of weak completeness requires a notion of weak completeness at the single-
step level, called one-step completeness, which we recall from earlier work. In the
definition of one-step completeness, there is some latitude in the exact design of the
one-step logic it concerns. In particular, one may either choose Prop(Λ(P(X))) as the
set of one-step formulas, as we have done so far, or one may opt for a more syntactic
treatment where one considers one-step formulas over sets V of variables, i.e. elements
of Prop(Λ(Prop(V ))), instead of over P(X) [36, 34]. For the sake of clarification, we
now prove the equivalence of the arising notions of one-step completeness. We begin
by making the more syntactic version of one-step derivation explicit; the main point
to note here is that giving up the immediate evaluation of the inner propositional
layer necessitates introducing the congruence rule also at the one-step level.

Definition 49 (One-step derivation with variables) Let X be a set, let V be a
set of propositional variables, let ψ ∈ Prop(Λ(Prop(V ))) be a one-step formula over V ,
and let τ be a P(X)-valuation for V . We say that ψ is one-step derivable over (X, τ),
and write `X,τL ψ, if ψ is propositionally entailed by conclusions of Prop(V )-instances
of R and the congruence rule whose premises hold over (X, τ); formally: if Θ `PL ψ,
where

Θ = {χσ | φ/χ ∈ R ∪ C;σ a Prop(V )-substitution;X |= φστ}

and C denotes the set of congruence rules

a1 ↔ b1; . . . ; an ↔ bn
L(a1, . . . , an)↔ L(b1, . . . , bn)

(L ∈ Λ n-ary).

Proposition and Definition 50 (One-step completeness) We say that L is
one-step complete for an L-structure M based on T if for each set X, the follow-
ing equivalent conditions are satisfied:

(i) Whenever TX |= ψτ for a set X, a one-step formula ψ ∈ Prop(Λ(Prop(V )))
over V , and a P(X)-valuation τ for V , then ψ is one-step derivable over (X, τ)
(Definition 49).

(ii) Whenever TX |= ψ for a set X and ψ ∈ Prop(Λ(P(X))), then ψ is one-step
derivable over X (Definition 19).
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(iii) Every one-step consistent ψ ∈ Prop(Λ(P(X))) is one-step satisfiable in TX.

Proof The equivalence of (ii) and (iii) is just the usual dualisation argument. The
implication (i) =⇒ (ii) is trivial — essentially, (ii) is just a special case of (i) where τ
assigns distinct values to all variables, and instances of the congruence rules become
propositional tautologies when propositional formulas are replaced by their extensions
in X.

We prove the implication (ii) =⇒ (i): by (ii), ψτ as in the statement of (i) is
one-step derivable over X. By Proposition 24, we can assume that the derivation
uses only Prop(A)-instances of rules, where A = {τ(a) | a ∈ V }; moreover, by suitable
renaming of variables we may assume that all rule instances needed in the derivation
use a common set W of variables, disjoint from V , and a common Prop(A)-valuation
for W , which we extend to a Prop(A)-valuation τ̄ for the disjoint union W + V using
the given A-valuation τ for V . Thus, Θτ̄ `PL ψτ̄ for Θ = {χ | φ/χ ∈ R;X |= φτ̄}. For
each a ∈ W , we pick σ(a) ∈ Prop(V ) such that σ(a)τ = τ̄(a) ∈ Prop(A); moreover,
we put σ(a) = a for a ∈ V , thus defining a Prop(V )-substitution σ on W + V . Then
Θστ `PL ψτ . By Lemma 41, Θσ ∪Ψ `PL ψ, where Ψ states the equivalence of those
atoms in Λ(Prop(V )) that are equalised under the valuation τ . These are precisely
the conclusions of congruence rules whose premises hold over (X, τ) (Definition 49),
so that `X,τL ψ as required. 2

By standard results, one-step completeness implies weak completeness for the logic
at large:

Theorem 51 [26, 34] If L is one-step complete for M, then L is weakly complete
(Definition 11) for M.

Lemma 52 The logic L is one-step complete for the L-structureM iff the equivalent
conditions of Proposition 50 hold for finite sets X.

Proof This is part of [36], Proposition 3.10. 2

Corollary 53 If L is one-step complete forM, then L is one-step complete forMfin .
2

We now have all the technical machinery in place to establish weak completeness and
the Hennessy-Milner property for the finitary part of the canonical structure.

Proof (Theorem 48) It is easy to see that L is separating w.r.t. ML and hence
w.r.t. Mfin

L , so that the Hennessy-Milner property follows from the fact that Mfin
L is

ω-accessible.
To prove weak completeness, we prove one-step completeness. By Corollary 53,

it suffices to prove one-step completeness of L for ML. Thus, we have to show
that every one-step consistent formula φ ∈ Prop(Λ(P(X))) is one-step satisfiable in
ML(X). This is immediate by the one-step Lindenbaum lemma (Lemma 39) and the
one-step truth lemma (Lemma 32). 2

Example 54 Referring back to Remark 34, we note that when L = (Λ,R) is one-step
complete for an L-structure M based on T and R′ is a set of one-step formulas, then
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(Λ,R ∪ R′) need not be one-step complete for the substructure of M induced by TR′ .
Consider the constant functor TX = D, where D is a fixed infinite set. Let Λ consist
of nullary modal operators d, d ∈ D, interpreted over T by JdKX(A) = {d}. Then
the set R = {¬d1 ∧ d2 | d1, d2 ∈ D, d1 6= d2} is easily seen to be one-step complete.
Let R′ = {¬d | d ∈ D}. Then TR′X = ∅ for all X, and hence the one-step consistent
formula > fails to be satisfiable in TX, i.e. (Λ,R ∪ R′) fails to be one-step complete
for the substructure induced by TR′ .

N.B.: By the above results, the same accident does not happen in the canonical
structureML for L = (Λ,R) as above. Here, ML is isomorphic to the constant functor
for the set D∪{∗}, where ∗ corresponds to (the unique maximally one-step consistent
extension of) the one-step consistent set {¬d | d ∈ D}, and consequently (ML)R′ is
the constant functor (ML)R′(X) = {∗}.

Remark 55 Note that ML supports a strong version of one-step completeness:
L is strongly one-step complete for ML, i.e. every one-step consistent subset of
Prop(Λ(P(X))) (rather than just every consistent formula in Prop(Λ(P(X)))) is sat-
isfiable in ML(X). This was the key to the proof of the crucial existence lemma
above, and indeed the above arguments show that strong one-step completeness im-
plies strong completeness. However, there are only few interesting examples of struc-
tures other than ML for which a logic L is strongly one-step complete: every such
structure M based on T has a surjective natural transformation θ : T → ML which
assigns to each t ∈ TX its one-step theory, and when Λ is separating for M, then
θ is a natural isomorphism. The single example we are aware of where strong one-
step completeness does apply to a non-canonical structure (for which separation then
necessarily fails) is Pauly’s coalition logic [29], which has been provided with a coal-
gebraic model in [36]: in our notation, Theorem 3.2 of [29] can be read as saying
that θ is surjective for coalition logic. A more widely applicable strong completeness
criterion for coalgebraic modal logic, in generalisation of results of [20] for functors
preserving finite sets, is forthcoming [35].

Example 56 We give explicit descriptions (up to natural isomorphism) of Mfin
L for

some of the logics of Example 12.

1. For the standard modal logic K, we have already seen that MK is the filter
functor (Example 35.2). Its finitely branching sibling Mfin

K is the finite powerset
functor Pfin : since both functors are ω-accessible and Set is generated by taking
directed colimits of finite sets, it suffices to show that the two functors coincide on
finite sets. For X finite, Mfin

K (X) = MK(X) ∼= F(X), and filters on finite sets are in
natural bijection with subsets.

2. For graded modal logic GML (Example 12.3), Mfin
GML is a modification B∞ of the

finite multiset functor where elements of multisets may have infinite multiplicity ∞.
More precisely, B∞(X) is the set of maps X → N∪ {∞} with finite support, and the
interpretation of modal operators is as over B, where ∞ has the expected behaviour
w.r.t. ≥ and sums. As B∞ is ω-accessible, it suffices, again, to prove that B∞ and
Mfin

GML coincide on finite sets X. We define an isomorphism µ : Mfin
GML → B∞ as

follows: for Φ ∈ Mfin
GML(X) and x ∈ X, put µX(Φ)(x) = sup{k + 1 | 3k{x} ∈ Φ},

under the convention sup ∅ = 0. It is easy to see that µ is natural; moreover, the µX
are injective, as the information contained in µX(Φ) determines, by the axiomatisation



4 AN ADJUNCTION BETWEEN SYNTAX AND SEMANTICS 25

of GML, the set {3k{x} | k ∈ N, x ∈ X,3k{x} ∈ Φ}, and hence, again by the
axioms, all of Φ. To prove that µX is surjective, it suffices to show that the set
Ψ = {3k{x} | x ∈ X, k < B(x)} is one-step consistent for every B ∈ B∞(X). As the
one-step derivation system is finitary, it suffices to show that every finite subset of Ψ
is one-step consistent; but every such finite subset is evidently one-step satisfiable.

3. For probabilistic modal logic PML (Example 12.4), Mfin
PML is a modification of

the finite distribution functor where events A are assigned generalised probabilities
PA which are downclosed subsets of the rational interval [0, 1] ∩Q. These are either
open intervals [0, r), with r ∈ [0, 1], or closed intervals [0, q], with q ∈ [0, 1] ∩ Q;
thus, the space of generalised probabilities essentially consists of the interval [0, 1]
and a second copy of [0, 1] ∩Q which is infinitesimally greater than the first. In such
structures, the modality Lp is interpreted by the predicate lifting taking a set A to
the set {P | PA ≥ p}, with ≥ the ordering just discussed. The distributions P ∈
Mfin

PML(X) are required to obey the axiomatization of PML [36] w.r.t. the canonical
semantics; it is presently unclear whether this requirement can be replaced by a
simpler condition. (In particular, it does not suffice to assign generalised probabilities
only to singletons, as generalised probability measures P are additive only up to
identification of [0, p) and [0, p]. For instance, for A, B disjoint, PA = [0, p], and
PB = [0, q), we may have either P (A ∪B) = [0, p+ q] or P (A ∪B) = [0, p+ q).)

4. The ω-accessible part of the canonical structure MCK for the conditional logic
CK (see Example 12.5) is isomorphic to the functor Tfin (see Example 35), where the
elements of Tfin(X) are the functions f : Q(X)→ Pfin(X) that are finitely based, i.e.
there exists a finite subset Y ⊆ X such that f(A) = f(A ∩ Y ) for all A ⊆ X.

Note how ML works in essence as a compactification (and indeed is constructed in
a way which is strongly reminiscent of the topological Stone-Čech-compactification),
while Mfin

L removes only those failures of compactness which do not have to do with
finite branching (see [34] for examples).

4 An Adjunction between Syntax and Semantics

We now set up an adjoint correspondence between rank-1 logics and set functors as
their semantic counterparts. This establishes the canonical structure of a rank-1 logic
as indeed canonical in a precise sense, i.e. as a universal model capturing all other ones.
This situation is analogous to similar correspondences in equational logics and type
theory: e.g. to a single-sorted equational theory, interpreted over cartesian categories
(i.e. categories with finite products) with a distinguished object, one associates a
Lawvere theory, which is again a cartesian category with a distinguished object and
may simultaneously be regarded as an initial model and as a semantic representation
of the given theory. The situation is dual for modal logics: the canonical structure
serves as a final model of the given rank-1 logic, into which all other models may be
mapped.

We make the categorical setting precise by collecting all rank 1 modal logics in a
category ModL; for ease of presentation, we assume w.l.o.g. that logics are given in
terms of axioms only. A morphism (Λ1,R1)→ (Λ2,R2) in ModL is a map h : Λ1 → Λ2

such that the induced translation of formulas takes axioms in R1 to derivable formulas
in (Λ2,R2) (in the sense of Definition 49). The category of semantic objects is the
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category Fn = [Set,Set] of set functors and natural transformations. We have a
functor Th : Fnop → ModL which takes a functor T to the logic (ΛT ,RT ), where
ΛT is the set of all finitary predicate liftings for T , and RT is the set of all one-step
ΛT -formulas which are one-step sound for T (where each predicate lifting in ΛT is
interpreted by itself). Given a natural transformation µ : T → S, Th(µ) : Th(S) →
Th(T ) is the morphism taking an n-ary predicate lifting λ : Qn → Q ◦ Sop for S
to the predicate lifting Qµ ◦ λ for T ; it is easy to see that Th(µ) indeed preserves
axioms. Note that, in this terminology, an L-structure is just a morphism of the form
h : L → Th(T ). In particular, the canonical L-structure can be cast as a morphism

ηL : L → Th(ML).

The arrows ηL are the unit of the announced adjunction:

Theorem 57 The canonical L-structure ηL is universal; i.e. for each L-structure
h : L → Th(T ), there exists a unique natural transformation h# : T →ML such that
Th(h#)ηL = h.

L
ηL //

h !!DD
DD

DD
DD

D Th(ML)

Th(h#)yy

ML

Th(T ) T

h#

;;

Proof The map h#
X : TX → ML(X) takes t ∈ TX to its one-step theory (Defi-

nition 15) in the structure represented by h. It is clear that this set is maximally
consistent. Naturality of h# is immediate from naturality of predicate liftings. Com-
mutation of the above diagram and uniqueness of h# are established by straightfor-
ward unfolding of the definitions. 2

In other words,

the canonical structure is a terminal object in the category of L-structures.

Phrased differently, for every L-structure based on T there is a unique natural trans-
formation T →ML and vice versa, resulting in an isomorphism of categories. Recall
for the following that for a functor F : A → B and a B-object B, one has comma
categories F ↓ B and B ↓ F . Objects of F ↓ B are objects over B, i.e. pairs (A, f)
consisting of an A-object A and a morphism f : FA→ B; morphisms (A, f)→ (C, g)
in F ↓ B are A-morphisms a : A→ C such that g ◦Fa = f . Dually, objects of B ↓ F
are objects under B, i.e. pairs (f,A) consisting of an A-object A and a morphism
f : B → FA; morphisms (f,A)→ (g, C) in B ↓ F are A-morphisms a : A→ C such
that Fa◦f = g. E.g. the discussion at the beginning of the section has shown that the
category of L-structures is isomorphic to the comma category L ↓ Th of objects under
L, and by Theorem 57, the latter is isomorphic to the comma category Fn ↓ ML of
objects over ML, i.e. natural transformations into ML (where we abuse Fn to denote
the identity functor Fn→ Fn). Hence, we have

Corollary 58 The category of L-structures is isomorphic to the comma category
Fn ↓ML of objects over ML.



4 AN ADJUNCTION BETWEEN SYNTAX AND SEMANTICS 27

In other words, a coalgebraic semantics, i.e. a structure for L based on a functor T ,
may be seen as a map associating to each t ∈ TX a one-step theory. Returning to the
characterisation of ML given in Proposition 31, we can be phrase this equivalently
in terms of distributive laws, a concept used in [3, 17]: a distributive law for L is a
natural transformation δ : LLQ̄ → Q̄T op, where LL is the functorial presentation of
L = (Λ,R) (Definition 28) and Q̄ : Setop → BA is part of the dual adjunction between
sets and Boolean algebras (Section 2):

BALL 66 ⇓ δ Setop T op
ii

Q̄

hh

Q̄
vv

Notice that a distributive law may be seen as an object of the comma category LLQ̄ ↓
(Q̄ ◦ op) of objects over LLQ̄, where (Q̄ ◦ op) : [Set,Set]op → [Setop,BA] maps T to
Q̄ ◦ T op. Morphisms from δ as above to θ : LLQ̄ → Q̄Sop in LLQ̄ ↓ (Q̄ ◦ op) are
described explicitly as natural transformations µ : S → T such that Q̄µ ◦ δ = θ:

LLQ̄
δ //

θ

$$IIIIIIIII Q̄ ◦ T op

Q̄µyyssssssssss
T

Q̄ ◦ Sop S

µ

<<xxxxxxxxxx

Recall that LLA is essentially the set Prop(Λ(A)) modulo provable equivalence in L;
hence, a distributive law δ intuitively assigns an extension in TX to every one-step
formula in Prop(Λ(P(X))), respecting the axiomatisation of L. Indeed, δ induces an
L-structure by stipulating JLKX(A1, . . . , An) = δX([L(A1, . . . , An)]). This gives rise
to a second characterisation of the category of L-structures:

Proposition 59 Let L = (Λ,R) be a rank-1 logic. Then the category of L-structures
is isomorphic to the comma category LLQ̄ ↓ (Q̄ ◦ op) of objects over LLQ̄, i.e. to the
category of distributive laws for L.

Proof Recall from Proposition 31 that ML ∼= S ◦ LL ◦ Q̄ where S maps a Boolean
algebra A to the set of its ultrafilters. Given a morphism of structures η : T →ML ∼=
SLLQ̄ we define δ : LLQ̄ → Q̄T op by

δX(e) = {t ∈ TX | e ∈ ηX(t)}.

The fact that δX is a morphism of Boolean algebras follows from ηX(t) being an
ultrafilter for all t ∈ TX. Conversely, given δ : LLQ̄ → Q̄T op, define η : T →ML by

ηX(t) = {e ∈ LLQ̄X | t ∈ δ(e)}.

It is easy to see that ηX(t) is indeed an ultrafilter (it corresponds to the one-step theory
of t). The simple verification that both constructions are functorial and mutually
inverse is left to the reader. 2

Similar results hold for the canonical finitely branching L-structureMfin
L , which now

becomes a morphism
ηfin
L : L → Th(Mfin

L ).
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Theorem 60 The L-structure ηfin
L is universal among the finitely branching L-

structures; i.e. for each L-structure h : L → Th(T ) with T ω-accessible, there exists
a unique natural transformation h# : T →Mfin

L such that Th(h#)ηfin
L = h.

The proof requires the following explicit description of Mfin
L , which is obtained im-

mediately from the definition of Mfin
L and the action of ML on subset inclusions:

Lemma 61 A maximally consistent set Φ ∈ML(X) is contained in Mfin
L (X) iff Φ has

a finite support, i.e. a finite subset Y ⊆ X such that for all φ ∈ Prop(Λ(P(X))), φ ∈ Φ
iff φσY ∈ Φ, where σY is the P(Y )-valuation for P(X) defined by σY (A) = A ∩ Y .2

Proof (Theorem 60) It suffices to show that for T ω-accessible, the theory h#(t)
of t ∈ TX as defined in the proof of Theorem 57 is in Mfin

L (X). By accessibility, we
have Y ⊆ X finite such that t ∈ TY . By naturality of predicate liftings, Y is a finite
support of h#(t), and hence h#(t) ∈Mfin

L (X) by Lemma 61. 2

As indicated above, Theorems 57 and 60 allow us to replace rank-1 logics by functors
in the definition of the coalgebraic semantics: an L-structure based on a functor T
may equivalently be regarded as a natural transformation T → ML; analogously,
an L-structure based on an ω-accessible functor T may be regarded as a natural
transformation T →Mfin

L . One may then attempt to phrase properties of L-structures
in terms of natural transformations. E.g. we have

Proposition 62 An L-structure M based on T is separating iff the associated nat-
ural transformation T →ML is injective. 2

Thus, we have the following classification result.

Theorem 63 Up to natural isomorphism, the ω-accessible L-structures for which
L is separating are precisely the substructures of the canonical finitely branching
L-structure Mfin

L .

(It is almost but not quite true that one can replace separation by the Hennessy-Milner
property in the above theorem, as in some corner cases, logics may have the Hennessy-
Milner property without being separating [33]. One may however replace separation
by the Hennessy-Milner property for a logic that extends L with propositional atoms,
as laid out in more detail in Remark 66 below.)

Proof All that remains to be shown is that subfunctors of ω-accessible set functors
are again ω-accessible; this follows easily from [1], Proposition 5.2. 2

With a little additional infrastructure, we can also capture weak completeness, i.e.
one-step completeness, at the level of natural transformations. For a subset Γ of Λ,
let L/Γ denote the modal logic with similarity type Γ whose axioms are all one-step
Γ-formulas which are derivable in L (in the sense of Definition 49). We have natural
transformations

πΓ : ML → ML/Γ

Φ 7→ Φ ∩ Prop(Γ(P(X))).

Then one-step completeness is characterised as follows.
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Proposition 64 The logic L is one-step complete for an L-structure M based on
T with associated natural transformation µ : T → ML iff πΓ

XµX is surjective for all
finite subsets Γ of Λ and all finite sets X.

Proof ‘Only if ’: Let Γ ⊆ Λ and X be finite, and let Φ ∈ML/Γ(X). Since Γ(P(X))
is finite, Φ has a finite set Φ′ of representatives modulo propositional equivalence.
The conjunction

∧
Φ′ ∈ Prop(Λ(P(X))) is one-step L-consistent. By one-step com-

pleteness, there exists t ∈ TX such that t |=X
∧

Φ′, and hence πΓ
X(µX(t)) = Φ.

‘If ’: Let ψ ∈ Prop(Λ(P(X))) be one-step L-consistent. We have to prove that
ψ is one-step satisfiable. By Lemma 52, we can assume that X is finite. Let Γ
be the (finite) set of modal operators occurring in ψ. By the one-step Linden-
baum lemma (Lemma 39), ψ is contained in a maximally one-step consistent set
Φ ⊆ Prop(Γ(P(X))). By assumption, we have t ∈ TX such that πΓ

X(µX(t)) = Φ;
then t |=X ψ. 2

Corollary 65 If Λ is finite, then L is one-step complete for an L-structureM based
on T with associated natural transformation µ : T → ML iff µ is surjective. In
particular, Mfin

L is, in this case, the only ω-accessible L-structure for which L is
one-step complete and separating.

Proof Immediate by Proposition 64, as the πΓ are surjective, and πΛ = idML is one
of the πΓ. 2

Remark 66 Given L = (Λ,R) and a countably infinite set U of propositional atoms,
i.e. nullary modalities, let L[U ] denote the logic (Λ ∪ U,R). Thus, L[U ] is just the
standardly expected extension of L by propositional atoms. Let M be a structure
for L with underlying functor T , and define the functor TU by TU (X) = TX ×P(U).
Coalgebras for TU are essentially T -models, i.e. T -coalgebras equipped with valuations
for the propositional atoms. Then M is extended to a structure M[U ] for L[U ] with
underlying functor TU by putting JLKM[U ]

X (A1, . . . , An) = JLKMX (A1, . . . , An)× P(U)
for L ∈ Λ n-ary, and

JuKM[U ]
X = {(t, B) ∈ TX × P(U) | u ∈ B}

for u ∈ U . Essentially, this yields the expected interpretation of L[U ] over T -models.
It is easy to see that L is separating for M iff L[U ] is separating for M[U ], and that
L is one-step complete for M iff L[U ] is one-step complete for M[U ] (this follows
also from general modularity results [6, 37], asM[U ] is a modular combination ofM
and the obvious structure for U). Moreover, by [36], Proposition 5.3, L[U ] is one-step
complete forM[U ] iff L[U ] is weakly complete forM[U ]. Finally, if T is ω-accessible
then TU is also ω-accessible and hence has a final coalgebra C [2], and since each
subset of U is realised as the set of valid atomic propositions in some state of C, C
is infinite. By the results of [33], it follows that L[U ] is separating for M[U ] iff L[U ]
has the Hennessy-Milner property for M[U ].

Summarising the above, we may replace the conditions that L is separating or
one-step complete for M by requiring that L[U ] has the Hennessy-Milner property
or is weakly complete, respectively, for M[U ] in the above results, thus obtaining
classification theorems involving natural conditions on the logic at large rather than
properties of the one-step logic. In particular, this allows us to turn Corollary 65 into
the following statement:
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If L is finite and U is an infinite set of propositional atoms, then Mfin
L is

the only ω-accessible structure M such that L[U ] is weakly complete and
has the Hennessy-Milner property for M[U ].

Example 67 Let Kω denote the multi-agent version of K with ω agents. In straight-
forward generalisation of Example 56.1, Mfin

Kω
is the countable power (Pfin)ω of the

finite powerset functor Pfin . By the above classification results, the ω-accessible struc-
tures for which Kω is one-step complete and separating are precisely the substructures
of Mfin

Kω
induced by subfunctors T of (Pfin)ω such that for each finite set X, each fi-

nite subset I ⊆ ω and each I-indexed family (Ai) of subsets Ai ⊆ X, there exists
(Cj)j<ω ∈ TX such that Ci = Ai for all i ∈ I.

This illustrates that for infinite similarity types, a crisper classification result than
Proposition 64 is unlikely. In particular, there is no smallest structure (w.r.t. sub-
functor inclusion) among the class S of structures described above: the substructure
induced by the subfunctor T of (Pfin)ω where TX contains precisely the families
(Cj)j<ω such that Cj = ∅ for all but finitely many j is minimal in S, but not con-
tained in the substructure N ∈ S induced by the subfunctor S of (Pfin)ω where SX
consists of all families (Cj)j<ω such that Cj 6= ∅ for all but finitely many j.

Contrastingly, the structure MB based on the finite multiset functor B is the
smallest structure for which GML is one-step complete and separating: it is known
that GML is one-step complete [36] and separating [33] forMB. Moreover, since for X
finite, every finite multiset over X can be uniquely described in Mfin

GML(X) = B∞(X)
(see Example 56.2) by a (finite) one-step formula in GML, every further structure
with these properties must contain MB as a substructure. Thus, the ω-accessible
structures for which GML is one-step complete and separating (i.e. has the Hennessy-
Milner property and is weakly complete when propositional atoms are included) are
precisely the substructures of Mfin

GML induced by functors between B and B∞.

5 Decidability

A benefit of the coalgebraic semantics constructed above is that we can now apply
results on coalgebraic modal logic to arbitrary rank-1 modal logics, even when the
latter lack a formal model-theoretic semantics. This includes in particular the generic
decidability and complexity results of [34, 36], of which we now obtain purely syntactic
versions. Throughout this section, we fix a rank-1 modal logic L = (Λ,R).

In [34], a generic finite model construction was given which yields criteria for de-
cidability and upper complexity bounds for coalgebraic modal logics. The generic
complexity bounds generally do not match known bounds in particular examples,
typically PSPACE . This is remedied in [36], where a generic PSPACE decision pro-
cedure for coalgebraic modal logics based on a shallow model construction is given,
at the price of stronger assumptions on the logic.

A crucial role in the algorithmic methods of [34] is played by the following localised
version of the satisfiability problem:

Definition 68 (One-step satisfiability problem) The one-step satisfiability
problem for a Λ-structure M is to decide, given a finite set X and a conjunctive
clause ψ over Λ(P(X)), whether ψ is one-step satisfiable over M.
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By the results of [34], the satisfiability problem of a coalgebraic modal logic is

− decidable if its one-step satisfiability problem is decidable
− in NEXPTIME if one-step satisfiability is in NP
− in EXPTIME if one-step satisfiability is in P .

This instantiates to the canonical structure as follows.

Lemma 69 A formula ψ ∈ Prop(Λ(P(X))) is one-step satisfiable over ML iff ψ is
one-step L-consistent.

Proof Immediate by the one-step truth lemma (Lemma 32) and the one-step Lin-
denbaum lemma (Lemma 39). 2

Definition 70 (One-step consistency problem) The one-step consistency prob-
lem for L is to decide, given a finite set X and a conjunctive clause ψ over Λ(P(X)),
whether ψ is one-step L-consistent.

Corollary 71 The consistency problem of L (i.e. whether an Λ-formula φ is L-
consistent) is

− decidable if the one-step consistency problem is decidable
− in NEXPTIME if one-step consistency is in NP
− in EXPTIME if one-step consistency is in P .

In order to turn the above corollary into a more directly applicable decidability cri-
terion, we recall the notion of rule contraction from [36]:

Definition 72 (Closure under contraction) An instance φσ/ψσ of a rule φ/ψ
over V is contracted if the clause ψσ over Λ(V ) is contracted, i.e. does not contain
duplicate literals (over Λ(V )). We say that a set R of rules is closed under contraction
if for every V -instance φσ/ψσ of a rule φ/ψ over V in R, there exists a contracted
V -instance φ′σ′/ψ′σ′ of a rule φ′/ψ′ ∈ R such that ψ′σ′ propositionally entails ψσ
and φσ propositionally entails φ′σ′.

The key feature of contraction closed rule sets is that indeed one only needs contracted
instances of rules; we make this formal for one-step derivations:

Lemma 73 Let R be closed under contraction. Then a one-step formula φ ∈
Prop(Λ(P(X))) over a set X is one-step derivable iff φ is propositionally entailed
by the set

{ψτ | φ/ψ ∈ R, τ a P(X)-valuation, X |= φτ, ψτ contracted}.

2

Sets of one-step rules can easily be closed under contraction: just add a rule φσ/ψ′

for every rule φ/ψ over V in R and every V -substitution σ, where ψ′ is obtained from
ψσ by removing duplicate literals (typically, the premise φσ will be replaced by some
suitable propositional equivalent). It is clear that the new rules are derivable from
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the original ones, and moreover that every finite rule set has a finite closure under
contraction. E.g. the modal logic K is represented in terms of one-step rules as

(N)
a

2a
(RR)

a ∧ b→ c

2a ∧2b→ 2c
,

and closing under contraction additionally yields (besides the trivial rule >/>) the
monotonicity rule

(M)
a→ b

2a→ 2b
.

Corollary 74 The consistency problem of L = (Λ,R) is decidable if Λ is finite and
R is a set of one-step rules which is closed under contraction and recursive (i.e. it is
decidable whether a one-step rule is contained in R up to propositional equivalence
of premises).

Proof By Corollary 71, it suffices to prove that one-step consistency is decidable.
Since propositional entailment from finite sets of formulas is decidable, this reduces
by Lemma 73 to showing that given a finite set X, the set

Ψ = {ψτ | φ/ψ ∈ R, τ a P(X)-valuation, X |= φτ, ψτ contracted} (∗)

is computable, which due to finiteness of the set of contracted clauses over Λ(P(X))
amounts to showing that it is decidable whether a given contracted clause χ belongs
to Ψ. But this is clear: recall that by Remark 3, we can assume that all variables in
a rule φ/ψ over V occur in ψ (in particular that V is finite). In the notation of (∗),
ψ and τ can hence be read off directly from χ, choosing a suitable standard naming
scheme for propositional variables (e.g. ai for the i-th variable in ψ). One then has to
check for all possible choices of φ ∈ Prop(V ) whether X |= φτ and whether φ/ψ ∈ R;
by the assumptions made, it suffices to check some finite set of representatives of
Prop(V ) up to propositional equivalence. 2

Corollary 75 The consistency problem of L = (Λ,R) is decidable if Λ and R are
finite.

Proof W.l.o.g., R consists of one-step rules. By the above, R has a finite (hence
recursive) closure under contraction. 2

Remark 76 The generic PSPACE decision procedure of [36] is based on rule sets
which are closed under contraction and additionally under rule resolution. While one
can use the results presented in the present work to turn this originally semantics-
based result into a purely syntactic criterion [38], it has transpired that there is also
a direct syntactic proof of this criterion (see the extended version of [36]).

The results of [36] moreover imply a decidability criterion that complements Corol-
lary 74 in that the finiteness assumption for Λ is removed, but the stronger assumption
is made that R is resolution closed; as closure under resolution is generally a more
complex process than closure under contraction, decidability is typically easier to
establish for the contraction closure of a given recursive set of rules than for the
resolution closure.

Corollary 75 partially reproves a result by Lewis [23]; the latter applies more
generally to non-iterative modal logics, i.e. logics whose axioms do not nest modal
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operators (but unlike one-step formulas may contain top-level propositional variables,
as in the T -axiom 2a→ a). It is the subject of future research to extend the present
results, and in fact the entire framework of coalgebraic modal logic, to cover also non-
iterative modal logics by means of copointed functors. On the other hand, Corollary 74
improves on Lewis’ result by only requiring the axiomatisation to be recursive (rather
than finite). However, we are not presently aware of a realistic example of an infinitely
axiomatised modal logic with finitely many modal operators.

6 Example: Deontic Logic

A typical application area for the above results are modal logics that come from
a philosophical background, such as epistemic and deontic logics, which are often
defined either without any reference to semantics at all or with a neighbourhood
semantics essentially equivalent to the canonical semantics described above. Deontic
logics [14, 40], which have received much recent interest in computer science as logics
for obligations of agents, are moreover often axiomatised in rank 1.

Standard deontic logic [5] is just the modal logic KD. This has been criticized on
the grounds that it entails the deontic explosion: if O is the modal obligation operator
‘it ought to be the case that’, then the K-axiom, formulated as (Oa∧Ob)↔ O(a∧b),
implies that in the presence of a single deontic dilemma, everything is obligatory, i.e.
Oa ∧ O¬a→ Ob. Some approaches to this problem are summarized in [11], where it
is advocated to eliminate the deontic explosion by restricting at least one direction of
K to the case that a ∧ b is permitted, i.e. to P (a ∧ b), where P is the dual ¬O¬ of O.
This leads to the axioms

(PM) O(a ∧ b) ∧ P (a ∧ b)→ Oa
(PAND) Oa ∧Ob ∧ P (a ∧ b)→ O(a ∧ b)

(in [11], (PM) is formulated as a rule (RPM)). Two systems are proposed (both
including the congruence rule): given the further axioms (N) O>, (P) ¬O⊥, and

(ADD) (Oa ∧Ob)→ O(a ∧ b),

DPM.1 is determined by (PM), (N), and (ADD), while DPM.2 is given by (PM),
(PAND), (N), and (P). A further system PA, consisting of (PAND), (P), (N), and the
standard monotonicity axiom is rejected, as it still leads to a form of deontic explosion
where everything permitted is obligatory in the presence of a dilemma.

It is shown in [11] that DPM.1 and DPM.2 are sound and weakly complete w.r.t.
the obvious classes of neighbourhood frames, and that both logics are decidable; the
proofs are rather involved. In our framework, the situation presents itself as follows.
The neighbourhood semantics of [11] is easily seen to be precisely the canonical se-
mantics; the new insight here is that the semantics is coalgebraic. The rest is for
free: by Theorem 44, both DPM.1 and DPM.2 are even strongly complete (the reason
that the strong completeness proof fails in [11] is that an explicit construction of a
canonical nieghbourhood model is attempted). Decidability is immediate by Corol-
lary 75; the finite model property (proved in [11] using filtrations) follows from the
results of [34]. (The same holds for PA, and in fact for rather arbitrary variations of
the axiom system.) A challenge that remains is to establish that DPM.1 and DPM.2
are in PSPACE by the methods of [36] or [39].
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7 Conclusion

We have established that every modal logic L of rank 1 has a canonical coalgebraic
semanticsML, for which L is sound and strongly complete. Moreover, L has a canon-
ical finitely branching coalgebraic semantics Mfin

L , for which L is sound and weakly
complete and has the Hennessy-Milner property. All finitely branching semantics for
which L has the Hennessy-Milner property are obtained as substructures of Mfin

L .
Interestingly, if the similarity type of L is finite, thenMfin

L is uniquely determined as
a finitely branching semantics for which L is weakly complete and has the Hennessy-
Milner property.

These results provide a converse to the previous insight that every coalgebraic
modal logic can be axiomatized in rank 1 [34]. They have allowed us to formulate
purely syntactic versions of semantics-based generic decidability and complexity cri-
teria for coalgebraic modal logic [34], including e.g. the result that every rank-1 logic
with finitely many modal operators whose contraction closure is recursive is decidable.
This result is related to a result by Lewis [23], which applies to a slightly more general
class of logics called non-iterative logics (where axioms still cannot nest modal opera-
tors, but may contain top-level propositional variables), but which makes the stronger
assumption that the axiomatisation is finite. Extending our results to non-iterative
logics is the subject of future work.

We have applied our framework to recently defined versions of deontic logic which
accommodate deontic dilemmas [11]. In particular, we have obtained decidability
and strong completeness for these logics as immediate consequences of our generic
results, while the original work has rather involved proofs and moreover establishes
only decidability and weak completeness. Application of the generic PSPACE upper
bound [36] to these logics remains an open problem.

We emphasise that the restriction to rank 1 is not an inherent limitation of the
coalgebraic approach — the fact that coalgebraic modal logics are of rank 1 is due to
the interpretation of these logics over the whole class of coalgebras for the relevant
functor (in analogy to the standard modal logic K), and logics outside rank 1 may be
modelled by passing to suitable subclasses (covarieties) of coalgebras, in generalisa-
tion of e.g. the interpretation of K4 over transitive Kripke frames (i.e. P-coalgebras);
general completeness and decidability results for such logics are the subject of on-
going [28] and future work. A further point of interest is to obtain completeness
and decidability results for coalgebraic modal logics with iteration, i.e. the coalge-
braic counterpart of CTL. Finally, results on generic strong completeness criteria for
coalgebraic modal logics (other than canonical structures) are forthcoming [35].
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[28] D. Pattinson and L. Schröder. Beyond rank 1: Algebraic semantics and finite
models for coalgebraic logics. In R. Amadio, editor, Foundations of Software Sci-
ence and Computation Structures, FOSSACS 2008, volume 4962 of Lect. Notes
Comput. Sci., pages 66–80, 2008.

[29] M. Pauly. A modal logic for coalitional power in games. J. Logic Comput.,
12:149–166, 2002.
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[34] L. Schröder. A finite model construction for coalgebraic modal logic. J. Logic
Algebraic Programming, 73:97–110, 2007.
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