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Pillars of Ontology Treatment in the 
Medical Domain 
 

In this chapter we describe the three pillars of ontology treatment in the medical domain in a 
comprehensive case study within the large-scale THESEUS MEDICO project. MEDICO 
addresses the need for advanced semantic technologies in medical image and patient data 
search. The objective is to enable a seamless integration of medical images and different user 
applications by providing direct access to image semantics. Semantic image retrieval should 
provide the basis for the help in clinical decision support and computer aided diagnosis.  
During the course of lymphoma diagnosis and continual treatment, image data is produced 
several times using different image modalities. After semantic annotation, the images need to 
be integrated with medical (textual) data repositories and ontologies. We build upon the three 
pillars of knowledge engineering, ontology mediation and alignment, and ontology population 
and learning to achieve the objectives of the MEDICO project.   
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INTRODUCTION 
 
Clinical care and research increasingly rely on digitized patient information. There is a 
growing need to store and organize all patient data, such as health records, laboratory reports 
and medical images, so that they can be retrieved effectively. At the same time it is crucial 
that clinicians have access to a coherent view of these data within their particular diagnosis or 
treatment context.  
 
With traditional applications, users may browse or explore visualized patient data, but little to 
no help is given when it comes to the interpretation of what is being displayed. This is due to 
the fact that the semantics of the data is not explicitly stated, which therefore remains 
inaccessible to the system and therefore also to the user. This can be overcome by the 
incorporation of external medical knowledge from ontologies which provide the meaning 
(i.e., the formal semantics) of the data at hand.  
 
Our research activities are in the context of the THESEUS MEDICO project. MEDICO 
addresses the need for advanced semantic technologies in medical image and patient data 
search. The objective is to enable a seamless integration of medical images and different user 
applications by providing a direct access to image semantics. A wide range of different 
imaging technologies in various modalities exist, such as 4D 64-slice Computer Tomography 
(CT), whole-body Magnet Resonance Imaging (MRI), 4D Ultrasound, and the fusion of 
Positron Emission Tomography and CT (PET/CT). All these image modalities have the 
common property that their semantic contents include knowledge about human anatomy, 
radiology, or diseases.  
 
One important requirement for advanced applications in semantic image retrieval, clinical 
decision support and computer aided diagnosis is the comparative exploration of similar 
patient information. For this purpose, we envision a flexible and generic image understanding 
software for which semantics of the images plays the major role for access and retrieval. 
However, currently, large amounts of medical image data are indexed by simple keywords to 
be stored in distributed databases without capturing any semantics. 
 
The objective of MEDICO is to build the next generation of intelligent, scalable and robust 
search engines for the medical imaging domain, based on semantic technologies. With the 
incorporation of higher level knowledge represented in ontologies, different semantic views 
of the same medical images (such as structural aspects, functional aspects, and disease 
aspects) can be explicitly stated and integrated. Thus, the combination of formal semantics 
with image understanding helps building bridges between different but related domains that 
can be used for comparative exploration of patient data. MEDICO is a consortium research 
project funded by the German Federal Ministry of Economics with several R&D sites and the 
Erlangen University Hospital as a clinical partner.  
Visit http://theseus-programm.de/scenarios/en/medico. 
 
Within the MEDICO project, one of the selected scenarios aims for improved image search in 
the context of patients that suffer from lymphoma in the neck area. Lymphoma, which is a 
type of cancer affecting the lymphocytes, is a systematic disease with manifestations in 
multiple organs. During the course of lymphoma diagnosis and continual treatment, image 
data is produced several times using different modalities. As a result, the image data consist of 
many medical images in different formats, which additionally need to be associated with the 
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corresponding patient data. Hence, the lymphoma scenario is particularly suitable to 
demonstrate the strength of a semantic search engine as we envisioned in MEDICO. 
 
To address the challenges of advanced medical image search, different medical resources 
need to be semantically integrated. Consequently, the following four research questions arise: 
 
1) How is the workflow of the clinician, i.e.,   
 

a) What kind of information is relevant for his daily tasks? 
 
b) At what stage of the workflow should selected information items be offered? 
 

2) What are the particular challenges and requirements of knowledge engineering in the 
medical domain?  

 
a) Can those challenges be addressed by a semi-automatic knowledge extraction process 

based on clinical user interactions? 
 
b) Can we embed the semi-automatic extraction process into the clinician’s workflow?   
  

3) How can different possibly overlapping data sources (i.e., ontologies) be aligned? 
 
4) How can we learn and populate ontologies? 
 
MEDICO’s vision of the semantic medical search relies on ontology-based annotation of 
medical images and the related patient data. This allows us to mark-up the content at a higher 
level of granularity that goes beyond simple keywords. To realize this, the use of metadata 
from multiple, disparate but nevertheless related ontologies is required.  
 
We will describe the three pillars of ontology treatment in the medical domain in a 
comprehensive case study within MEDICO. These pillars are knowledge engineering, 
ontology mediation and alignment, and ontology population and learning. We build upon 
these pillars to achieve the objectives of MEDICO. 
 
The contribution of this book chapter is this description of the pillars of ontology treatment in 
the medical domain and the overview of our implementations of these pillars. For example, 
the approach for realizing a medical image search scenario based on semantic technologies 
within an industry setting represents one of the pillars (knowledge management). We put the 
focus on the challenges, requirements, and possible solutions related to ontology alignment. 
 
The remainder of this book chapter is organized as follows. Section 2 outlines the pillars of 
ontology treatment. Section 3 describes our implementations of the knowledge engineering 
requirements of a clinician in the context of his daily work along three clinical scenarios.   We 
will also discuss the medical knowledge engineering workflow.  Section 4 addresses the 
challenges and possible solutions for mediating and (semi-automatically) aligning different 
medical ontologies. In section 5 we discuss and analyze how MEDICO ontologies can be 
populated in a semi-automatic way. The final section concludes and describes our future work 
in the THESEUS MEDICO use case. 
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PILLARS OF ONTOLOGY TREATMENT IN THE MEDICAL 
DOMAIN 
 
According to the clinical knowledge requirements, we can identify three pillars of ontology 
treatment in the medical domain. These pillars should allow us to improve the clinical 
reporting process, the patient follow-up process, and the clinical disease staging and patient 
management process. This is achieved by the use of metadata from multiple, related medical 
ontologies. In the following, we will describe the pillars of ontology treatment: knowledge 
engineering; ontology mediation and alignment; and ontology population and ontology 
learning.  
 
Knowledge Engineering:  
 
What is the recommended medical information management and ontology engineering 
process and what semantic-driven recommendations can be given to enhance existing medical 
knowledge repositories? Which recommendations can support building up new medical 
knowledge repositories? A knowledge engineering methodology (KEMM) helped us to 
formalize these requirements. How this relates to the doctor's practical interest in using a 
semantic search engine or dialogue interface is one major part of the practical case study. For 
example, consider a radiologist at his daily work: The diagnostic analysis of medical images 
typically concentrates around three questions: i) what is the anatomy? ii) what is the name of 
the body part? iii) is it normal or is it abnormal? To satisfy the radiologist's information need, 
this scattered knowledge has to be gathered and integrated from disparate dynamic 
information sources. 
 
Ontology Mediation and Alignment:  
 
Information integration is concerned with access to heterogeneous information sources (in 
MEDICO: text patient data, medical images, relational databases) to be mediated in order to 
provide an integrated view of the data. In addition, we have specific information needs that 
must be satisfied by these information sources (which should be expressed by query patterns 
defined over a set of ontologies). In medical imaging and MEDICO, a single ontology is not 
enough to support the required complementary knowledge from different perspectives, for 
example anatomy, radiology, or diseases. Ontology mediation and alignment is therefore a 
key aspect of the semantic information integration task in the MEDICO use case. 
 
We investigate linguistic-based, corpus-based, and speech-dialogue-based ontology alignment 
approaches in the main part of this case study. We will also discuss the methods that are 
required for interactive and incremental ontology mapping in the MEDICO use case, and their 
applicability. 
 
Ontology Population:  
 
Given the set of identified relevant and aligned ontologies, one important aspect of our 
approach is the automatic extraction of knowledge instances (entities, facts) from text data. 
This data is widely available in the medical domain in the form of patient records as well as 
scientific articles. The important aspect is the semantic integration of these mainly 
unstructured data instances with those derived from other resources (medical images, 
relational databases) through ontology population across ontologies. In this connection, we 
describe an interactive GUI environment for the medical expert.  
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1. Knowledge Engineering in the Medical Domain 
 
MEDICO covers a particularly sensitive domain, i.e., human health. In this domain, the reuse 
of medical knowledge, which is already present in readily available standardized, high quality 
medical ontologies engineered by domain experts, is crucial.  
 
In our context, we use the term “knowledge engineering” in the sense it is discussed by 
Grüninger and Uschold (1996). It is refer to “methods for creating an ontological and 
computational basis for reuse of product knowledge across different applications within 
technical domains.” Consequently, we understand ontology treatment (i.e., ontology 
mediation and ontology population) as specific knowledge engineering tasks. 
 
Various challenges exist in medical knowledge engineering. One challenge is that the 
knowledge engineer is not familiar with the complex and comprehensive medical terminology 
in the medical ontologies. As a result, the application domain remains opaque to him and he 
cannot verify the knowledge engineering process. Other challenges are the size of the medical 
ontologies, which overwhelms a non-medical person, not to mention the technical challenges 
of the software engineering process, for example runtimes. 
 
The major challenge, however, is the so-called “knowledge acquisition bottleneck.” We 
cannot easily acquire the necessary medical knowledge that ought to be used in the software 
application as it is hidden in the heads of medical experts. Our experience with the MEDICO 
project shows that common interview methods are neither efficient nor effective enough to 
acquire the domain knowledge (due to misunderstandings in the communication).  
 
Therefore, we view medical knowledge engineering as an interactive process between the 
knowledge engineer and the clinician. The first essential step requires the knowledge engineer 
to gather and pre-processes available medical knowledge from various resources such as 
domain ontologies and domain corpora, whereupon the domain expert, i.e., the clinician, 
evaluates the outcome of the process and provides feedback.  
 
Thus, we address the “knowledge acquisition bottleneck” problem by concerning ourselves 
with the question how a bottom-up ontology engineering approach can be established based 
on a data-driven knowledge pre-processing step (that is followed by a user interactive 
evaluation step). Here, our focus is on the development of semantic-driven recommendations 
to enhance existing medical knowledge repositories according to KEMM (Knowledge 
Engineering Methodology in the Medical Domain). 

1.1. Clinical Knowledge Engineering Requirements 

 
Today, medical images provide important information for identifying the patient’s diagnosis 
and appropriate treatment. As medical imaging technologies progress and more and more 
medical details become more clearly visible, it happens quite often that clinicians discover 
some suspicious or unknown alteration of particular body parts in medical images. In such 
situations, the most valuable and relevant information for clinicians can be gained by 
comparing the non-routine results to other but nevertheless “similar” images. By comparing a 
given image to other scans and records of patients with similar visual symptoms, e.g., an 
enlargement of the lymph node of the neck, clinicians can learn about the meaning of the 
unknown alteration in the context of the progress of the disease.  
In contemporary, daily hospital work, clinicians can only manually search for “similar” 
images. After considering the relevant categories of similarity, they subsequently set one filter 
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after the other. For instance, a clinician first sets a filter for the imaging modality (e.g., CT 
angiography), the second filter for the procedure (e.g., coronary angiography), and so on. 
Beside the fact that this approach is quite time-consuming, it is neither possible to formulate 
complex and semantically integrated search queries, nor can valuable knowledge of external 
knowledge resources be integrated.  
 
This is the situation we face today. Thus, in intensive discussions with clinicians we analyzed 
how the use of semantic technologies can support the clinician's daily work tasks. In 
particular, we discussed the medical case of lymphoma from the perspective of medical 
imaging and revealed three typical clinical scenarios that are of interest for further analysis of 
clinical knowledge requirements:  
 

1. The clinical reporting process; 
  

2. The patient follow-up treatment (i.e., monitoring the patient’s health condition and the 
development of the disease); 

 
3. The clinical disease staging and patient management. 
 

Each scenario induces a list of relevant tasks with particular clinical questions to be answered. 
Each answer is again based on particular medical data that is (or is not) available and that is 
typically stored in distributed knowledge and data repositories. The three clinical scenarios 
require the acquisition of various types of domain knowledge:  
 
1. The clinical reporting process focuses on the general question “What is the disease?” (or, 

as in the lymphoma case, “which lymphoma?”) To answer this question, semantic 
annotations on medical image contents are required. These are typically anatomical parts 
such as organs, vessels, lymph nodes, etc. Image parsing and pattern recognition 
algorithms can extract the low-level image feature information. The low-level information 
is used to produce higher-level semantic annotations to support tasks such as differential 
diagnosis. 

  
2. Within the patient follow-up process, the clinician’s concern is whether his former 

diagnosis hypothesis is confirmed by the outcome of the treatment or not. In other words, a 
clinician can only know what he is treating until he sees how the patient responds 
(Starbucks, 1993). The questions relevant for this scenario are, “Is the drug effective?”, 
“Has the lesion shrunk?”, and “Do the symptoms persist?” Therefore, the clinician is 
particularly interested in finding out if his prior diagnosis hypothesis can be verified or 
refuted.  

  
3. In the clinical staging and patient management process the general concern is with the 

next steps in the treatment process. The results of the clinical staging process influence the 
decisions that concern the later patient management process. (External medical knowledge 
comes into play, in the sense that the disease staging results need to be mapped onto the 
standard clinical staging and patient management guidelines.) 

 
   To satisfy the radiologist’s information need, this scattered information has to be gathered, 
semantically integrated and presented to the user in a coherent way. Finally, external 
resources such as medical guidelines or medical recommendations need to be integrated as 
well in order to achieve compatibility with the standard decision making and management 
procedures.  
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1.2. KEMM Methodology 

 
From the knowledge engineering requirements, we derived a knowledge engineering 
methodology that is specific for the medical domain (Wennerberg, 2008). Consequently, 
KEMM (Figure 1) defines seven tasks. The initial task, called Query Pattern Derivation,  
supports the communication between the knowledge engineer and the clinician during the 
knowledge elicitation process. All other tasks (explained further down) support the medical 
ontology engineering process.  
 

 
 
              Figure 1: Knowledge Engineering Methodology for the Medical Domain (KEMM) . 

 
Query Pattern Derivation: This task is based on generating a set of hypothetical user queries 
using domain ontologies and domain corpora that are subsequently evaluated by the 
clinicians. A combination of various techniques from natural language processing to text 
mining are employed to derive patterns (described in detail in Buitelaar (2008) and 
Wennerberg (2008a)). In the MEDICO study, we focused on the patterns for typical clinical 
queries given the domain ontologies and use case corpora; concept-relation-concept triplets 
are identified. The pattern derivation can be viewed as a function that takes the domain 
(sub)ontologies and the corpora as input and returns a partial weighting of the ontologies, 
whereby the terms/concepts are ranked according to their weights. A complex query pattern 
example is: ( ANATOMICAL_STRUCTURE     located_in     ANATOMICAL_STRUCTURE )         
AND    ( (RADIOLOGY_IMAGE) Modality          is_about             ANATOMICAL_STRUCTURE )  
AND    ( (RADIOLOGY_IMAGE) Modality      shows_symptom       DISEASE_SYMPTOM ).  
The top 4 concepts we identified for the generic query pattern above in the corpora are: 
 

FMA Term Score/Frequency 
lateral 338724 
anterior 314721 
artery 281961 

anterior spinal 219894  

RadLex Term Score/Frequency 
x-ray 81901 
imaging modality 58682 
volume imaging 57855 

molecular imaging 57850  
 
Ontology Identification: As the medical image contents essentially relate to human anatomy, 
radiology, pathology, and/or diseases, we require identifying ontologies from these domains. 
Consequently, the Foundational Model of Anatomyi, the Radiology Lexiconii, and the NCI 
Cancer Thesaurusiii were set as semantic resources that provide the domain knowledge.  
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Ontology Modularization and Pruning: Based on these patterns, the ontologies to be reused 
are identified, pruned, and modularized; the relevant modules are customized and finally 
integrated. For an effective reuse of the large medical ontologies, we have to construct 
modular ontology subsets that can be easily navigated by humans and reasoned by machines. 
The derived set of query patterns determines the criteria for pruning and modularizing the 
large medical ontologies that were identified in the previous step. These pruned (and 
modularized) ontologies are then presented to the clinical experts to confirm their relevance 
and validity.  
 
Ontology Customization: Quite often, the modules extracted from the ontologies have either 
redundant or missing knowledge; only customized knowledge in terms of domain ontologies 
meets the requirements with respect to the applications. For example, we defined a 
relationship has_nci_code which relates the concepts in the lymphoma module to the entities 
in the NCI thesaurus. Another customization was the conversion of the lymphoma related 
section of the NCI Thesaurus from the flat text format to OWL. 
 
Ontology Alignment: We conceive of ontology alignment as an operation on the extracted 
ontology modules (rather than the ontologies as a whole). The objective of the alignment is to 
obtain a coherent picture of separate but related ontology modules. Each customized ontology 
module represents a piece of knowledge that is necessary to realize the entire application. 
These knowledge pieces are not arbitrary but they need to be interrelated within the context of 
the application. The different ontology alignment and mediation approaches will be discussed 
in more detail in Section 2.  
 
Reasoning-Based Ontology Enhancement: The MEDICO use case is characterized by the 
reuse and integration of distributed ontological knowledge that may introduce inconsistencies. 
With the KEMM methodology we concentrate on two specific reasoning services. In our 
lymphoma use case one objective is to be able to deduce the relevant image modalities (MR, 
CT scan etc.) given the symptoms of head and neck lymphoma. Via deductive reasoning we 
target the discovery of valid relationships--spatial, pathological, and physiological--between 
anatomical structures. Testing and Deployment:  To avoid the propagation of inconsistencies 
and modeling mistakes, each and every task should be tested for validity, completeness, and 
coherence.  
 
With the KEMM methodology, our intention is to provide a theoretical framework for the 
knowledge engineer, whose application domain is healthcare. Based on our experience, we 
assume that knowledge engineers, who have no or little background knowledge in biomedical 
sciences, will face similar challenges. Therefore, the goal of KEMM is to inform the 
knowledge engineers about both domain specific technical challenges and potential 
communication difficulties with the domain experts. Ontology alignment is the most 
important ontology treatment pillar in practical terms, and we discuss it next to explain why it 
is necessary. Additionally, we give details on how it can be implemented.  
 
 

2. Ontology Mediation and Alignment 
 

We regard ontology alignment as an important building block of knowledge engineering in 
the medical domain. Medical knowledge engineering typically requires semantic integration 
of different medical knowledge, which can be supported by ontology alignment. KEMM 
demonstrates our view on when this should happen within the entire medical knowledge 
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engineering process. Ontology alignment is an increasingly active research field in the 
biomedical domain, especially in association with the Open Biomedical Ontologies (OBO)iv 

framework. The OBO consortium establishes a set of principles to which the biomedical 
ontologies shall conform to for purposes of interoperability. The OBO conformant ontologies, 
such as the FMA, are available at the National Center for Biomedical Ontology (NCBO) 
BioPortalv. 
 
Information integration is concerned with the access to heterogeneous information sources (in 
MEDICO: text patient data, medical images, and relational databases) to be mediated in order 
to provide an integrated view of the data. We also have specific information needs to be 
answered by these information sources, which may be expressed by a query pattern defined 
over a set of ontologies. As already mentioned, in MEDICO, a single ontology is not enough 
to provide the required complementary types of knowledge, i.e., the anatomy, radiology, or 
diseases.  
 
There is a need for clinicians, in particular for radiologists, to be able to have access to 
coherent information from a single access point. At the center of their search are the medical 
images of patients, i.e., starting from a specific medical image, the radiologists wish to find all 
the information that is related to the case. Currently, this is not possible and the radiologist 
needs to use several systems at different locations.  
 
Semantic annotations can help integrate the related data that is stored in distributed 
repositories by using commonly agreed annotation vocabularies. Consequently, radiologists 
can use the same vocabularies (i.e., those used for annotations) for their search and obtain the 
information from a single access point.  
 
Hence, one of our goals within the context of the MEDICO use case is to offer clinicians and 
radiologists an integrated view of different kinds of information that is all centered around the 
medical images. We conceive of a radiology expert as an end user who looks, starting from a 
certain medical image, for all related information such as patient data, lab reports, treatment 
plans etc. Obtaining this kind of heterogeneous information from a single access point 
requires the data to have been previously integrated appropriately. The integration can be 
achieved while annotating the data with the relevant vocabularies. Nevertheless, during the 
search the radiologist prefer to use “his vocabulary” (i.e., a radiology specific vocabulary) for 
convenience. To be able to cover all relevant information by using only one vocabulary as a 
starting point therefore requires an alignment with other vocabularies that are relevant for 
image contents and patient data. 
 
De Bruijn et al. (2006) offer terminological clarification for all the related research activities 
around ontology alignment. Accordingly, the reconciliation of differences between ontologies 
is defined as ontology mediation, whereby ontology mapping and ontology merging are 
considered as two specific cases of ontology mediation. In the case of ontology mapping the 
set of correspondences between different ontologies is not a part of the ontologies themselves. 
Ontology alignments, in this respect, are the results of the (semi-)automatic discovery of these 
correspondences in a suitable descriptive format. Others have a slightly different but non-
contradictory definition. The difference between ontology mapping and ontology alignment 
according to Johnson et al. (2006) is that the former deals with the identification of equivalent 
concepts in multiple ontologies, whereas the latter specifically focuses on making the 
overlapping concepts in multiple ontologies compatible. 
 



 

 11 

Our goal is to identify and post-process the correspondences between the concepts of different 
medical ontologies that are relevant to the contents of the medical images. This is how we 
define ontology mediation and alignment. The following scenario illustrates how the 
alignment of medical ontologies facilitates the integration of medical knowledge from 
multiple ontologies which are relevant for medical image contents. Suppose we want to help a 
radiologist who searches for related information about the manifestations of a certain type of 
lymphoma on a certain organ (e.g., the liver) on medical images. The three types of 
knowledge that help him would be about the human anatomy (liver), the organ’s location in 
the body (e.g., upper limb, lower limb, neighboring organs etc.), and whether what he sees is 
normal or abnormal (pathological observations, symptoms, and findings about lymphoma).  
 
Once we know what the radiologist is looking for, we can support him in his search in that we 
present him with an integrated view of only the liver lymphoma relevant portions of the 
patient health records, scientific publications abstracts (such as those of PubMedvi) as a 
reference resource, drug databases, experience reports from other colleagues, treatment plans, 
notes of other radiologists, or even discussions from clinical web forums. From the NCI 
Thesaurus we can obtain the information that liver lymphoma is the synonym for hepatic 
lymphoma, for which holds: 
 

‘Hepatic lymphoma’ (NCI term), 
‘disease_has_primary_anatomic_site’ (NCI relation), 

‘Liver’ (NCI term and FMA term), 
‘Hematopoietic and lymphatic system’ (NCI term), 
‘Gastrointestinal system’ (NCI term). 

 
With this information, we can now move on to the FMA ontology to find out that hepatic 
artery is a part of the liver (such that any finding that indicates lymphoma at the hepatic 
artery would also imply the lymphoma at the liver). RadLex, on the other hand, informs us 
that liver surgery is a treatment procedure. Various types of this treatment procedure are 
hepatectomy, hepatic lobectomy, hepatic segmentectomy, hepatic subsegmentectomy, hepatic 
trisegmentectomy, or hepatic wedge excision, all of which can be applied to treat the disease. 
 
Consequently, the radiologist, who searches for information about liver lymphoma, is 
presented with a set of patient health records, PubMed abstracts, radiology images etc. that are 
annotated using the terminology above. In this way, the radiologist’s search space is reduced 
to a significantly small portion of the information available in multiple data stores. Moreover, 
he receives coherent data, i.e., images and patient text data that are related to each other, from 
a single access point without having to log in to several different data stores at different 
locations. In what follows, we will discuss related work in medical ontology mediation and 
alignments and we will propose our three approaches for the medial domain, i.e., linguistic-
based, corpus-based, and dialogue-based to overcome some of the difficulties.  
 
Johnson et al. (2006) take an information retrieval approach to discover relationships between 
the Gene Ontology (GO) and three other OBO ontologies (ChEBIvii, Cell Typeviii, and 
BRENDA Tissueix). GO ontology concepts are treated as documents, they are indexed using 
Lucenex and are matched against the search queries, which are the concepts from the other 
three ontologies. Whenever a match is found, it is taken as evidence of a correspondence. This 
approach is efficient and easy to implement and can therefore be successful with large 
medical ontologies. However, it does not account for the complex linguistic structure 
typically observed in the concept labels of the medical ontologies and may result in inaccurate 
matches.  
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The main focus of the work by Zhang et al. (2004) is to compare two different alignment 
approaches that are applied to two different ontologies about human anatomy. The subject 
ontologies are the FMA and the Generalized Architecture for Languages, Encyclopedias and 
Nomenclatures for Medicinexi (GALEN). Both approaches use a combination of lexical and 
structural matching techniques. One of them additionally employs an external resource (the 
Unified Medical Lexicon UMLSxii) to obtain domain knowledge. In their work the authors 
point to the fact that medical ontologies contain implicit relationships, especially in the multi-
word concept names that can be exploited to discover more correspondences.  
 
The linguistic-based ontology alignment approach, which is described in the next section, 
builds on this finding and investigates further methods to discover the implicit information 
observed in concept labels of the medical ontologies. Furthermore, domain-independent 
ontology alignment methods are discussed by Kalfoglou and Schorlemmer (2005), Doan et al. 
(2003), Bruijn et al. (2006), Rahm and Bernstein (2001) and Noy (2004). We adapted 
techniques from all these approaches for the linguistic-based, corpus-based, and dialogue-
based approach as discussed in the following.  
 

2.1. Linguistic-based Ontology Alignment  

 
Drawing upon our experience with the medical ontologies throughout the MEDICO project, 
we have identified some of the common characteristics which are relevant for the alignment 
process. These can be summarized as follows: 

1. They are very large models. 

2. They have extensive is-a hierarchies up to ten thousands of classes, which are 
organized according to different views.  

3. They have complex relationships, in which classes are connected by a number of 
different relations.  

4. Their terminologies are rather stable (especially for anatomy) meaning that they 
should not differ too much in the different models. 

5. The modeling principles for them are well defined and documented. 

Both these observations and the fact that most medical ontologies are linguistically rich 
suggest that linguistic-based processing of ontology concept labels (and possibly also 
relations) can support the alignment process. The FMA ontology, for example, contains 
concept names as long as ‘Anastomotic branch of right anterior inferior cerebellar artery 
with right superior cerebellar artery’. The linguistic processing assumes that such long multi-
word terms are usually rich with implicit semantic relations (e.g., equivalences) which can be 
exploited to identify additional alignments. 
 
We argue that these relations can be made explicit by observing common patterns in the 
multi-word terms that are typical for the concept labels in the medical ontologies. 
Transformation grammarsxiii can help to detect the variants of the ontology concept labels. In 
other words, with the help of rules, the concept labels can be transformed into semantically 
equivalent but syntactically different word forms.  
 
There some naming conventions for the complex labels of the FMA concepts. For example, 
the order of adjectives in the term ‘Left fifth intercostal space’ is based on the rationale that 
the noun in the term is ‘space’; its primary descriptor is ‘intercostal’, further specified by a 
sequence of numbers (enhanced by the ‘laterality’ descriptor).  
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Bile canalicular domain of plasmalemma of hepatocyte 
(noun adjective noun preposition noun preposition noun) 
 
Blood in aorta 
(noun preposition noun)  
 
Periventricular nucleus at the tuberal level 
(adjective noun preposition determiner adjective noun) 
 
Organ with organ cavity 
(noun preposition noun noun) 
 
Pancreatic impression on spleen 
(adjective noun presposition noun) 
 
External carotid arterial subdivision 
(adjective adjective adjective noun) 

 
In a similar way, the term ‘Right upper lobe’ is not the preferred name of the concept, 
although the FMA includes it as a ‘synonym of’ ‘Upper lobe of right lung’ because of its 
common usage in radiology reports (Rosse and Mejino, 2003). This means that in this 
example each concept label (in most cases multi-word expressions) will terminate with a 
noun. Some examples of the complex FMA concept labels with their lexical categories are 
shown in Table 1.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Table 1: Examples of FMA concept labels (preferred names and their lexical types). 

 
One observation here is the use of prepositions (used to convey spatial information in most 
cases) to indicate location as in ‘Pancreatic impression on splee’. The prepositions we 
observed in these concept labels are shown in Table 2 together with their frequencies. 
 

Rank Prep. Freq. FMA Concept Label 
1 of 119886 Bile canalicular domain of plasmalemma of hepatocyte 
2 to 3167 Branch of median nerve to opponens pollicis 
3 for 438 Atlas for vertebral arterial groove 
4 with 263 Organ with organ cavity 
5 in 145 Blood in aorta 
6 between 47 Intermetatarsal joint between first and second metatarsal 

bones 
7 from 42 Inferior petrosal sinus from pons tributary 
8 on 24 Pancreatic impression on spleen 
9 over 19 Parietal peritoneum over left suprarenal gland 
10 within 9 Nerve ending within taste bud 
11 behind 6 Cutaneous branch to scalp behind auricle 
12 by 4 Esophageal impression by arch of aorta 
13 around 3 Nodes around cardia 
14 at 2 Periventricular nucleus at the tuberal level 
15 below 1 Trapezoid area below prostate 

 
Table 2: Prepositions observed in the FMA with their frequencies and example concept labels. 
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A similar statistic can be observed for RadLex. The prepositions we observed in the concept 
labels are shown in Table 3, together with their frequencies. Table 4 shows the transformation 
grammar we wrote for parsing complex medical terms. 
 

Rank Prep. Freq. RadLex Concept Label 
1 of 2180 aspiration of lipid 
2 to 58 response to embolization 
3 with 32 dementia with Lewy bodies 
4 for 28 marking for intervention 
5 in 21 carcinoma in situ 
6 from 8 satisfactory drainage from catheter 
7 by 6 metastasis by lymphatic and interstitial infiltration 
8 on 5 images printed on paper 
9 around 3 out of plane wrap around artifact 
10 at 2 loss of signal at interface voxels 
11 between 2 partial volume averaging between slices 
12 within 2 refocusing of selected gradients within one TR interval 
13 behind 0  
14 over 0  
15 below 0  

 
Table 3. Prepositions observed in RadLex with their frequencies and example concept labels.  

 

 
Table 4. The transformation grammar used to generate semantic equivalences for the common 
patterns in FMA and RadLex.  

 
For example, if we take the concept label ‘Blood in aorta’ from the FMA and its lexical 
pattern (noun preposition noun), we can apply the transformation rule,  
 

noun1 preposition:’in’ noun2 ! noun2 noun1 (1) 
 
and generate a syntactic variant for this concept label that nevertheless has equivalent 
semantics, i.e., ‘Blood in aorta’ = = ‘Aorta blood’. In RadLex, this rule transforms 
‘Carcinoma in situ’ to ‘Situ carcinoma’. The case with the preposition ‘of’ in the next 
transformation rule is similar. 
 

noun1 preposition:’of’ noun2 ! noun2 noun1 (2) 
 
applies to ‘Protoplasm of lymphocyte’ to generate the syntactic variant ‘Lymphocyte 
protoplasm’. For RadLex the same rule generates ‘Lipid aspiration’ from ‘Aspiration of 

ConceptLabel ! NounPhrase 
NounPhrase ! Noun 
NounPhrase ! Adjective NounPhrase 
NounPhrase! NounPhrase (-) Token 
NounPhrase ! PrivateName Noun 
PrepositionalPhrase ! Preposition NounPhrase 
NounPhrase ! NounPhrase PrepositionalPhrase 
 
Adjective ! corneal|celiac|bifurcate|selected|printed|lymphatic… 
Nounn ! hepatocyte|prostate|gland|intervention|embolization… 
Preposition ! of|in|on|at|for|within… 
PrivateName ! Bochdalek|Lewy… 
Token ! 1|2|3|4|alpha|beta|1st|2nd|X|IV|… 
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lipid’. This is profitable for at least two reasons. First, it can help resolve possible semantic 
ambiguities (if one variant is ambiguous, it can be replaced by the other one). Second, 
identified variants can be used to compare linguistic (textual) contexts of ontology concepts in 
corpora. This leads to the corpus-based ontology alignment aspect of our approach. 
 

2.2. Corpus-based Ontology Alignment 

 
The basic idea of the corpus-based alignment approachxiv is to compare the textual and 
linguistic contexts of ontology classes in large corpora. We hereby assume that ontology 
classes with similar meanings (originating from different ontologies) will appear in similar 
linguistic contexts. The linguistic context can be characterized by text characteristics and 
computed from texts directly. These characteristics describe the data instances (i.e., the 
words) and attributes (i.e., the part-of-speech tags) by applying descriptive statistical 
measures.  
 
Then, we will learn statistics about words and their attributes (e.g., simple occurrence 
frequencies or supervised information gain statistics) and use them to infer constraints that we 
use to associate two terms. The association is then interpreted as a candidate mapping. 
Corpus-based linguistics focused not only on the distribution of words, but also on the 
distribution of linguistic features (i.e., part-of-speech tags) which we can derive from these 
words in context, i.e., features about the sentences, paragraphs and texts in which a specific 
word or word group occurs. Analogously, the linguistic context of an ontology class to be 
matched to another class can be defined as: 
 

•  the document in which it appears; 
•  the sentence in which it appears; 
•  a window of size N in which it appears.  

 
For example, a window of size +5/-5 (including stop words) for ‘Antidiuretic hormone’ would 
be “A syndrome of inappropriate secretion of antidiuretic hormone (SIADH) was diagnosed, 
and bortezomib was identified as its cause.” In our approach, linguistic contexts are 
represented by token/word vectors, (e.g., <syndrome, of, inappropriate, secretion, of, 
(SIADH), was, diagnosed>), <token -5, token -4, … token +4, token +5> or the following 
three alternative vector representations: 
 

Binary over set of context tokens/words (e.g., 10): < 0, 0, 0, 0, 1, 0, 1, 0, 0, 0 > 

Frequency over set of context tokens/words (e.g., 10): < 1, 5, 0, 0, 6, 7, 18, 1, 0, 1 > 

Frequency over set of context tokens/words (e.g., 10): < 1, 5, 0, 0, 6, 7, 18, 1, 0, 1 > 

Mutual Information/InformationGain over set of context tokens/words (e.g., 10):       
 < 1.7, 0.5, 0, 0, 1.1, 3.5, 0.5, 1.2, 0, 1.5 > 

 
The data sets for our corpus-based experiments consisted of context data collected from the 
PubMed corpus on Mantle Cell Lymphoma with 1,721 scientific abstracts. 38,853 tokens 
matched the simple or complex terms provided by FMA, Radlex, or Image terms (the 
resulting set of representative image features identified by parsing a liver image showing 
symptoms of lymphoma) (Figure 2): 
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Figure 2. The distribution of term tokens that stem from the image descriptors (Image terms), FMA, 
and Radlex. 

811 different types (terms that may represent classes) were found (FMA: 320; RadLex: 562; 
Image terms: 20). This means the token/type ratio for FMA is 19.28, 43.44 for RadLex, and 
413.3 for the Image Terms. This means that FMA terms were not used as frequently as 
RadLex terms, but vary twice as much. Image terms do not show a lot of variety; a specific 
term (type) is used almost 414 times on average. In addition, 6,800 different context 
words/tokens were found. Therefore, the non-sparse vector representation for the context of 
each token has a dimensionality of 6,800. We then used the TnT part-of-speech taggerxv to 
annotate the POS classes (Penn Treebank Tagsetxvi). Figure 3 shows the distribution of term 
tokens and the distribution of POS tags (categories).  

 

Figure 3. (Left) The distribution of term tokens that stem from the image descriptors (Image 
terms), FMA, and Radlex. (Right) The distribution of POS tags that stem from the image 
descriptors (Image terms), FMA, and Radlex. 

After some experimentation with exploratory data mining methods and the medical experts, 
we agreed on an applicable model generation and interpretation process to be used by the 
medical expert. First, he generates term clusters by applying a hierarchical clustering method 
automatically. Then, he searches for interesting patterns in the clusters. Hierarchical 
clustering returns a hierarchy structure that is more informative (rather than a flat unstructured 
set of clusters). It does not require us to pre-specify the number of clusters or any other 
supervised criterion on the input data.  Furthermore, it allows the expert to indicate similar 
meaning of corresponding ontology classes with the following procedure. He specifies a 
target value of interest and then searches the hierarchy for cluster boundaries. 
  
For example, Figure 4 shows an excerpt of the cluster tree generated for the full data set 
#38852. The target value was set to the terms themselves (which correspond to a source 
value); this allows us to find new candidates for alignment because a) different terminologies 
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are assumed to have similar terms and b) similar terms are represented in the same cluster (or 
cluster boundaries) per definition. The medical expert skims the clusters (which normally 
refer to either FMA or RadLex) and draws attention to the shift of FMA to RadLex or RadLex 
to FMA as illustrated. Then, he inspects the terms of the shift (in this case Antibody and 
Monoclonal antibody).  
 
Figure 4: Hierachical clustering results. The medical expert inspects the shifts from, e.g., FMA 
to Radlex and the corresponding terms (antibody and monoclonal antibody). 

 

 
 
As a result, a mapping between those terms can be detected. Most importantly, this mapping 
was not found with a string comparison of the terms, but by clustering and interpreting the 
context vectors. In this way, a corpus-based method for alignment could be implemented 
which complements (string-based) term comparison methods and structure-based ontology 
alignment methods. The next step is to automize the method in order to find candidates 
without the expert visually mining the cluster results. Adequate measures for automatic 
processing are straightforward. 

2.3. Dialogue-based Ontology Alignment  
 

The ontology matching problem can be addressed by several techniques as introduced in the 
section on related work. Advanced incremental visualisations have also been developed (e.g., 
see Robertson et al., 2006) to do better than merely calculate the set of correspondences in a 
single shot; cognitive support frameworks for ontology mapping really involve users 
(Falconer et al., 2006). A dialogue-based approach could make more use of partial mappings 
in order to increase the usability in dialogue scenarios where the primary task is different from 
the schema matching task itself.  
 
Recent work in incremental interactive schema matching stressed that users are often annoyed 
by false positives (Bernstein et al., 2006). This is a big problem when the user is actively 
engaged in the alignment process. Dialogue-based ontology alignment should provide a 
solution for that problem by providing a framework to elicit and interpret task-based user 
utterances. Task-based means that the user is not engaged in a tedious alignment dialogue 
where he judges proposed mappings. Instead, the doctor should use a dialogue shell to 
perform an intelligent image search as anticipated in MEDICO and answer only a few 
alignment questions if this step is not avoidable at all.  
 
Our basic idea is as follows. Consider the methods that are required for interactive and 
incremental ontology mapping and evaluate the impact of dialogue-based user feedback in 
this process. While dialogue systems allow us to obtain user feedback on semantic mediation 
questions (e.g., questions regarding new semantic mediation rules), incrementally working 
matching systems can use the feedback as further input for alignment improvement.  
 
In order to compute and post-process the alignments, we use the PhaseLibs library.xvii This 
platform supports custom combinations of algorithms and is written entirely in Java which 
allows us to directly integrate the API into the dialogue shell. In addition, the API supports 
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individual modules and libraries for ontology adapters, similarity measures (e.g., string-based, 
instance-based, or graph-based), and alignment generators. 
 
Subsequently, we focus on interactive ontology matching and dialogue-based interaction. 
Rather than focussing on the effectiveness of the interactive matching approach, we describe a 
suitable dialogue-level integration of the matching process by example. Our interactive 
ontology matching approach envisions the following three stages: 
 
1. Compute a rudimentary partial mapping by a simple string-based method; 
 
2. Ask the user to disambiguate some of the proposed mappings; 
 
3. Use the resulting alignments as input for more complex algorithms. 
 
In regard to the first point, we hypothesise that the rudimentary mapping based on the concept 
and relation signs can be easily computed and obtained in dialogical reaction time (less than 3 
seconds even for large ontologies). Second, user interactivity is provided by improving the 
automatically found correspondences through filtering the alignment. Concerning the third 
point, we employed similarity flooding since it allows for input alignments and fixpoint 
computation in PhaseLib’s implementation following Melnik et al. (2002). The interactive 
semantic mediation approach is depicted in Figure 5. 
 
In order not to annoy the user, he is only presented with the difficult cases for disambiguation 
feedback; thus we use the application dialogue shell basically for confirming or rejecting pre-
considered alignments. The resulting alignments are then serialised as instances of an RDFS 
alignment format. Assuming that subsequent similarity computations successfully use the 
partial alignment inputs (to produce query-relevant partial alignment output), the proposed 
mediator can be said to be a light-weight but powerful approach to supporting incremental 
ontology matching and alignment generation (Sonntag, 2008).  
 

 
 
Figure 5: Dialogue-based ontology alignment approach. The user is actively involved in the 
alignment creation and verification process. The architecture should be particularly useful for 
ad hoc mappings of medical disease databases. 

 
Figure 5 also shows the architecture of the dialogue-based ontology alignment approach. An 
example dialogue of the speech-based interaction between the doctor and MEDICO (we plan 
to implement completely in summer 2009) is shown on in Table 5:  
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Example Dialogue: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 5: Possible dialogue between the clinician and MEDICO 

 
The example dialogue shows that the doctor is engaged in a task-based image retrieval 
dialogue. He follows the official procedure of the lymphoma finding guidelines when 
examining the organs. This is very important; the doctor cannot easily be asked to do anything 
else but search for images and complete the finding.  
 
Fortunately, some feedback questions are allowed. With our dialogue shell (we use an 
upgraded version of the dialogue system for question answering on the Semantic Web we 
developed at DFKI, see Sonntag et al., 2007b), we try to smoothly embed the relevant 
question into the dialogue initiated by the MEDICO system. Most importantly, the user 
answers and utterances in general can be exploited for alignment judgement. Keywords, such 
as “so” and “equivalent to” can be interpreted to infer relations of interest, in addition to 
explicit user confirmations like, “Yes, that could be said.” 
 
Our datasets for a first evaluation of the three stage method as an integral part of a sensible 
dialogue initiative for alignments consisted of ontologies and alignment examples (manually 
annotated alignments for Radlex and NCI). For the first test in the medical domain, we 
annotated 50 alignments, 30 perfect positives and 20 perfect negatives. In the medical 
domain, the precision was 92% and the recall was 50% for simple string-based methods. 
(Corresponding concept names may differ substantially in their syntactic form.) The best 
matches were taken as alignment input for similarity flooding after manually confirming their 
validity (which simulates positive user feedback).  
 

1. U: “Show me the internal organs: lungs, liver, then spleen and colon.” 
 
2. S: Shows corresponding patient image data according to referral record. 
 
3. U: “This lymph node here (+ pointing gesture) is enlarged; so lymphadenopathy   
         (finding Radlex Term A). Are there any comparative cases in the hospital?” 
 
4. S: “Sorry, there are no comparative cases, shall I continue to search for similar  
          cases?” 
 
5. U: “Ah okay.” 
 
6. S: “Unfortunately, external databases could not be matched appropriately. Is      
          lymphadenopathy equivalent to lymph node enlargement (Radlex Term B) or   
          adenopathy (NCI Term C) or a kind of hematopoietic system finding (NCI    
          superconcept)?” 
 
7. U: “Yes, that could be said,” 
 
8. U: “a pathophysiologic process.” (MEDICO now includes RadLex superconcepts   
          for  search.) 
 
9. S: “I found comparative cases in an external knowledge base according to your  
         feedback.” 
 
Medico switches to the comparative records to help the radiologist in the differential 
diagnosis of the suspicious case, before the next organ (liver) is examined. 
 
10. U: “Find similar liver lesions with the characteristics: hyper-intense and/or coarse   
            texture ...” 
 
11. S: Medico again displays the search results ranked by the similarity and matching 
          of the medical terms that constrain the semantic search. 
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Our first experiments towards dialogue-based alignment generation suggest that we can use 
the three stage architecture as well as dialogue to do better than simply calculating the set of 
correspondences automatically and in a single shot. We are quite sure that in the medical 
domain, we cannot achieve acceptable precision and recall measurements without the expert 
feedback of the clinician. We are also sure that we have to obey the constraints of the doctor’s 
task, i.e., we have to embed the alignment dialogue into the image retrieval dialogue, and, 
most importantly, not distract the doctor from the finding process. Furthermore, we do not 
start the interactive and incremental process from the refined corpus-based algorithms; it is 
possible to rely more on the corpus-based pre-selection by lowering the acceptance threshold 
of the string-based methods. But, since the dialogue-based approach is query-based, the 
differences cannot easily be observed. As a consequence, the linking only makes sense when 
the query is a “typical corpus query”. According to Zipf’s law, this is improbable at least for 
the included terms. 
 
In future work, we are trying to provide evaluation methods to estimate the contribution of 
partial alignment inputs when the retrieval stage is more complex than simple name 
comparison, as is the case for most of our medical query patterns; user-confirmed perfect 
mappings can be used in simple name matching retrieval contexts with perfect precision, but 
this does not reflect the nature of real-world industrial requirements (in particular, where the 
user cannot be supposed to deliver a reliable judgement). Further, we are investigating 
techniques to better translate formal mapping uncertainties into appropriate dialogue-level 
questions for the radiologist and to address the general difficulty that users might not be able 
to provide helpful feedback in the course of a dialogue. 
 

3. Ontology Population 
 

In this section, we will deal with the semi-automatic population of ontologies from 
unstructured text. We will propose a methodology to semi-automatically populate the FMA 
medical ontology by new instances that we will derive from medical texts. We will use the 
query pattern mining approach explained earlier to extract relation triples from the anatomy 
corpus. This pattern extraction step is helped by Wikipedia-based corpora and domain 
ontologies; the extracted relations consist of the relation type (e.g., known_as, devided_into, 
or associated_with) and the concept instances of the relation domain and range (e.g., “vein” is 
associated with “artery”).  
 
The extraction of patterns corresponds to the extraction of rules from annotated text. Finally, 
we will apply those rules to new articles to populate the ontology. To speak from our own 
experience, this step cannot be achieved directly and automatically. High user input is 
required in order to detect and discharge the false positives.  
 

3.1. Semi-automatic Knowledge Acquisition  

 
Knowledge acquisition in the medical domain depends heavily on high precision. But 
automated ontology population provides little support for knowledge acquisition because one 
cannot rely on the results in terms of precision. In literature, several approaches have been 
proposed for, e.g., automated discovery of WordNet relations (Hearst, 1998) or discovering 
conceptual relations from text (Maedche and Staab, 2000).  
 



 

 21 

In the medical domain, early approaches deal with the automatic knowledge acquisition from 
MEDLINE (Cimino and Barnett, 1993). In previous work, we evaluated potential linguistic 
context features for medical relation mining and designed a methodology of how to model 
relations and determine the parameters that distinguish relations (Vintar et al., 2003). 
However, all these approaches have two things in common. Either the precision values of 
acquired concepts and relations needed to populate a medical ontology were too low, or the 
task itself was too easy for the population of medical ontologies, as was the case for learning 
context models of medical semantic relations (Hirst and Budanitsky, 2006). Therefore, the 
ontology population process is time consuming and a clever semi-automatic procedure is very 
much in demand. To address this issue, we adapted the relation extraction approach discussed 
in Schutz and Buitelaar (2005) to our context in MEDICO, where the steps we took and the 
initial results are explained in Buitelaar et al. (2007). Having identified the statistically most 
relevant domain terms (i.e., ontology concepts), those about anatomy, given the domain 
ontology (FMA) and domain corpora (Wikipedia), we searched for relations that occur 
between them. For this purpose we implemented a simple algorithm that traverses each 
sentence, looking for the following pattern:  
 

Noun : Verb + Preposition : Noun 
              (Term)          (Relation)          (Term) 
 
This pattern enables us to identify possibly relevant relations between terms. The following 
table (Table 6) presents some early results of this work. In future work we will apply further 
statistical measures and linguistic heuristics to identify the most salient relations within each 
corpus, with an emphasis on relation identification in a more specific lymphoma corpus 
obtained from PubMed. 

 
Table 6: Semi-automatically extracted term-relation-term triples. 

 
As a result, we were able to identify 1,082 non-unique relations (i.e., including syntactic 
variants such as analysed_by and analyzed_by). One important requirement that comes 
naturally at this stage is to assess the quality and the relevance of these relations, which 
should be done by the clinician. Upon the clinician’s approval, these relationships can be used 
to enrich the ontology at hand and populate the found relation instances. As discussed earlier, 
according to our experiences throughout the MEDICO project, the ontologies at hand do not 
match the requirements set by the application (see Ontology Customization under KEMM). 
(Most of the times there are redundancies, or important information is missing.) Semi-
automatic relation extraction helps overcome this difficulty. Having identified the statistically 
most domain-relevant relations (about anatomy, radiology, and diseases in our case), we can 
customize the ontologies we use according to our domain specific needs by populating them 
with these relations.  

Term Relation (Verb+Prep.) Term 

anterior known as anterior scalene muscle 
dentate nucleus subdivided into anterior 
muscle situated between anterior 
body divided into anterior 
anterior continued over zygomatic arch 
hand used for anterior 
artery supplied by medulla 
artery released if ulnar 
vein associated with artery 
bronchopulmonary segment supplied by artery 
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More concretely, if we take the FMA, this is an ontology about the human anatomy. 
Similarly, RadLex provides terminology about radiology. In MEDICO, we need all this 
information but we need it in a specific way, i.e., in a way that relates most to the medical 
image semantics. As this is a very specific need, it cannot be expected that FMA, RadLex, or 
any other medical ontology will provide us with these relations out-of-the-box. Therefore, the 
relationships we have extracted from our specific domain corpora are valuable in the sense 
that they enable us to enhance the ontologies we use (or fragments thereof) according to our 
specific needs. 
 
As an example, even though FMA comes with many relation instances, it does not contain 
relationships such as ‘stimulated by’. However, this relationship is present within the pattern 
“gastric acid stimulated by distention”. This pattern demonstrates how terms from different 
ontologies (or terminologies) relate to each other specifically within the medical imaging 
context. Hence, including these kinds of domain specific or custom relationships is necessary 
to be able to adapt the ontologies according to our domain specific needs. In this way, we find 
ourselves within the portion of the FMA we use in our application. We are, however, gaining 
an additional radiological (and disease) perspective that comes with the relations. As 
important as it is to be able to extract the domain specific relations, their accuracy and 
relevance still need to be assessed. As our relation extraction is a semi-automatic process, it is 
not possible to expect no noise. Thus, correct and relevant relationships are identified as well 
as wrong or irrelevant ones. Sometimes, correct relationships combine with wrong terms 
yielding a wrong pattern altogether as in ‘gene derived from antibody’. 
 
The ultimate solution to avoid such noise (especially in a sensitive domain like human health)  
is, in our opinion, to involve the expert in the process. An effective way to involve the clinical 
expert in the process is to present him the relationships and their combinations with the terms 
(i.e., our query patterns) and ask him for feedback. In this way, the clinical expert can say 
whether what has been identified is correct or false. One important aspect to keep in mind is 
that the clinical expert is not a computer scientist. Therefore, his involvement within the 
process needs to be as user friendly and least technical as possible. This requirement can be 
fulfilled by providing him with a simple, easy-to-use and easy-to-understand interface that 
displays the results of the relation extraction. Upon explaining the overall objective of our 
task, i.e., populating (or customizing) the ontologies with what will be displayed, we can 
show our results using the interface. Driven by this motivation, we developed an interactive 
clinical query browser that displays the results of the relation extraction to the clinical expert. 
The next subsection gives an overview of this browser and explains its functionality. 

3.2. Interactive GUI Environment for Medical Experts 

 
The purpose of the interactive clinical query browser is to display the semi-automatically 
extracted domain relations and the related terms (i.e., the patterns) to the user and receive his 
feedback. We expect two different types of feedback. First, the expert accepts or rejects the 
relationships either because they are wrong or they are irrelevant. Second, he types in or 
dictates his general comments as free text. The relationships that he confirms will be stored 
and used to populate the ontology in the next step. The rest will be deleted. His free text 
general comments remain reference to the knowledge engineer. (In the future, however, this 
text may also be processed to extract further valuable information.) Figure 6 displays the 
views of the interface that the user sees. On the left hand side (Figure 6, (1)) all domain 
resources that have been used are displayed in a tree form. The first node on top ‘Clinical 
Query Patterns’ has, as of now, three children ‘Foundational Model of Anatomy’, ‘Radiology 
Lexicon’ and ‘Image Features’. Clicking on these children nodes will display the term-
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relation-term triples (i.e., the query patterns that have been identified by using the 
corresponding ontology or terminology).  
 
One exception is the Image Features, where we have obtained a list of features from our 
partners that characterize the medical image that was automatically parsed by the image 
recognition algorithms. Clicking on the ‘Foundational Model of Anatomy’ node displays the 
second view as shown in Figure 6 (2). Here the patterns are displayed along with their 
calculated relevance scores that we explained earlier. The user has the possibility to sort this 
list according to any column he chooses. In the example they are sorted according to the 
relevance score. Each pattern can be deleted upon the user’s request. The bottom pane allows 
the user to enter his general assessment and comments.  
 

 
 
Figure 6: (1) First view that the clinician sees from the browser. The tree on the left reveals the 
contents available for browsing. (2) Second view of the browser that displays the query 
patterns as a sortable list. (3) Anatomy corpus files with links to original Wikipedia files. (4) 
Wikipedia Abdomen.xml with POS tagging. (5) Corresponding page in Wikipedia. 
 

 
The ‘Corpora’ node of the tree has two children, which are ‘Wikipedia’ and the ‘PubMed’. 
When clicked, they display the domain corpora that have been used to extract the patterns that 
include the relationships. Figure 6 (3) shows the Wikipedia Anatomy Corpus with the links to 
the corpus files and the corresponding Wikipedia pages where the files were obtained. The 
next example, Figure 6 (4), displays what the corpus file looks like after it has been processed 
to include the linguistic information that is necessary for the relation extraction algorithm. 
The final example in Figure 6 (5) shows the original Wikipedia page. We proposed a 
methodology for the population of medical ontologies; we gave the user the control over the 
process while automatically offering the best suggestions for the ontology population 
according the relation extraction step.  
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CONCLUSION AND FUTURE WORK 
 
We described the three pillars of ontology treatment of the medical domain in a 
comprehensive case study within the THESEUS MEDICO project. These pillars are 
knowledge engineering, ontology mediation and alignment, and ontology population and 
learning. Our ontology engineering approach was constrained by the clinical knowledge 
requirements upon which we developed the KEMM methodology.  
 
Concerning ontology mediation and alignment, we investigated linguistic-based, corpus-
based, and dialogue-based ontology alignment. We identified linguistic features and variants 
that can be used to compare linguistic (textual) contexts of ontology concepts in corpora 
leading to the corpus-based ontology alignment aspect of our approach. In addition, we 
considered methods that are required for interactive and incremental ontology mapping and 
evaluated the impact of dialogue-based user feedback in this process. 
 
We hypothesise that only a combination of the knowledge engineering and ontology 
mediation methods and rules can result in effective and efficient ontology treatment and 
semantic mediation. In addition, the clinician’s feedback and willingness to semantically 
annotate images and mediation rules plays a central role, just as our capabilities to follow the 
official procedure of the (lymphoma) finding guidelines. In this respect, we were particularly 
interested in semi-automatic approaches which we not only envisioned for ontology 
alignment, but also for the population of ontologies. We tried to provide a semi-automatic 
knowledge acquisition procedure and implemented an interactive GUI environment for the 
medical expert. In order to ease the task of determining whether the recommended instance to 
be populated is correct or not, we implemented a GUI environment for the medical expert and 
demonstrated its interactive use by example. 
   
In future work, we will investigate techniques to better translate formal mapping uncertainties 
into appropriate dialogue-level questions or suggestions displayed in a GUI for the 
radiologist. Furthermore, we aim to address the general difficulty that users might not be able 
to provide helpful feedback in the course of a dialogue or an offline GUI environment session.  
 
A nice GUI feature to have would be the possibility to use previously found instances or 
classes. For example, new instances could be populated when using previously found domain 
or range values. In this way, a partly correct relation instance (automatically found) could be 
effectively re-used. This would enable the user to provide even more constructive feedback, 
rather than a pure reject/accept signal. This would extremely enhance the usability of the GUI 
tool and the effectiveness of the expert user’s involvement as anticipated, particularly by the 
dialogical interaction scenario. In addition, the efficiency of the semi-automatic annotation 
approach could be improved by increasing the precision of the mappings presented to the 
medical expert. As experimentation shows, most time gets lost when trying to single out the 
false positives. Additionally, the terminologies for existing medical knowledge might change 
or should be expanded. Both aspects require ontology evolution, which may be addressed by 
an ontology learning strategy, specifically from text data about contemporary medical issues 
that are available in the form of the incoming patient records and new scientific articles. 
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