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Abstract
In the first part of this paper, we present a framework for enriching arbitrary upper or domain-specific ontologies with a concept of
time. To do so, we need the notion of a time slice. Contrary to other approaches, we directly interpret the original entities as time
slices in order to (i) avoid a duplication of the original ontology and (ii) to prevent a knowledge engineer from ontology rewriting. The
diachronic representation of time is complemented by a sophisticated time ontology that supports underspecification and an arbitrarily
fine granularity of time. As a showcase, we describe how the time ontology has been interfaced with the PROTON upper ontology. The
second part investigates a temporal extension of RDF that replaces the usual triple notation by a more general tuple representation. In this
setting, Hayes/ter Horst-like entailment rules are replaced by their temporal counterparts. Our motivation to move towards this direction
is twofold: firstly, extending binary relation instances with time leads to a massive proliferation of useless objects (independently of the
encoding); secondly, reasoning and querying with such extended relations is extremely complex, expensive, and error-prone.

1. Introduction
The first part of this paper presents a framework for en-
riching arbitrary upper or domain-specific ontologies with
a concept of time. The work reported here is part of an EU-
funded project called MUSING which is dedicated to the
investigation of semantic-based business intelligence solu-
tions.
Temporal information in MUSING is based on a diachronic
representation of time, on top of which temporal reasoning
services are defined (Krieger et al., 2008a). Since ontolog-
ical knowledge in MUSING is encoded in OWL (McGuin-
ness and van Harmelen, 2004), extending binary relations
with an additional time argument is not that easy, due to the
fact that OWL (or description logic in general) only pro-
vides unary and binary relations.
In order to equip ontologies with time, we need the notion
of a time slice, as explained, e.g., in (Sider, 2001). Contrary
to (Welty and Fikes, 2006), we directly interpret the origi-
nal entities as time slices in order to (i) avoid a duplication
of the original ontology and (ii) to prevent a knowledge en-
gineer from ontology rewriting.
We will see that this reinterpretation makes it easy to extend
an upper/domain ontology with time. The diachronic repre-
sentation of time is complemented by a sophisticated time
ontology that supports underspecification and an arbitrarily
fine granularity of time.
MUSING makes use of a general upper-base ontology
called PROTON (http://proton.semanticweb.org) that has
been extended mostly by the MUSING partners from STI
(formerly DERI), Innsbruck. As a showcase, we describe
how the time ontology has been interfaced with PROTON.
The OWL implementation of the methodology reported
here (plus a general time ontology) can be obtained freely
from the author.
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would like to thank the three referees for their valuable comments.

Even though our approach keeps the original ontology, it
leads to a massive proliferation of “container” objects, due
to the fact that the underlying data structure is still the RDF
triple (Klyne and Carroll, 2004). Furthermore and very
important, reasoning and querying with such a represen-
tation is extremely complex, expensive, and error-prone. It
is worth noting that all other approaches, as presented in
section 3., do suffer from the same disadvantage.
In order to overcome this problem, we propose to add some
kind of temporal annotation to an RDF triple, realized as
further temporal arguments (starting and ending time). We
describe an extension of Hayes/ter Horst-like RDFS/OWL
entailment rules that are “sensitive” to temporal informa-
tion. We show that only lightweight reasoning capabilities
are needed when working with such information.
The work reported in the second part of this paper is an out-
come of the lessons learned from the MUSING project and
is actively used and extended in the CogX project, whose
aim is to develop a unified theory of self-understanding and
self-extension with a convincing instantiation and imple-
mentation of this theory in a robot.
The representation of generalized tuples, reasoning with
them and querying them is realized through HFC, a for-
ward chainer developed at DFKI that scales up to millions
of tuples, which is reasonable fast and expressive enough to
formulate the extended entailment rules.

2. A Motivating Example
The problem with so-called synchronic relationships is that
they all refer to only one, potentially hidden point/period
in/of time. Here is an example:

Tony Blair was born on May 6, 1953.

Assuming a RDF-based representation, an information ex-
traction system might compute the following set of triples:

tb rdf:type Person .

tb hasName "Tony Blair" .

tb dateOfBirth "1953-05-06" .

However, most relationships are diachronic, i.e., they em-
body the possibility to vary with time. Take, for instance,



the following example:

Christopher Gent was Vodafone’s chairman until
July 2003. Later, Chris became the chairman of
GlaxoSmithKline with effect from 1st Jan 2005.

When applying the synchronic representation scheme from
above, however, the resulting RDF graph mixes up the as-
sociation between the fact and the temporal extend (two out
of four possibilities are wrong):

cg isChairman vf .

cg isChairman gsk .

cg hasTime [????-??-??,2003-07-??] .

cg hasTime [2005-01-01,????-??-??] .

No longer is it clear whether [????-??-??,2003-07-

??] belongs to vf or gsk (same holds for [2005-01-01,
????-??-??]).

3. Approaches to Diachronic Representation
Several well-known techniques of extending binary rela-
tions with additional arguments have been proposed in the
literature. (Welty and Fikes, 2006) mention three of them
and add a fourth one (4D or perdurantist view; see below),
which we reinterpret w.r.t. an upper or domain ontology.
This reinterpretation is the basis for representing temporal
information in MUSING and one of the topics of this paper,
since it opens a way to enrich arbitrary ontologies with the
concept of time, without any ontology rewriting.

3.1. Equip Relations With a Temporal Argument
This approach has been pursued in temporal databases and
the logic programming community. A binary relation, such
as hasCeo between a company c and a person p becomes
a ternary relation with a further temporal argument t (we
limit ourself to one further argument encoding an interval,
instead of two, representing the starting and ending time of
an interval):

hasCeo(c, p) 7−→ hasCeo(c, p, t)

Unfortunately, OWL and description logic in general only
support unary (classes) and binary relations (properties) in
order to guarantee decidability of the usual inference prob-
lems. Thus, forward chainers (such as OWLIM and Jena)
as well as description logic reasoners (e.g., Racer or Pellet)
are unable to handle such descriptions.
We note here that this approach is clearly the silver bullet of
representation, since it is the easiest and most natural one,
although a direct interpretation is incompatible with RDF
and currently available reasoners. We will favor this kind
of representation in the second part.

3.2. Apply a Meta-Logical Predicate
McCarthy & Hayes’ situation calculus, James Allen’s inter-
val logic, and the knowledge representation formalism KIF
use the meta-logical predicate holds. Hence, our hasCeo
relation becomes

hasCeo(c, p) 7−→ holds(hasCeo(c, p), t)

McCarthy & Hayes call a statement whose truth value
changes over time a fluent (McCarthy and Hayes, 1969).
Thus the extended ternary relation from the previous

subsection is a relational fluent. The holds expression
here, however, embodies a functional fluent, meaning that
hasCeo(c, p) is assumed to yield a situation-dependent
value. Such kinds of relations are not possible in OWL,
since description logics limit themselves to subsets of
function-free first order logic.

3.3. Reify the Original Relation
Reifying a relation instance leads to the introduction of a
new object and four additional new relationships. In ad-
dition, a new class needs to be introduced for each reified
relation, plus accessors to the original arguments. Further-
more and very important, relation reification loses the orig-
inal relation, requiring a modification of the original ontol-
ogy. Coming back to our hasCeo example, we get some-
thing like this (HasCeo is the newly introduced class):

hasCeo(c, p, t) 7−→ ∃e .
type(e, HasCeo) ∧ hasTime(e, t) ∧
company(e, c) ∧ person(e, p)

3.4. Encode the 4D View in OWL
(Welty and Fikes, 2006) have presented an implementation
of the 4D or perdurantist view in OWL, using so-called time
slices (Sider, 2001), encoding the time dimension of space-
time.1 Relations from the original ontology no longer con-
nect the original entities, but instead connect time slices that
belong to those entities. A time slice is merely a container
for storing time. For a given ontology, such a representation
requires a lot of rewriting:

hasCeo(c, p, t) 7−→ ∃ts1, ts2 .
type(ts1, TimeSlice) ∧ hasTimeSlice(c, ts1) ∧
type(ts2, TimeSlice) ∧ hasTimeSlice(p, ts2) ∧
hasTime(ts1, t) ∧ hasTime(ts2, t) ∧
hasCeo(ts1, ts2)

3.5. Reinterpret the 4D View
In MUSING, we have reinterpreted the perdurantist/4D
view in that we have reinterpreted the original entries from
the ontology. The basic idea can be summarized in the fol-
lowing slogan:

What has been an entity becomes a time slice.

In the example above, c and p are no longer entities, but
instead time slices of an entity (a perdurant), that explain
the behavior of an entity within a certain extension or point
in time (e.g., that c is a time slice talking about a company
or p a time slice, dealing with a person).

This reinterpretation does not need any ontology rewriting
and makes it easy to equip arbitrary upper/domain ontolo-
gies with the concept of time. Coming back to our example,
we have

hasCeo(c, p, t) 7−→

1In the 4D view, all entities (the perdurants) only exist for
some period of time. Given this view, it does not matter whether
we are talking about an accidental, perhaps infinitely-small event
(say, the shooting of a pistol) or a very long time interval (e.g.,
the lifetime of our universe). Entities under this view are of-
ten referred to as spacetime worms (Sider, 2001), since a four-
dimensional trajectory identifies a perdurant in time and space.



hasCeo(c, p) ∧ hasTime(c, t) ∧ hasTime(p, t) ∧
hasTimeSlice(C, c) ∧ hasTimeSlice(P, p)

Note that the former binary predicate hasCeo is still avail-
able and unchanged. But the argument classes, viz., Com-
pany and Person have been equipped with an additional re-
lation called hasTime, defined on class TimeSlice, as we will
see later. Given this representation, everything that is de-
fined on c, such as the CEOship, the name, the address, or
the number of employees of this company, is assumed to
co-occur during time period t. I.e., different facts speak-
ing about the same time interval of the same individual in
the first place of the relation need not to be encoded in dif-
ferent time slices. Furthermore, the original entities p and
c are linked to perdurants P and C which, however, only
need to be created once.
The 4D reinterpretation is easier than Welty&Fike’s orig-
inal formulation, viewed from the standpoint of complex-
ity. Let us have a look at the domain (D) and range (R) of
the above hasCeo property, using abstract description logic
syntax:

• Welty & Fikes (2006)
(D) ∃hasCeo .> v ∀hasTimeSlice− . Company
(R) > v ∀hasCeo . (∀hasTimeSlice− . Person)

• 4D reinterpretation
(D) ∃hasCeo .> v Company
(R) > v ∀hasCeo . Person

As we have already noticed, this reinterpretation also makes
it easy to interface arbitrary ontologies with existing time
ontologies. We will see this in a moment.

4. The Perdurant Ontology
Given the above discussion, this section now presents the
basic ontology for perdurants and time slices used in the
MUSING project that is, however, directly applicable to
other applications and projects that deal with changing re-
lationships over time in RDF. Here is the overall picture:

Perdurant: hasTimeSlice
TimeSlice: timeSliceOf, hasTime
Time

Let us describe the three top-level classes that are only
necessary. Objects whose properties change over time are
called perdurants, as already explained above. Those ob-
jects possess a number of time slices, hence we need a prop-
erty hasTimeSlice in order to access their time slices. A
time slice specifies an extension in time through the func-
tional property hasTime and is associated with a perdurant
via timeSliceOf, the inverse relation to hasTimeSlice. A
time slice “contains” those properties whose values stay
constant over the specified period of time. The range of
hasTime is exactly an object of class Time which will be
described in a moment:

> v ≤1hasTime u ∀hasTime.Time

We note here that this simple ontology is completely open
to the choice of the time ontology (and open to the up-
per/domain ontology that is equipped with a concept of

time). Thus it will be possible to interface the perdurant on-
tology with popular time ontologies, such as Hobbs&Pan’s
OWL Time (Hobbs and Pan, 2004). This is achieved
through the above mentioned class Time, a simple place-
holder that is interfaced with the corresponding class in the
time ontology. Similarly, the placeholder TimeSlice needs
to be interfaced with the corresponding concept(s) in the
upper/domain ontology. This will be shown in section 5.

4.1. Flexible Semantic Representation
Let us focus on a natural language example and its (simpli-
fied) representation to see how things go together:

DaimlerChrysler’s CEO Schrempp announces that
he will resign by 31st December 2005.

Consider that an information extraction system has find out
that Jürgen Schrempp and DaimlerChrysler are named en-
tities. Consequently, we introduce two perdurants js and dc
for these entities (assuming that they have not already been
introduced).
The fact that Schrempp was CEO of DC until 31st Decem-
ber 2005 is expressed by a time slice p1 (of type Person)
that contains an instance oli1 of class OpenLeftInterval,
whereas his resignation is encoded in a time slice p2 (again
of type Person) that is temporally anchored in an instance
pid1 which is of class ProperInstantDay, having value
“2005-12-31”.

Notice that Schrempp did not resign from DC, but instead
resigned from DC’s ceoship. Thus property resignsFrom
points to p1 that expresses Schrempp’s ceoship with Daim-
lerChrysler.

4.2. Advantages of the Approach
Firstly, properties that do not change over time (e.g., birth-
date) can be relocated from TimeSlice to Perdurant (no
duplication of information). Time-varying information in-
stead is kept in a series of time slice. If several properties of
a perdurant are constant over the same period of time, we
do not need several time slices.
Secondly, the subtypes of TimeSlice specify the behavior
of a perdurant within a certain time interval (e.g., whether
a perdurant acts as a company, a person, etc.). We will see
in a moment how this can be achieved.
Thirdly, since hasTimeSlice is typed to TimeSlice, differ-
ent slices of the same perdurant need not to be of the same
type. For instance, the perdurant SRI might have a time
slice for Company as well as a slice for AcademicInstitu-
tion, i.e., a perdurant can act in different ways.
Fourthly, representing modalities, such as believe can be
achieved relatively easy. Representing space and move-
ments in space can be modeled similarly.
Finally, Allen’s 13 temporal topological interval relations
(Allen, 1983) can be naturally extended to time slices.



5. Extending Ontologies With Time
As promised, we now describe how we have interfaced the
4D and the time ontology with an upper/domain ontology,
in our case PROTON (http://proton.semanticweb.org).
Before going into the details, let us remark that our global
ontology consists of concepts and properties that imple-
ment a 4D perdurantist view, but also deals with time in
general, building on instants and intervals (and their sub-
classes). So we get the following picture for the merged
ontology PROTime:

4D
↓

Time → PROTime ← [Allen]
↑

PROTON

The 4D reinterpretation which we have presented so far
says that the original entities should be regarded as time
slices. To do so, one need to identify the most gen-
eral classes in PROTON (or in another arbitrary up-
per/domain ontology) that are supposed to be extended
by a temporal dimension—actually, we are interested in
the domain/range classes of the time-varying properties.
There is such a single, most general class in PROTON:
psys:Entity. Thus we only need a single axiom, employing
owl:equivalentClass:

fourd:TimeSlice ≡ psys:Entity

In general, a new integrated ontology is constructed as fol-
lows:

1. always use 4D
Perdurant: hasTimeSlice
TimeSlice: timeSliceOf, hasTime
Time

2. choose time
an arbitrary time ontology (e.g., OWL Time)

3. choose upper/domain ontology
the original ontology (e.g., PROTON)

4. choose Allen (optional)
Allen relations over time slices

plus an equivalence statement of the above kind.

Note that the class Time in the 4D ontology is a simple
placeholder used in hasTime⊆ TimeSlice× Time. When
interfacing 4D with an arbitrary time ontology, one needs to
say what is meant by Time, in our case:

fourd:Time ≡ time:TemporalEntity

We will describe TemporalEntity and the time ontology in
the next section.

In case there will be several maximal incompatible classes
c1, . . . , cn that need to be extended by a temporal dimen-
sion, the above axiom clearly becomes

fourd:TimeSlice ≡ c1 t . . . t cn

6. The Time Ontology
In this section, we will describe the time ontology that we
have employed in MUSING. We have opted against OWL
Time (Pan, 2007), a rich first-order axiomatization of time,

since we have decided to model temporal underspecifica-
tion in natural language and granularity of time through a
subtyping hierarchy. The ontology described here, how-
ever, is fully compatible with OWL Time through the use
of the class TemporalEntity as well as its subclasses In-
stant and Interval. Here is the overall picture:

TemporalEntity
Instant

NegativeInfinity
PositiveInfinity
ProperInstantYear: year

ProperInstantMonth: month
ProperInstantDay: day

ProperInstantHour: hour
ProperInstantMinute: minute

ProperInstantSecond: second
.....

Interval: begins, ends
OpenLeftInterval

ClosedInterval
Forever
.....

OpenRightInterval
ClosedInterval

Forever
.....

OWL classes start with uppercase letter characters; proper-
ties are written in lower case. Thus

Interval: begins, ends
means that properties begins and ends are defined on class
Interval. Indentation expresses subtyping/subclassing.
Subtyping also means that properties defined on super-
classes are also available in subclasses. Hence, the proper-
ties year and month are also accessible in class ProperIn-
stantDay.
Let us quickly describe the most top-level classes. We dis-
tinguish between two exhaustive partitioning and disjoint
subclasses of TemporalEntity: Instant and Interval.

TemporalEntity ≡ Interval t Instant
Interval v ¬ Instant

Instant is used to describe infinitely short events (i.e., in-
stants), whereas Interval identifies measurable periods of
time. Thus, Interval possesses two properties: begins and
ends, both returning an instant. All classes above are ex-
pressed as OWL axioms.
We now give a more complex example—the definition of
ClosedInterval:

ClosedInterval ≡
OpenLeftInterval u OpenRightInterval u
=1begins u =1ends u
∃ begins.Instant u ∃ ends.Instant

This definition says that begins and ends must be speci-
fied exactly once. begins and ends must furthermore be
assigned an instance of (at least) type Instant.
ProperInstantYear, PositiveInfinity, and NegativeInfin-
ity are declared as being mutually disjoint:

ProperInstantYear v ¬ NegativeInfinity



ProperInstantYear v ¬ PositiveInfinity
PositiveInfinity v ¬ NegativeInfinity

Actually, saying that begins takes exactly one value is done
in the direct superclass OpenRightInterval (same for ends
and class OpenLeftInterval). begins and ends are being
declared as functional on the very general Interval class.
Functionality clearly means that a value need not to be
present (as can be seen, e.g., for property ends in class
OpenRightInterval):
≤1begins v Interval
≤1ends v Interval

begins and ends furthermore take objects of type Instant
as values:

> v ∀begins.Instant
> v ∀ends.Instant

Given NegativeInfinity and PositiveInfinity, the definition
for the time period Forever is easy:

Forever ≡
ClosedInterval u
∃begins.NegativeInfinity u
∃ends.PositiveInfinity

ClosedInterval has further subclasses that we only men-
tion here:

ClosedInterval
Day

Monday, Thuesday, ...
SpecialDay

Christmas, NewYearsEve
Month

January, February28, February29, ...
Quarter

FirstQuarter, SecondQuarter, ...
Season

Spring, Summer, ...
Year

Year365, Year366
Let us finally focus in this section on the definition of two
of these classes in order to flesh out this framework, viz.,
Day and NewYearsEve:

Day ≡
ClosedInterval u
∃ begins.ProperInstantDay u
∃ ends.ProperInstantDay

NewYearsEve ≡
SpecialDay u
∃begins.(∃month.{12} u ∃day.{31}) u
∃ends.(∃month.{12} u ∃day.{31})

It is worth noting that even though we have specified a value
for properties month and day, the definition of NewYears-
Eve misses the value for year. But this is correct and
only get assigned in examples such as New Year’s Eve 2007
which will be modeled as an instance of class NewYears-
Eve, having value 2007 for property year. Otherwise,
such an expression is underspecified w.r.t. to the value of
year, as in the sentence Over New Year’s Eve I have visited
the Eiffel Tower.

Further subclasses of Instant and ClosedInterval help to
deal with the granularity of time and the underspecifiction
of time in natural language. We will address this in the next
section.

7. Granularity and Underspecification
Granularity of time, i.e., the degree of how finely time is
measured and the temporal underspecification of natural
language expressions are closely related topics. Consider,
for instance, the following example:

In 1995, Edzard Reuter handed over the CEOship
of Daimler Benz AG to Schrempp.

and assume that a year is the smallest amount of time that
we want to measure. Thus the starting point for enriching
the RDF triple

js ceoOf db .

is 1995 and this temporal information will be encoded
via an instance of class ProperInstantYear–remember, we
measure things no finer than a year. Since ProperInstant-
Year only possesses the property year and since this year
is known, 1995 is a fully specified temporal expression, ac-
cording to the measure we have applied.
Independent of the degree of measurement, one can clearly
ask what is meant by 1995 here. Within the above con-
text, 1995 probably does not refer to the instant 1995-01-
01T00:00:00, assuming we would measure even seconds.
Instead, 1995 expresses the fact that there exists an interval
that starts somewhere in 1995 in which Schrempp started
his CEOship with Daimler Benz. Since the temporal end
point of the above fact is not known at this moment (but
the starting point) and since the time of Schrempp’s CEO-
ship is probably not infinitely small, we encode this interval
information in an instance of class OpenRightInterval.
This very simple example shows that temporal underspeci-
fication happens to appear on two levels:

1. instances of Instant might be underspecified in case
not every property (year, month, day, ...) has been
given a value;

2. instances of Interval might be underspecified in case
its properties begins and/or ends have not been given
a value or in case begins and/or ends are assigned a
value (instances of Instant), this value is underspeci-
fied.

The recursive part of this definition for temporal underspec-
ification is applied in the following sentence:

Between 1995 and 2005, Schrempp was the CEO
of DC.

Now assume our fineness of time is measured in terms of
days, thus we generate two instances of ProperInstant-
Day that fill the slots begins and ends of an instance of
ClosedInterval. Even though this interval is closed, its be-
ginning and end points are underspecified, hence this closed
interval is regarded as being underspecified. If we, how-
ever, had measured time in terms of years, the above natural
language description would have led to a totally specified



closed interval. It should be clear that further textual infor-
mation might close an open-left/open-right interval. Tex-
tual information might even make a partially underspecified
instant or interval total.
The above examples are fully compatible with the prop-
erty restrictions imposed on begins, ends, year, month,
day, etc., viz., being functional properties (0 or 1 value). In
case we want to enforce a property to be instantiated, e.g.,
that begins and ends are “present” on ClosedInterval, we
have applied a local number restriction on this specific class
(see description logic axioms above).
We finally note that our approach to underspecification is a
result of the subclass hierarchy of proper instants which ap-
plies a more finer measuring system when moving down the
classes. An alternative, albeit less satisfying approach to
underspecification would apply 0/1 cardinality constraints
to the properties year, month, etc. in order to “switch them
off/on”, depending on the predefined granularity of time.

8. An Application
Let us focus on an application that uses the above time on-
tology and the methodology to represent temporally chang-
ing information: imprint monitoring. The monitoring sys-
tem described in (Federmann and Declerck, 2010) extracts
imprints (and other information) from a large number of
companies on a regular temporal basis. Imprints specifies,
e.g., the name of a company, the postal address, its legal
form, authorized executives, etc. This information and its
change over time is interesting for rating agencies (such as
Creditreform).
In case the imprint of a perdurant perd changes at time t

(w.r.t. information recorded in the ontology), the latest time
slice old of perd is closed, using t (actually its time inter-
val oldint). A new time slice new (of type Company) is
also added to the ontology, storing the new imprint. Since
new contains the latest information whose temporal end-
ing point is unknown, t is stored as the starting point of
an OpenRightInterval. Not only new triples are build
up here, but also new individuals/URIs: besides new, an
interval object newint is generated. More formally, we
construct the following RDF triples:

old fourd:hasTime oldint .

oldint rdf:type time:ClosedInterval .

oldint time:ends t .

perd fourd:hasTimeSlice new .

new rdf:type Company .

new fourd:hasTime newint .

newint rdf:type time:OpenRightInterval .

newint time:begins t .

..... // add imprint info to new

Information from the ontology can be queried using the
SPARQL query language, as is used to obtain the latest time
slice. The ontology, the reasoning and querying services
are realized by the CROWL system (Combining Rules and
OWL). CROWL consists of several publicly available rea-
soners (viz., Pellet (Sirin et al., 2007), OWLIM (Kiryakov,
2006), and Jena (Reynolds, 2009)), running in a fixpoint
loop, and is extended by a template language to implement
complex aggregation rules (Krieger et al., 2008b).

9. Problems: An Example
As we indicated in the introduction, even though our ap-
proach keeps the original ontology, it leads to a massive
proliferation of objects, making reasoning and querying un-
necessarily complex, expensive, and error-prone. This is
due to the underlying data structure, the RDF triple, and
the approaches presented in section 3. do suffer from the
same problem.
Let us present an example to see how complexity builds up,
even for a relatively easy task. This example will then be
used in the next section when a solution is presented. The
task we want to achieve is the following:

Compute maximal intervals, given a property,
e.g., ceoOf, between time slices ?p and ?c.

Such queries often arise in practice when temporally-
anchored facts need to be extended by further incoming
information. Our approach, as described in section 3.5.,
would require a “lengthy” Jena-like heuristic rule to solve
this task, impossible to formulate in OWLIM or Pellet,
since it employs two aggregates, as realized by the func-
tions Min2 and Max2:

?p rdf:type fourd:Perdurant

?p fourd:hasTimeSlice ?ts1

?p fourd:hasTimeSlice ?ts2

?ts1 ceoOf ?obj1

?ts1 rdf:type ?tstype

?obj1 fourd:timeSliceOf ?q

?obj1 rdf:type ?objtype

?ts2 ceoOf ?obj2

?obj2 fourd:timeSliceOf ?q

?ts1 fourd:hasTime ?i1

?ts2 fourd:hasTime ?i2

?i1 time:begins ?b1

?i1 time:ends ?e1

?i2 time:begins ?b2

?i2 time:ends ?e2

->

?ts rdf:type ?tstype

?p fourd:hasTimeSlice ?ts

?ts ceoOf ?obj

?obj fourd:timeSliceOf ?q

?obj rdf:type ?objtype

?ts fourd:hasTime ?i

?obj fourd:hasTime ?i

?i rdf:type time:ClosedInterval

?i time:begins ?min

?i time:ends ?max

?i time:ends ?max

@test

?ts1 != ?ts2

@action

?min = Min2 ?b1 ?b2

?max = Max2 ?e1 ?e2

Independent of the underlying approach, we immediately
feel that such a rule is hard to manage and expensive, both
in terms of time (when matching clauses) and space (when
introducing new objects/URIS, bound to ?ts, ?obj, ?i,
?min, and ?max.



10. A Solution
The solution we propose in this section has been realized
in the reasoning engine HFC, developed at DFKI. The idea
here is to move from RDF triples to tuples in order to ex-
tend relation instances with further (temporal) arguments,
as already described in section 3.1.
To achieve this goal, we also need to conservatively extend
RDFS and OWL entailment rules, as originally described
in (Hayes, 2004) and (ter Horst, 2005), i.e., to make these
rules sensitive to temporal information. Here are three in-
stantiated examples that show how things are supposed to
work.
Assuming that hasCeo is the inverse of ceoOf and that
our ontology has been populated with the fact that Jürgen
Schrempp was DC’s CEO from 1995 until 2005, repre-
sented as ceoOf (js, dc, 1995, 2005), we would then like to
deduce that hasCeo(dc, js, 1995, 2005) also holds.
The fact that Angelina Jolie was married with Billy
Bob Thornton from 2000 until 2003 is represented by
marriedWith(aj, bbt, 2000, 2003). Given that marriedWith
is a symmetric property, the following should also be the
case: marriedWith(bbt, aj, 2000, 2003).
Given that my office is part of the DFKI build-
ing, i.e., contains(dfki, room+1.26, 1990, 2010) and that
my old office chair was replaced in 2002, i.e.,
contains(room+1.26, chair42, 2002, 2010), we are allowed
to infer that new chair is (at least) inside the DFKI since
2002 (contains(dfki, chair42, 2002, 2010)), due to the tran-
sitivity of the containment relation.
Such behavior can be formalized through temporally-
extended entailment rules, quite similar to the “untensed”
version described in (Hayes, 2004) and (ter Horst, 2005).
As we indicated above, the temporal arguments are attached
to the original triples, thus we end up in quintuples, assum-
ing that we have a starting and ending time. Here are some
examples:

• ?p is inverse of ?q
?p owl:inverseOf ?q

?s ?p ?o ?t1 ?t2

->

?o ?q ?s ?t1 ?t2

• ?p is a symmetric property
?p rdf:type owl:SymmetricProperty

?s ?p ?o ?t1 ?t2

->

?o ?p ?s ?t1 ?t2

• ?p is a transitive property
?p rdf:type owl:TransitiveProperty

?x ?p ?y ?t1 ?t2

?y ?p ?z ?t3 ?t4

->

?x ?p ?z ?t5 ?t6

@action

?t5 = Max2 ?t1 ?t3

?t6 = Min2 ?t2 ?t4

• copy subject for owl:sameAs
?x owl:sameAs ?y

?x ?p ?z ?t1 ?t2

->

?y ?p ?z ?t1 ?t2

• enforce domain restriction
?p rdfs:domain ?dom

?s ?p ?o ?t1 ?t2

->

?s rdf:type ?dom

• universal instantiation
?i rdf:type ?c ?t1 ?t2

?c rdfs:subClassOf ?d

->

?i rdf:type ?d ?t1 ?t2

Note that only relation instances from the ABox are (usu-
ally) extended with temporal information—at the moment,
we do not think that terminological knowledge needs to be
equipped this way (e.g., that the domain/range restrictions
of a property or the subtype relation between two classes
only hold for some period of time).

Let us now come back to the example from the previous
section that tries to build a contiguous interval from its two
input intervals. Here is the new version:

?p ceoOf ?c ?b1 ?e1

?p ceoOf ?c ?b2 ?e2

->

?p ceoOf ?c ?min ?max

@test

?b1 != ?b2

?e1 != ?e2

@action

?min = Min2 ?b1 ?b2

?max = Max2 ?e1 ?e2

This is clearly much simpler and extremely intuitive: the
only two clauses in the antecedent deal with the CEOship
of a person with a company at different times and the single
consequent extends the CEOship to a larger time span.
Such a rule can even be generalized to arbitrary properties
which persist through time in a similar way. Assuming
that such properties are characterized as subproperties of
ContinuousProperty, the above rule becomes

?r rdfs:subPropertyOf ContinuousProperty

?p ?r ?c ?b1 ?e1

?p ?r ?c ?b2 ?e2

->

?p ?r ?c ?min ?max

.....

Even though the old rule is extremely complex, both rules
only “look” at two intervals. Now, assuming that we want
to glue n intervals together, both rules require n − 1 itera-
tions to compute the maximal interval. The number of rule
applications is even larger: (n− 1)× 2×

∑n−1
i=1 i.

In order to overcome this last obstacle, we need aggrega-
tion rules that differ from ordinary rules in that variables do
not bind only one individual at a time, but all individuals,
satisfying the left-hand side constraints and the tests. This
is quite similar to aggregates as used in query languages



(e.g., in SQL), except that the queried information is used
to instantiate further tuples which are then added to the on-
tology.
HFC provides us with such aggregation rules. The above
rule even becomes more simple; the important point, how-
ever, is that one rule application immediately yields the
maximal interval. Note the different arrow sign => to in-
dicate that the below rule aggregates information through
MinN and MaxN:
?p ceoOf ?c ?b ?e

=>

?p ceoOf ?c ?min ?max

@action

?min = MinN ?b

?max = MaxN ?e

11. Conclusion
In this paper, we have presented two approaches that are
able to enrich arbitrary ontologies with a concept of time.
The first approach implements a 4D or perdurant view on
temporally-changing information, complemented by a so-
phisticated time ontology that permits temporal underspec-
ification. This approach keeps the original ontology and
does not leave the territory of RDF. This approach was used
in the MUSING project.
The lessons, we learned in MUSING, have led us to a sec-
ond approach that is much simpler, more expressive, and
more efficient, but requires to move from RDF triples to
general tuples. Temporal information here is directly at-
tached to the relation instance. We have indicated how
RDFS and OWL entailment rules can be conservatively
extended to make them sensitive to temporal information.
This approach is currently employed in the CogX project.
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