
A Tactic Language for Declarative Proofs ?

Serge Autexier and Dominik Dietrich

German Research Center for Artificial Intelligence (DFKI), Bremen, Germany
{autexier|dietrich}@dfki.de

Abstract Influenced by the success of the MIZAR system many declarative proof
languages have been developed in the theorem prover community, as declarative
proofs are more readable, easier to modify and to maintain than their procedural
counterparts. However, despite their advantages, many users still prefer the pro-
cedural style of proof, because procedural proofs are faster to write. In this paper
we show how to define a declarative tactic language on top of a declarative proof
language. The language comes along with a rich facility to declaratively specify
conditions on proof states in the form of sequent patterns, as well as ellipses
(dot notation) to provide a limited form of iteration. As declarative tactics are
specified using the declarative proof language, they offer the same advantages
as declarative proof languages. At the same time, they also produce declarative
justifications in the form of a declarative proof script and can thus be seen as an
attempt to reduce the gap between procedural and declarative proofs.

1 Introduction

The development of interactive tactic based theorem provers started with the LCF sys-
tem [19], a system to support automated reasoning in Dana Scotts “Logic for Com-
putable Functions”. The main idea was to base the prover on a small trusted kernel,
while also allowing for ordinary user extensions without compromising soundness. For
that purpose Milner designed the functional programming language ML and embedded
LCF into ML. ML allowed to represent subgoaling strategies by functions, called tac-
tics, and to combine them by higher order functions, called tacticals. By declaring an
abstract type theorem with only simple inference rules type checking guaranteed that
tactics decompose to primitive inference rules.

While allowing for efficient execution of recorded proofs by representing them as
a sequence of tactic applications, it has been recognized that these kind of proofs are
difficult to understand for a human. This is because the intermediate states of a proof
become only visible when considering the changes caused by the stepwise execution of
the tactics. Tactic proofs can be extremely fragile, or reliant on a lot of hidden, assumed
details, and are therefore difficult to maintain and modify (see for example [34] or [20]
for a general discussion). As the only information during the processing of a proof is
the current proof state and the next tactic to be executed, a procedural prover has to stop
checking at the first error it encounters.

? This work was supported by German Ministry for Research and Education (BMBF) under
grant 01 IW 07002 (project FormalSafe).

2 Serge Autexier and Dominik Dietrich

This has led to declarative proof languages, inspired by MIZAR [29], where proof
steps state what is proved at each step, as opposed to a list of interactions required to
derive it. It has been argued that structured proofs in a declarative proof language are
easier to read and to maintain. Moreover, as a declarative proof contains explicit state-
ments for all reasoning steps it can recover from errors and continue checking proofs
after the first error. It has been noted in [32] that a proof language can be implemented
rather independently of the underlying logic and thus provides an additional abstrac-
tion layer. Due to its advantage many interactive theorem provers nowadays support
declarative proofs (see for example [28,32,3,11]).

Another motivation for a declarative proof language comes from a research com-
munity dealing with the integration of proof assistants into development environments
and supporting the so-called document centric approach [16,2]. The main idea is that
the document, containing a formal theory and the formal proofs, is the central medium
around which tools to assist the author are made available. As many tactics are devel-
oped while developing the formal theory, it is only consequent to integrate them into the
document. Currently, this is not the case, as tactics are usually written in the underlying
programming language of the prover.

Contributions. In this paper we present a declarative tactic language on top of a declar-
ative proof language (which can be seen as an extension of [14]). To our best knowl-
edge, such a language has not been presented before. Our language comes along with
a rich facility to declaratively specify proof states (and conditions on them) in the form
of sequent patterns, as well as ellipses (dot notation) to provide a limited form of it-
eration. The language is intended to provide a simple to use tactic language layer to
bridge the gap between the predefined proof operators and the programming language
of the proof assistant. This new layer of abstraction can be seen in analogy to what
has been done by introducing declarative proof languages. We believe that declarative
tactic languages offer similar advantages as declarative proof languages, namely robust-
ness and readability, and that the trend towards declarative proof languages will carry
on with declarative tactic languages. Interestingly, the trace of a declarative tactic is a
declarative proof script and can thus be inserted into the document if desired. More-
over, because of its additional abstraction, it might provide possibilities to exchange
reasoning procedures between different proof assistants in the long-term view.

The structure of the paper is as follows: Section 2 gives a more detailed background
and motivates our language by means of a simple example. Section 3 presents the ba-
sic proof script language. Section 4 motivates and extends the language by an ellipsis
construct. Finally, we conclude the paper in Section 5 with a discussion of related work.

2 Background and Introductory Example

At present, two main formalization styles are supported by interactive theorem provers,
namely the procedural style and the declarative style.

In the procedural style, proofs consist of a sequence of tactic applications, as shown
on the left of Figure 1. Intuitively, the proof script corresponds to the edges of a deriva-
tion tree being labeled with the tactic names. Even though there are different implemen-
tations of the notion of a tactic, each of these tactics can be understood as a program

Declarative Tactics 3

theorem natcomp: "(a::nat) +

(b::nat) = (b::nat)+(a::nat)"

apply (induct a)

apply (subst add_0)

apply (subst add_0_right)

apply (rule refl)

apply (subst add_Suc_right)

apply (subst add_Suc)

apply (simp)

done

theorem natcomplus: "(a::nat) + b = b+a"

proof (induct a)

show "0 + b = b + 0"

proof (-)

have "0+b=b" by (simp only: add_0)

also have "...=b+0" by (simp only:

add_0_right)

finally show ?thesis .
qed
next ...

Figure 1: Procedural and declarative proof script in ISABELLE/ISAR

taking a list of goals together with a justification function as input and returning a new
set of goals together with an updated justification function. The justification function is
an internal function in the underlying programming language, such as ML, and cannot
be presented to the user. By being a sequence of explicit program calls, a procedural
proof contains explicit statements of what to do. In particular, the reader does not see
the proof state unless he executes the tactic. Therefore, (procedural) proofs are consid-
ered not to be human readable and difficult to maintain. Procedural tactics are usually
written in the underlying programming language of the assistance system, such as ML,
conflicting with the document centric approach.

In the declarative style, proofs consist of structured blocks, where each block con-
sist of a list of statements, connected by a fixed set of keywords. The statements specify
what is proved at each step. Intuitively, a declarative proof script thus corresponds to the
information contained in the nodes of a derivation tree. Most declarative languages re-
quire the user to give hints justifying the statement using previous statements. However,
in principle a declarative proof can simply be a sequence of intermediate assertions, act-
ing as islands or step stones between the assumptions and the conclusion (by omitting
the constraints indicating how to find a justification of the proof step) leaving the task
of closing the gaps to automation tools. Such islands are sometimes also called proof
plans [13] or proof sketches [33]. Surprisingly, quite many systems – sometimes called
proof finders or proof planner – have been developed trying to automatically close such
gaps, such as MIZAR, NQTHM [8], the SPL system [34], the SAD system [30], the
NAPROCHE [24] system, the SCUNAK system [9], TUTCH [1], or Ω MEGA [15].

The main advantage of a declarative proof script is that intermediate assertions are
shown in the proof script. While this makes the proof easier to read, it makes it more dif-
ficult to write, as the proofs tend to be longer (see the example on the right of Figure 1).
As a consequence, in practice users often prefer the procedural style of proof.

2.1 From Declarative Proof Scripts to Declarative Tactics

Having the correspondence between procedural and declarative proofs in mind and re-
calling that in the simplest case a tactic is a sequence of inference applications, repre-
senting a partial proof, it appears suggestive to think about declarative tactics as analog

4 Serge Autexier and Dominik Dietrich

theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof
subgoals by (induct a)

subgoal 0 + b = b + 0

subgoal Suc a + b = b + Suc a

using IH:a+b=b+a

end
qed

theorem natcomplus: (a::nat) +

(b::nat) = b+a

proof
subgoals by (induct b)

subgoal a + 0 = 0 + a

subgoal a + Suc b = Suc b + a

using IH: a+b=b+a

end
qed

Figure 2: Declarative proof with gap resulting by induction over a, respectively b

to procedural tactics. In contrast to procedural proofs the justification should be declar-
ative, but we additionally require it to be specified using a declarative language, namely
the proof language itself.

Consider for example the problem in Peano arithmetic of showing the commuta-
tivity of addition, that is, a + b = b + a. Of course, a proof can easily be generated in
the procedural style. However, because of its advantages what we are really interested
in is a declarative proof. Starting by induction over one variable, two possible proof
attempts in Ω MEGA-proof language [15] are shown in Figure 2. Note that as the proof
is still partial, it contains unjustified statements and can thus be seen as a proof sketch
or a proof plan. This is similar to the “gap” command introduced in [16].

To automate the generation of one of these scripts, three steps are necessary. First,
we need the control information over which variable the induction has to be performed.
This is for example possible by analyzing the universally quantified variables and

strategy natinduct

cases * ` ϕ

with x in (analyzeinductvars ”ϕ”)

P=(abstract ”ϕ” ”x”) ->

proof
subgoals by (induct x)

subgoal P 0

subgoal P (suc x) using IH: P x

end
qed

Figure 3: Declarative induction tactic

preferring those in recursion position.
Second, we need a schematic proof script
(a proof script with schematic variables),
as well as a mechanism to instantiate schematic
variables with actual terms, which is in our
case the desired induction variable. Indeed,
by comparing the scripts above, we ob-
serve that the two proof scripts can be made
equal by replacing the induction variable
by a schematic variable. The choice point
over the induction variable can be expressed
as membership in a (sorted) list of admis-
sible induction variables, which can be eas-
ily computed in the underlying programming language of the prover. Finally, to be able
to perform induction over the natural numbers on different problems, we replace the
instance of the problem by a schematic variable, and use matching against the proof
state to establish their relation.

Our realization is shown in Figure 3, where we use quotes to refer to expressions in
the tactic language within the underlying programming language. To illustrate the dif-
ferent levels of the tactic, we shade the background of expressions in the tactic language,
while expressions in the proof language are unshaded. Expressions in the underlying
programming language are written in sans serif font.

Declarative Tactics 5

Even though the result of executing a declarative proof script on a proof state is
again a proof state – as in the case of procedural tactics –, it provides a simple mecha-
nism to view the proofs at different levels of granularity, namely either as a single tactic
invocation in the style of ... by name, but also by showing the declarative proof script
obtained by replacing the schematic variables by the terms computed by the tactic. Note
that one reason why some users favor the procedural style of proofs over the declarative
style of proofs is that the procedural style is faster to type. This benefit remains when
invoking declarative tactics. However, we additionally obtain a declarative proof script.
In that sense, they can be seen as a means to close the gap between the procedural style
and declarative style of proofs.

3 Development of the Language

In the simplest form, a declarative tactic is a (partial) proof in the proof language. For
more complex situations, we have to answer the following questions: (i) When is the
tactic applicable? (ii) How do the intermediate proof states (islands) look and how can
they be generated? (iii) What is the justification for the statements?

defstrat ::= strategy name stratexp
stratexp ::= cases (matcher stratexp) +

| proof (with assignments)?
matcher ::= matchhead whereexp?

(with assignments)
whereexp ::= where prog
matchhead ::= sequent | var
sequent ::= termpatterns (,*)? ` termpattern
termpatterns ::= termpattern

| termpatterns , termpattern
termpattern ::= form | [term] (ˆ termqualifier)?
termqualifier ::= + | − | var
assignments ::= lhs assignop prog
assignop ::= = | in
lhs ::= form | (form (, form)+)

Figure 4: Basic Tactic Language

To declaratively specify (i),
we provide the cases construct
and matching facilities to relate
schematic variables with a given
proof state and to restrict the ap-
plicability of the tactic (see Fig-
ure 4 for the grammar rules and
Figure 3 for an example). The
matcher specifies a matching con-
dition on the proof state in the
form of a sequent. * is used to
indicate that the length of the an-
tecedent of the sequent can be
higher than the length of the ante-
cedent of the matcher. [t] denotes
the condition that t occurs as a
subterm in a formula of the se-
quent. Subterm occurrences can further be restricted by the specification of polarities,
where we use + to indicate a positive subformula and - to indicate a negative subfor-
mula. By using a schematic variable instead of +,-, the polarity is accessible within
the tactic via that variable. Note that in general a matcher can match a given sequent in
different ways and thus introduces nondeterminism.

(ii) is expressed within the proof language, while we allow the statements to contain
schematic variables. Figure 5 shows the abstract syntax of our proof language, which is
standard except that metavariables1 are allowed in the statements. Metavariables can be

1 Metavariables are supported by the underlying Ω MEGA prover and are not to be confused with
the schematic variables

6 Serge Autexier and Dominik Dietrich

proof ::= proof steps qed
steps ::= (ostep;steps)|cstep
ostep ::= set|assume|fact|goal
cstep ::= trivial | goals|cases|ε
by ::= by name? | proof
from ::= from (label (, label)∗)?
sform ::= form | . binop form

assume ::= assume steps from thus form
fact ::= sform | by from
goals ::= subgoals (goal)+ by
cases ::= cases (form { proof })+ by from
goal ::= subgoal form (using form (and form)+)? by
set ::= set var=form (, var=form)∗

trivial ::= trivial by from

Figure 5: Ω MEGA proof script language

instantiated using the set construct. The subgoals construct performs an explicit back-
ward step. Each new subgoal is stated by a subgoal, followed by a proof of that subgoal.
New assumptions for that subgoal are introduced within the using form. If only a single
subgoal is introduced, the keyword subgoals can be omitted and the subsequent proofs
refers to the justification of the reduction.

The value of schematic variables is computed during the expansion of tactic. The
grammar rules for tactics are depicted in Figure 4. Here, form and var are from the
underlying term language with possible labels on subterms, such as (L1 : A)∧ (L2 : B)
and schematic variables. We use ⊥ to indicate failure. To allow for a limited form of
non-determinism we provide the assignment operator in, which chooses from a list of
possibilities. As we cannot expect to provide a fixed language to express metalevel
conditions and to perform metalevel analysis (in our case the extraction and sorting of
the admissible induction variables), a reasonable strategy is to link-in the underlying
programming language of the prover here, indicated in the grammar by prog.

For (iii), the justification is either underspecified (no by and no from), partially
specified (by and/or from), or fully specified (subproof given).

These extensions already allow us the specification of the induction tactic in a
declarative form (see Figure 3). Note that schematic variables can be used as placehold-
ers for arbitrary terms, in particular terms generated by an oracle without justification.
This provides a convenient means to integrate results from external systems, such as
computer algebra systems (CAS) (see [10] for an overview for combining CAS sys-
tems and theorem provers). In such a case, we can either leave the justification of the
oracle step underspecified (gap), or indicate a tactic to be used to justify it.

An example of such a tactic is given in Figure 6. The tactic is applicable if the goal
has the form abs(GOALLHS)<GOALRHS and calls a CAS to factor GOALLHS. To that end,
the schematic variable Y is bound to the result of the factorization provided by MAX-
IMA, where the translation of the term GOALLHS into the syntax of MAXIMA and the
translation back is internalized in maxima-factor. If this succeeds, the script specified
in the proof . . . qed block is instantiated and inserted. Being executed, it reduces the
goal abs(GOALLHS)<GOALRHS to the goal abs(Y)<GOALRHS. This reduction is justi-
fied by (1) showing the equality between Y (the factorization provided by the CAS) and
GOALLHS, and then applying the fact that abs is a function. Note that the same tactic is
also expressible in a forward style by relying on assume and that all labels in the proof
script are generated at runtime and are renamed if already present in the context.

Declarative Tactics 7

strategy maximafactorabs

cases
* |- ((abs(GOALLHS)) < GOALRHS) ->

proof
subgoal abs(Y) < GOALRHS by
proof
L2:(Y = GOALLHS) by abeliandecide

L3: abs(Y) = abs(GOALLHS) by (f=abs in arg cong) from L2

trivial from L3

qed
qed
with Y = (maxima-factor "GOALLHS")

Figure 6: Call of a CAS to factor a subterm of the goal formula
Semantics. Figure 7 shows the semantics of our language constructs by showing how
to expand a declarative tactic to a declarative proof script. The expansion mechanism
works on configurations 〈PS;Γ ;exp〉, where PS denotes the current proof state, and Γ

a context, which is initially empty and keeps track of bindings for schematic variables.
exp denotes the expression to be expanded. Configurations evaluate either to a proof
script, denoted by the relation ↪→, or to an environment, denoted by the relation→. We
use the notation Γ ∪a = b to denote the update of Γ with the binding a = b, and the sym-
bol ⊥ to denote failure. To keep the rules simple, some rules are non-deterministic. In
the actual implementation, of course, all results are lazily produced and stored for back-
tracking. instance(Γ ,S) denotes the instantiation of the schematic proof S by replacing
the schematic variables with their values in Γ . It is only applicable if all schematic vari-
ables are bound. We use eval to evaluate a LISP expression prog; the sequent matching
is abstracted in the function match (which is also non-deterministic).

To enhance readability, we have grouped corresponding rules together. The first
group describes the expansion of the cases construct, which returns the result of the
first case that succeeds. An individual case is either a proof script (second group), or
of the form matchhead (where exp)? (third group). The value of schematic variables
is computed within the with construct (see the last group) which uses eval to evaluate
expressions of the underlying programming language. Sequent matching works by first
invoking the matcher on the current proof state and then evaluating additional condition.

4 Extension of the Basic Language

So far, our declarative tactic language is less expressive than its procedural counter-
part. As a matter of fact, there exist powerful procedural tactics using for example the
constructs of loops, such as simplification, which are per se difficult to express declar-
atively, as we cannot expect to determine their result unless we execute it. While this
is unproblematic when using them to close gaps between intermediate statements, their
treatment as black boxes makes it difficult to express how to process their results further
in the form of a continuation, because the structure of the formula is lost. For example,
all we know about the result term of factorization in Figure 6 is that it is of the form Y.

8 Serge Autexier and Dominik Dietrich

〈PS;Γ ;c1〉 ↪→⊥ 〈PS;Γ ;cases c2 . . .cn〉 ↪→ S

〈PS;Γ ;cases c1 . . .cn〉 ↪→ S 〈PS;Γ ;cases ε〉 ↪→⊥

〈PS;Γ ;c1〉 ↪→ S

〈PS;Γ ;cases c1 . . .cn〉 ↪→ S
S 6=⊥

〈PS;Γ ;ass〉 → ⊥
〈PS;Γ ;proof with ass〉 ↪→⊥

〈PS;Γ ;ass〉 → Γ
′ 〈PS;Γ ′;proof〉 ↪→ S

〈PS;Γ ;proof with ass〉 ↪→ S
S 6=⊥

〈PS;Γ ;proof〉 ↪→ instance(Γ ,proof)

〈PS;Γ ;matcher〉 → ⊥
〈PS;Γ ;matcher stratexp〉 → ⊥

〈PS;Γ ;matcher〉 → Γ
′ 〈PS;Γ ′;stratexp〉 ↪→ S

〈PS;Γ ;matcher stratexp〉 ↪→ S

〈PS;Γ ;matchhead〉 →match(matchhead,PS)
〈PS;Γ ;matchhead〉 → ⊥

〈PS;Γ ;matchhead where exp〉 → ⊥

〈PS;Γ ;matchhead〉 → Γ
′ 〈PS;Γ ′;where exp〉 → ⊥

〈PS;Γ ;matchhead where exp〉 → ⊥

〈PS;Γ ;matchhead〉 → Γ
′ 〈PS;Γ ;where exp〉 → Γ

′′

〈PS;Γ ;matchhead where exp〉 → Γ
′′

〈PS;Γ ;ass〉 → Γ
′ 〈PS;Γ ′;eval(c)〉 → >

〈PS;Γ ;where c with ass〉 → Γ
′

〈PS;Γ ;ass〉 → ⊥
〈PS;Γ ;where c with ass〉 → ⊥

〈PS;Γ ;ass〉 → Γ
′ 〈PS;Γ ′;eval(c)〉 → ⊥

〈PS;Γ ;where c with ass〉 → ⊥
〈PS;Γ ;c〉 → >

〈PS;Γ ;where c〉 → Γ

〈PS;Γ ;eval(prog)〉 → c 〈PS;Γ ∪ lhs = c;ass′〉 → Γ
′′

〈PS;Γ ; lhs = prog ass′〉 → Γ
′′ c 6=⊥

〈PS;Γ ;eval(prog)〉 → [c1, . . . ,cn] 〈PS;Γ ∪ lhs = ci;ass〉′→ Γ
′′

〈PS;Γ ; lhs in prog ass′〉 → Γ
′′ n≥ 1∧1≤ i≤ n

〈PS;Γ ;eval(prog)〉 → ⊥
〈PS;Γ ; lhs assignop prog ass′〉 → ⊥

〈PS;Γ ;eval(prog)〉 → c 〈PS;Γ ∪ lhs = c;ass′〉 → ⊥
〈PS;Γ ; lhs = prog ass′〉 → ⊥

c 6=⊥

Figure 7: Expansion Rules for a Declarative Tactic

Declarative Tactics 9

To illustrate a possible continuation of maximafactorabs, let us consider the so-
called limit domain which contains statements about the limit and continuity of func-
tions. It was proposed by Bledsoe [6] as challenge problems for automated theorem
provers. The proofs typically involve ε-δ arguments and are interesting because both
logic and computation have to be combined to find a solution to the problem given
at hand, while still being simple enough to allow for an automatic solution based on
heuristics. Several people from the AI community have tackled this domain (see for
example [26,4]) One heuristic of the limit domain to bound factors is to reduce the
problem that the product βγ is arbitrarily small to the problem that of showing that β

is arbitrarily small and γ can be bounded. This heuristic is called factor bounding and
described (in [4], p. 77f) as follows :

“The following rule is stated for simplicity using only two factors, but the rule
is implemented for a product of any number of factors.

Γ , |α|< δ Γ , |α|< δ | ` |β |< ε/(M +1)
Γ , |α|< δ ` |βγ|< ε

When this rule is implemented, we take M to be a fresh metavariable, and forbid
to M all the variables that are forbidden to δ . In the present implementation,
the rule is used only when δ is a metavariable.”

While our language can already deal with the factorization, we cannot yet declaratively
express the factor bounding for an arbitrary number of factors within a single tactic and
use it as continuation. Moreover, what we really want is to express the factor bounding
as the continuation after successful factorization.

Reconsidering the problem we observe that the difficulty is due to the missing infor-
mation we have about the factorization, namely the number of factors which is dynamic.
Interestingly, even though the structure is dynamic, syntactic patterns are commonly
used in mathematical practice to capture such a structure, by making use of ellipses
(dot notation). In our example, a dynamic number of factors can be expressed by the
pattern X1 ∗ . . .∗Xn. Internally, patterns are implemented by subsequently invoking the
matcher for pattern X until it fails, taking the associativity of the binary operator into
account, resulting in a list of matches which are stored in an internal variable X .

binoppat ::= pattern binop .. binop pattern
listaccess ::= (listterm | var) (var | number)
listterm ::= listdel .. listdel
listdel ::= var | number | pattern
pattern ::= binoppat | listaccess | from
foreachexp ::= foreach var in listterm

(where cond)?

foreachstep ::= foreachexp steps end
foreachass ::= foreachexp var var=prog

Figure 8: Dynamic matching constructs

Coming back to our example,
we notice that all factors but one
factor shall be bounded. Therefore,
we need also constructs to dynam-
ically construct statements in the
proof script language. To that end,
we introduce a foreach construct.
The grammar for the extended lan-
guage constructs is shown in Fig-
ure 8. Binary patterns (binop) can
be used in places where previously
only form was allowed. Step is ex-
tended by foreachstep construct. Moreover, assrhs is extended by the foreach assign-

10 Serge Autexier and Dominik Dietrich

strategy factorbound

cases
abs(LHS)<RHS,* |- abs(GOALLHS) < GOALRHS

where (and (variable-eigenvar.is "GOALRHS")

(metavar-is "RHS")

(some #’(lambda (x) (term= "LHS" "x")) "Y 1 .. Y N"))

with Y 1 * .. * Y N = (maxima-factor "GOALLHS")

j = (termposition "LHS" "Y 1 .. Y N")

->

proof
L1: GOALLHS= Y 1 * .. * Y N by abeliandecide

foreach i in 1..N where (not (= "j" "i"))

Y j <= MV j by linearbound

end
L2: abs(GOALLHS)=abs(Y 1 * .. * Y N) from L1

.<= abs(Y 1) * .. * abs(Y N)

.< MV 1 * .. * MV N

.<= GOALRHS

qed
with foreach i in 1..N

M i = (if (= "i" "j") "RHS" (make-metavar (term-type "RHS")))

Figure 9: Dynamic pattern matching and proof script generation

ment (foreachass). These extensions will allow us to specify a variant of the factorbound
method in a convenient way (see Figure 9 on page 10).
Ellipses. So far our constructs for matching and constructing terms are static in the
sense that their actual form was already determined at compile time. For example, a
pattern of the form lhs = rhs checks whether the input formula is an equality and binds
its first argument to lhs and its right argument to rhs. Dynamic Patterns on the contrary
are patterns that capture dynamic structures, such as all elements of a finite list. We
support a simple dynamic pattern, an ellipsis for binary operators, written A op . . .op A′,
which acts like a Kleene star, as well as a list pattern which is similar except that op
is omitted. Internally, such dynamic patterns are represented as lists, whose length is
stored in an additional variable. To individually access the lists, we provide an accessor
function . That is, A n denotes the n-th element in the list A. If n is a variable, then n is
called access variable. In the current implementation, patterns are restricted to simple
patterns, which are patterns that unify under a substitution σ whose domain consists
only of access variables. Patterns can be used both in conditions, as left hand side of
assignments, as well as in proof script terms. Some examples are shown in Figure 10.

The foreach construct provides a simple form of iteration over a list of values obtained
from a dynamic pattern. It can be used to construct statements in the proof script lan-
guage as well as to construct a list of schematic variables. Its expansion rules are shown
in Figure 11, grouped into the expansion rules to expand foreach within a proof script,

Declarative Tactics 11

Expression Meaning
A 1 + .. + A N finite sum with N summands
abs(A 1) * .. * abs(A N) product with N factors of the form abs()

(X 1 + Y 1) * .. * (X N + Y N) product of terms of binary sums
1 .. 5 list [1,2,3,4,5]
abs(A 1) .. abs(A N) list with N terms of the form abs()

Figure 10: Patterns using ellipses

and the expansion rules to expand foreach in assignments. Note that in case of assign-
ments a list containing all produced values is constructed, which has always the length
of list over which it is iterated. In the case that the condition evaluates to ⊥ a term false
is inserted at the corresponding position.

Illustration of the Tactic As an example, we consider the problem of proving limx→3
x2−5
x−2 =

4. After expanding the definition of lim, the proof state consists of the two goals ε >

0, |x−3|<?δ ` | x2−5
x−2 −4|< ε and ε > 0 `?δ > 0. The declarative proof script is shown

at the top of Figure 12, where the declarative tactic factorbound (see Figure 9) is not
yet processed.

Processing the factorbound-statement expands it and results in the following steps:

1. The pattern of the cases condition is matched, yielding the following binding:
{LHS 7→ x−3,RHS 7→?δ ,GOALLHS 7→ x2−5

x−2 −4,GOALRHS 7→ ε}
2. To be able to evaluate the where condition, the first with part is evaluated. This

results in the following factorization: Y1 ∗ . . . ∗Yn = (x− 3) ∗ (1
x−2)(x− 1). Inter-

nally, a list Y = [(x− 3),(1
x−2),(x− 1)] is generated, n is bound to 3. In the next

assignment, and j is bound to 1 by looking up x−3 in the list of factors.
3. The conditions of the where part evaluates to true
4. The with part of the proof is evaluated, generating a list M = [?δ ,?MV 1,?MV 2] of

length 3.
5. The proof part is expanded and inserted, resulting in the proof script shown at the

bottom in Figure 12.

Declarative Tactics and Parameters. For procedural tactics it is often convenient to
pass control information in the form of arguments when calling the tactic. For example,
in the introductory example we invoked the tactic induct with the argument ”x” indi-
cating the induction position. A similar mechanism is desirable in the case of declarative
tactics. In our language, arguments are treated as schematic variables. If a schematic
variable occurs in the proof script, but is neither used in the cases construct nor bound
within the with environment, it corresponds to a required argument. Schematic vari-
ables that are computed within the tactic can be passed as optional arguments. In such a
case, the passed argument overwrites the computed argument. We provide the common
syntax var=value in tactic.

5 Conclusion and Related Work

In this paper we presented the construction a declarative tactic language on top of a
declarative proof language. Our language comes along with a rich facility to declara-

12 Serge Autexier and Dominik Dietrich

〈PS;Γ ; listterm〉 → [e1, . . . ,en] 〈PS;Γ ; iterate var in [e1, . . . ,en] (where c)?exp2〉 ↪→ S

〈PS;Γ ; foreach var in listterm (where c)? exp2 end〉 ↪→ S

〈PS;Γ ; iterate var in [](where c)? exp2 end〉 ↪→ ε

〈PS;Γ ∪ var = e1;exp2〉 ↪→ S1 〈PS;Γ ; iterate var in [e2, . . . ,en] exp2〉 ↪→ S2
〈PS;Γ ; iterate var in [e1, . . . ,en] exp2〉 ↪→ S1 S2

〈PS;Γ ∪ var = e1;exp2〉 ↪→ S1
〈PS;Γ ∪ var = e1;c〉 → > 〈PS;Γ ; iterate var in [e2, . . . ,en] where c exp2〉 ↪→ S2

〈PS;Γ ; iterate var in [e1, . . . ,en] where c exp2〉 ↪→ S1 S2

〈PS;Γ ∪ var = e1;c〉 → ⊥ 〈PS;Γ ; iterate var in [e2, . . . ,en] where c exp2〉 ↪→ S2
〈PS;Γ ; iterate var in [e1, . . . ,en] where c exp2〉 ↪→ S2

〈PS;Γ ; listterm〉 → [e1, . . . ,en] 〈PS;Γ ; iterate ass in [e1, . . . ,en] (where c)? prog〉 → Γ
′

〈PS;Γ ; foreach var in listterm (where c)? name var = prog︸ ︷︷ ︸
=:ass

〉 → Γ
′

〈PS;Γ ∪ var = e1;ass〉 → Γ
′

〈PS;Γ ∪ var = e1;c〉 → > 〈PS;Γ ′\(var = e1); iterate var in [e2, . . . ,en] where c ass〉 → Γ
′′

〈PS;Γ ; iterate var in [e1, . . . ,en] where c ass〉 → Γ
′′

〈PS;Γ ∪ var = e1;c〉 → ⊥ 〈PS;Γ ; iterate var in [e2, . . . ,en] where c ass〉 → Γ
′

〈PS;Γ ; iterate var in [e1, . . . ,en] where c ass〉 → Γ
′

Figure 11: Expansion of the foreach construct

tively specify proof states (and conditions on them) in the form of sequent patterns, as
well as ellipses (dot notation) to provide a limited form of iteration. We believe that
declarative tactic languages offer similar advantages than declarative proof languages,
namely robustness, readability, and maintainability, because intermediate results of the
tactic are visible due to the use of the declarative proof language for their specification.
In addition to that, the main feature of declarative tactics is that they produce declara-
tive proof scripts. They are thus a step to narrow the gap between the declarative and
the procedural style, which is still frequently used in practice.

We have implemented 15 declarative tactics, all of which come in a variant that pro-
duces a forward style proof as well as in a variant that produces a backward style proof.
So far the experiments confirm our impression that declarative tactics are well suited
to automate (sub)proofs having a common structure, as is the case for induction proofs
or the integration of external systems such as computer algebra systems. Moreover, op-
erations that depend on the syntactic structure of the formula can easily be expressed,
for example, to provide structure for common forms of forward reasoning. In these sit-
uations, the declarative tactics were easy to write. However, for situations in which the
subsequent proof steps are not known in advance, such as simplification, declarative
tactics are not adequate.

Declarative Tactics 13

theorem th1: limx→3
x2−5
x−2 = 4

proof
subgoals

subgoal | x2−5
x−2 −4|< ε using A1:ε > 0 and A2:|x−3|<?δ by factorbound

subgoal ?δ > 0 using ε > 0
end by limdefbw

qed
theorem th1: limx→3

x2−5
x−2 = 4

proof
subgoals

subgoal | x2−5
x−2 −4|< ε using A1:ε > 0 and A2:|x−3|<?δ

proof
L1: x2−5

x−2 −4 = (x−3)∗ (1
x−2)∗ (x−1) by abeliandecide

|x−1| ≤?MV 1 by linearbound

| 1
x−2 | ≤?MV 2 by linearbound

L2: | x2−5
x−2 −4| ≤ |(x−3)∗ (1

x−2)∗ (x−1)| from L1

.≤ |x−3| ∗ | 1
x−2 | ∗ |x−1|

. <?δ∗?MV 1∗?MV 2

.≤ ε

qed
subgoal ?δ > 0 using ε > 0

end by limdefbw

qed

Figure 12: Declarative proof script of the example before and after processing the call
of the declarative tactic factorbound

As already mentioned in the introduction, declarative proof languages and the veri-
fication of proof sketches has been studied by several people. There exists also several
approaches to present a machine-found proof in a user friendly way [21,18]. In [27]
a language is presented to automatically generate declarative proofs from proof terms.
While this allows the presentation of proofs which have been found automatically, it
does not deal with the specification of tactics in a declarative way.

Closely related to our work is ISAPLANNER [17]. ISAPLANNER generates proof
plans and uses ISAR to represent them, that is, it also generates declarative proofs. It
provides a “gap” command to represent open subgoals together with the annotation of
a technique how to close such a gap. Compared to our approach, the main difference is
that reasoning techniques are written as ML functions, whereas we use the underlying
declarative proof language to specify the tactic. Moreover, our proof language differs
from ISAR by allowing metavariables, which are not supported by ISAR, despite being
supported by ISABELLE.

In the previous version of Ω MEGA, so-called proof methods were declaratively rep-
resented by proof schemas. Proof schemas were partial proofs in natural deduction
(see [22]). In contrast to our approach, methods were implemented directly in the un-
derlying programming language, no declarative proof language was used. Moreover,
there was no possibility to pass control information in the form of a continuation.

14 Serge Autexier and Dominik Dietrich

Regarding intermediate tactic languages, our approach is similar to COQ’s
LTAC [12], which is an intermediate language intended to deal with small parts of
proofs the user may like to automate locally. In contrast to our language, LTAC remains
in the procedural style of the underlying tactic language instead of being declarative like
our approach based on the declarative proof scripts. LTAC introduces conveniences of
higher-level programming languages to the tactic script language which are independent
form the underlying programming language and is similar in spirit to our aims. More
specifically, LTAC provides pattern matching against the current goal, and our syntax
for sequent patterns |- is inspired from it. LTAC also supports to match subterms and
our syntax [t] is also the same here, except that we also allow to impose the polarity of
the subformula supposed to match by [t]+ or [t]-. A real extension of our language
are the means to bind results of arbitrary computations to local script variables as well
as the pattern syntax with ellipsis, which probably could be included in LTAC.

The matching part in case constructs of our tactic language is related to the ex-
tended meta-functions in ACL2 [23] which allow to access the current goal clause. The
ACL2 meta-functions need to be proved correct in order to be usable by the ACL2 rea-
soner. From the LCF point of view, this is a way to include derived reasoning steps in
the kernel proof rules, thus extending the kernel rules. In contrast to this our approach
remains entirely in the LCF tradition since the declarative strategies generate proof
scripts, which still need to be evaluated by the underlying (LCF-based) proof script
interpreter. The possibility to perform arbitrary computations and bind the results to a
term pattern, like the call to maxima-factor in the strategy factorbound is close to
ACL2’s bind-free, which takes an arbitrary binding list and adds it to the local con-
text. This is also possible with our pattern approach by writing X 1 .. X N, which has
the advantage that the names of the local variables can be specified by the writer of the
strategy. It would be possible to accommodate the bind-free-style in the pattern syn-
tax, but so far we have not encountered situations where this was required. Moreover,
the examples presented in [23] also bind only one variable.

In the context of rewriting several strategy languages exist. The general idea is to
provide a language to specify a class of derivations the user is interested in by con-
trolling the rule applications. Depending on the language, the language constructs are
either defined by a combination of low-level primitives or build-in primitives. On a
second layer, the languages provide constructs to express choice and sequencing, and
recursion. Prominent examples are ELAN [7], MAUDE [25], and Stratego [31]. How-
ever, while being separate, these languages are not declarative in the sense that they are
specified using a declarative language and produce declarative proofs.

References

1. Andreas Abel, Bor-Yuh Evan Chang, and Frank Pfenning. Human-readable machine-veri-
fiable proofs for teaching constructive logic. In Uwe Egly, Armin Fiedler, Helmut Horacek,
and Stephan Schmitt, editors, Proceedings of the Workshop on Proof Transformations, Proof
Presentations and Complexity of Proofs (PTP’01). Universitá degli studi di Siena, June 2001.

2. Serge Autexier, Christoph Benzmüller, Dominik Dietrich, and Marc Wagner. Organisation,
transformation, and propagation of mathematical knowledge in Ω MEGA. Journal Mathe-
matics in Computer Science, 2(2):253–277, 2008.

Declarative Tactics 15

3. Serge Autexier and Armin Fiedler. Textbook proofs meet formal logic - the problem of
underspecification and granularity. In Michael Kohlhase, editor, Mathematical Knowledge
Management, 4th International Conference, MKM 2005, Revised Selected Papers, volume
3863 of Lecture Notes in Computer Science, pages 96–110. Springer, 2006.

4. Michael Beeson. Automatic generation of epsilon-delta proofs of continuity. In Jacques
Calmet and Jan A. Plaza, editors, Artificial Intelligence and Symbolic Computation, Interna-
tional Conference AISC’98, Plattsburgh, New York, USA, September 16-18, 1998, Proceed-
ings, volume 1476 of Lecture Notes in Computer Science, pages 67–83. Springer, 1998.

5. Yves Bertot, Gilles Dowek, André Hirschowitz, Christine Paulin-Mohring, and Laurent
Théry, editors. Theorem Proving in Higher Order Logics, 12th International Conference,
TPHOLs’99, Nice, France, September, 1999, Proceedings, volume 1690 of Lecture Notes in
Computer Science. Springer, 1999.

6. Woody W. Bledsoe. Challenge problems in elementary calculus. J. Autom. Reasoning,
6(3):341–359, 1990.

7. Peter Borovanský, Claude Kirchner, Hélène Kirchner, and Christophe Ringeissen. Rewriting
with strategies in ELAN: A functional semantics. International Journal of Foundations of
Computer Science, 12(1):69–95, 2001.

8. Robert S. Boyer and J S. Moore. A Computational Logic Handbook. Academic Press, 1988.
9. Chad E. Brown. Verifying and invalidating textbook proofs using scunak. In Jonathan M.

Borwein and William M. Farmer, editors, Mathematical Knowledge Management, 5th In-
ternational Conference, MKM 2006, Wokingham, UK, August 11-12, 2006, Proceedings,
volume 4108 of Lecture Notes in Computer Science, pages 110–123. Springer, 2006.

10. Jacques Calmet and Karsten Homann. Classification of communication and cooperation
mechanisms for logical and symbolic computation systems. In Frontiers of Combining Sys-
tems (FroCos), pages 221–234, 1996.

11. Pierre Corbineau. A declarative language for the Coq proof assistant. In Marino Miculan,
Ivan Scagnetto, and Furio Honsell, editors, Types for Proofs and Programs, International
Conference, TYPES 2007, Cividale des Friuli, Italy, May 2-5, 2007, Revised Selected Papers,
volume 4941 of Lecture Notes in Computer Science, pages 69–84. Springer, 2007.

12. David Delahaye. A Proof Dedicated Meta-Language. Electronic Notes in Theoretical Com-
puter Science: Proceedings of Logical Frameworks and Meta-Languages (LFM), Copen-
hagen (Denmark), 70(2), July 2002.

13. Louise A. Dennis, Mateja Jamnik, and Martin Pollet. On the comparison of proof plan-
ning systems: λ -clam, Ω MEGA and IsaPlanner. Electronic Notes in Theoretical Computer
Science, 151(1):93–110, 2006.

14. Dominik Dietrich and Ewaryst Schulz. Crystal: Integrating structured queries into a tactic
language. J. Autom. Reasoning, 44(1-2):79–110, 2010.

15. Dominik Dietrich, Ewaryst Schulz, and Marc Wagner. Authoring verified documents by
interactive proof construction and verification in text-editors. In Serge Autexier, John Camp-
bell, Julio Rubio, Volker Sorge, Masakazu Suzuki, and Freek Wiedijk, editors, Intelligent
Computer Mathematics, 9th International Conference, AISC 2008, 15th Symposium, Cal-
culemus 2008, 7th International Conference, MKM 2008, Birmingham, UK, July 28 - August
1, 2008. Proceedings, volume 5144 of Lecture Notes in Computer Science, pages 398–414.
Springer, 2008.

16. Lucas Dixon and Jacques Fleuriot. A proof-centric approach to mathematical assistants. J.
of Applied Logic: Towards Computer Aided Mathematics Systems, 4(4):505–532, 2005.

17. Lucas Dixon and Jacques D. Fleuriot. Isaplanner: A prototype proof planner in Isabelle.
In Franz Baader, editor, Automated Deduction - CADE-19, 19th International Conference
on Automated Deduction Miami Beach, FL, USA, July 28 - August 2, 2003, Proceedings,
volume 2741 of Lecture Notes in Computer Science, pages 279–283. Springer, 2003.

16 Serge Autexier and Dominik Dietrich

18. Armin Fiedler. P.rex: An interactive proof explainer. In Rajeev Goré, Alexander Leitsch, and
Tobias Nipkow, editors, Automated Reasoning: Proceedings of IJCAR’01, number 2083 in
LNAI, pages 416–420, Siena, Italy, 2001. Springer.

19. Michael J. C. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh LCF – A
mechanised logic of computation. Springer Verlag, 1979. LNCS 78.

20. John Harrison. Proof style. In Eduardo Giménez and Christine Paulin-Mohring, editors,
Types for Proofs and Programs, International Workshop TYPES’96, Aussois, France, De-
cember 15-19, 1996, Selected Papers, volume 1512 of Lecture Notes in Computer Science,
pages 154–172. Springer, 1996.

21. Xiaorong Huang. Human Oriented Proof Presentation: A Reconstructive Approach. Number
112 in DISKI. Infix, Sankt Augustin, Germany, 1996.

22. Xiaorong Huang, Manfred Kerber, and Lassaad Cheikhrouhou. Adaptation of declaratively
represented methods in proof planning. Annals of Mathematics and Artificial Intelligence,
23(3–4):299–320, 1998.

23. Warren A. Hunt Jr., Matt Kaufmann, Robert Bellarmine Krug, J S. Moore, and Eric Whitman
Smith. Meta reasoning in acl2. In Joe Hurd and Thomas F. Melham, editors, Theorem
Proving in Higher Order Logics, 18th International Conference, TPHOLs 2005, Oxford,
UK, August 22-25, 2005, Proceedings, volume 3603 of Lecture Notes in Computer Science,
pages 163–178. Springer, 2005.

24. Daniel Kühlwein, Marcos Cramer, Peter Koepke, and Bernhard Schröder. The naproche
system. In Calculemus 2009 Emerging Trends, pages 8–18, Grand Bent, Canada, July 2009.

25. Narciso Martı́-Oliet, José Meseguer, and Alberto Verdejo. Towards a strategy language for
Maude. In Narciso Martı́-Oliet, editor, Proceedings Fifth International Workshop on Rewrit-
ing Logic and its Applications (WRLA 2004), volume 117 of Electronic Notes in Theoretical
Computer Science, pages 417–441. Elsevier, 2005.

26. Erica Melis and Jörg H. Siekmann. Knowledge-based proof planning. Journal Artificial
Intelligence, 115(1):65–105, 1999.

27. Claudio Sacerdoti-Coen. Declarative representation of proof terms. J. Autom. Reasoning,
44(1-2):25–52, 2010.

28. Don Syme. Three tactic theorem proving. In Bertot et al. [5], pages 203–220.
29. A. Trybulec and H. Blair. Computer assisted reasoning with MIZAR. In A. Joshi, editor,

Proceedings of the 9th Int. Joint Conference on Artifical Intelligence. M. Kaufmann, 1985.
30. Konstantin Verchinine, Alexander V. Lyaletski, and Andrey Paskevich. System for automated

deduction (SAD): A tool for proof verification. In Frank Pfenning, editor, Automated De-
duction - CADE-21, 21st International Conference on Automated Deduction, volume 4603
of Lecture Notes in Computer Science, pages 398–403. Springer, July 2007.

31. Eelco Visser. Stratego: A language for program transformation based on rewriting strategies.
System description of Stratego 0.5. In A. Middeldorp, editor, Rewriting Techniques and
Applications (RTA 2001), volume 2051 of Lecture Notes in Computer Science, pages 357–
361. Springer-Verlag, May 2001.

32. Markus Wenzel. Isar — a generic interpretative approach to readable formal proof docu-
ments. In Bertot et al. [5], pages 167–184.

33. Freek Wiedijk. Formal proof sketches. In Stefano Berardi, Mario Coppo, and Ferruccio
Damiani, editors, Types for Proofs and Programs, International Workshop, TYPES 2003,
Torino, Italy, April 30 - May 4, 2003, Revised Selected Papers, volume 3085 of Lecture
Notes in Computer Science, pages 378–393. Springer, 2004.

34. Vincent Zammit. On the implementation of an extensible declarative proof language. In
Bertot et al. [5], pages 185–202.

