
Offline and active gradient-based learning strategies in a
pushing scenario

Sergio Roa and Geert-Jan Kruijff
German Research Center for Artificial Intelligence / DFKI GmbH

{sergio.roa,gj}@dfki.de1

Abstract.

When operating in the real world, a robot needs to accurately pre-

dict the consequences of its own actions. This is important to guide

its own behavior, and in adapting it based on feedback from the

environment. The paper focuses on a specific problem in this con-

text, namely predicting affordances of simple geometrical objects

called polyflaps. A machine learning approach is presented for ac-

quiring models of object movement, resulting from a robot perform-

ing pushing actions on a polyflap. Long Short-Term Memory ma-

chines (LSTMs) are used to deal with the inherent spatiotemporal

nature of this problem. An LSTM is a gradient-based model of a Re-

current Neural Network, and can successively predict a sequence of

feature vectors. The paper discusses offline experiments to test the

ability of LSTMs to solve the prediction problem considered here.

Cross-validation methods are applied as a measure of convergence

performance. An active learning method based on Intelligent Adap-

tive Curiosity is also applied for improving the learning performance

of learners trained offline, generating a combination of learners spe-

cialized in different sensorimotor spaces after the knowledge trans-

fer.

1 Introduction

Robots need to learn in continuously changing environments. One

way to learn from the world is by interacting with objects present in

it. This work is inspired by the fact that humans and animals in gen-

eral are able to properly adapt to a dynamic environment. Theories

of cognitive development like the theory of affordances [5] attempt

to explain how creatures are able to acquire sensorimotor skills when

they are faced with the different features found in the environment.

For instance, surfaces afford posture, locomotion, collision, manip-

ulation, and in general behaviour [5]. Particular objects can afford

sliding, flipping, rolling behaviour. A consequence of this is that the

creature should then properly predict the consequences of actions on

a surface given its own body configuration. We consider here a spe-

cial case of affordances learning in robots, namely that of predicting

consequences of pushing simple geometrical objects called polyflaps.

Polyflaps have been proposed to design simple learning scenarios. A

polyflap is a polygon (concave or convex) cut out of a flat sheet of

some material (e.g. cardboard) and folded once (anywhere) to pro-

duce a 3-D object [17], cf. Fig. 1. By combining different objects

and performing different actions, we can steadily increase the com-

plexity of the learning environment.

1 The research reported of in this paper is supported by EU FP7 IP ”CogX”
(ICT-215181)

Figure 1. Polyflaps,
http://www.cs.bham.ac.uk/∼axs/polyflaps/. Used here are

polyflaps of the shape (bottom-right corner)

In this paper we discuss a learning scenario where a simulated

robotic arm interacts with a polyflap. In the implementation we use

the NVidia R© PhysXTM library that allows us to perform realistic

physical simulations and to obtain 3-dimensional feature vectors, so

that we can easily re-adapt our algorithms to real scenarios. Although

providing an idealized scenario, these experiments are necessary to

establish a base line from which we can start facing noisy and in-

complete features, where learning machines should be able to gener-

alize and present outcomes in the presence of uncertainty. The learn-

ing machines we use are able to process spatio-temporal features.

Specifically, we use the Long Short-Term Memory (LSTM) [7, 6]

model of an Artificial Neural Network. The main objective is that

the robot arm pushes the object and predicts a sequence of polyflap

poses encoded as rigid body transformations during a certain time

interval following the pushing action. To reduce the space- and time

complexity of the problem, we select a discrete set of possible ac-

tions and starting positions for the arm to start the pushing move-

ment. This reduction of dimensionality affords us also to evaluate

and analyse more easily and carefully the learning algorithms and

its corresponding results. In general, sliding and flipping affordances

are obtained by applying pushing actions. The experiments show that

the machines are able to model a sort of regression function that fits

the data very accurate. This fact is also crucial from the point of view

of dimensionality reduction, since the use of a learning machine to-

gether with its generalization abilities can highly reduce the need

of storage space. Moreover, the inherent recurrent topology of these

networks affords the reduction of space needed for storing spatio-

temporal information.

The characteristics of these learning machines are appropriate for

autonomous development of robots [10, 14]. Robots should be able

to autonomously acquire sensorimotor skills by interaction with the

environment. Thus, machines that are able to learn in an online and

active manner need to be used. Neural Networks in general are useful

for these tasks, since their weights can be updated efficiently by us-

ing one forward and one backward pass when we use gradient-based

methods. However, one has to be careful with the problem of overfit-

ting data (bias-variance tradeoff). Therefore, a sufficiently big set of

samples and iterations are needed in order to generalize sufficiently

well a dataset.

We tested the topology of the neural network in order to find a

good compromise between computational complexity and general-

ization ability. For that purpose, we extracted n-fold crossvalidation

sets and analyzed the average sum of squares error for all training

epochs. The problem that we tackle can be regarded as a time series

prediction problem approached by regression techniques. Therefore,

the sum of squares error is a good performance estimation. The ex-

periments show that the machines are able to accurately predict a

feature vector, given a history of precedent feature vectors that to-

gether form a sequence. After offline training, we applied an active

learning technique based on the Intelligent Adaptive Curiosity algo-

rithm [10, 14], by including an additional set of actions in order to

test the autonomous generation of different regions in the sensorimo-

tor space that allows an active selection of samples via maximization

of a measure of learning progress and multiple learners specialized

in each region. We also show that the generalization is improved by

the set of machines (which are only “biased” for their corresponding

regions).

This paper is organized as follows. In the next section, we present

a current state of the art related to affordances learning in robots and

recurrent neural networks. In section 3, we describe the learning sce-

nario and the features we used for training LSTMs. In section 4 we

present the offline learning mechanism and architecture employed.

In section 5 we show and explain experimental results for offline ex-

periments with LSTMs. In section 6 we explain the active learning

mechanism and results and in section 8 we present some concluding

remarks and planned work.

2 Related Work

Affordances learning has been introduced in the field of robotics in

recent years. The reason is that aiming to autonomous behaviour

in robots requires an inspiration from biological cognitive systems,

which are very successful on acquiring sensorimotor skills by their

own means. As a cognitive science theory, the field was introduced

by the perceptual psychologist J.J. Gibson [5]. An affordance in this

sense is a resource or support that the environment offers an agent

for action, and that the agent can directly perceive and employ. From

the robotic perspective, this concept implies that the robots should be

able to predict consequences of actions given certain object features

and robotic embodiment.

In the field of robotics, a compilation of works related to

affordance-based robot control can be found in [15]. A similar ap-

proach to the one presented in this work is described in [12]. In that

work, labels of object/action pairs and 11 features encoding the ac-

tion performed and the object behaviour are used to train Self Orga-

nizing Maps. In this way, they cluster this space and map the features

to the target function represented by such labels. Pushing actions

were performed on different objects in a real environment. Other ap-

proaches have used also similar features and learning methods and

have studied different kinds of affordances [2].

Perception of affordances has also been addressed with reinforce-

ment learning techniques. In [11], the robot performs different learn-

ing stages starting from recognizing affordances and finally accom-

plishing some task given the affordances that the robot has already

acquired in earlier stages. In that work, liftable vs. non-liftable ob-

jects are recognized and Markov Decision Processes are used for the

goal-based task. In [10, 14] the robot autonomously enters differ-

ent stages of development by interacting with objects or performing

some action, which is selected according to a measure of “interest-

ingness”. Thus, robots are intrinsically motivated to perform actions

that offer an opportunity to learn according to an estimation of learn-

ing progress calculated from prediction error histories.

However, we can consider that these aproaches use a kind of short-

term memory or mapping approach that does not take into account

the spatio-temporal processing of data when an action is performed

in a given time interval. Moreover, in some approaches there is an

explicit labelling of the recognized affordances or the robot has no

means to evaluate the accuracy of its predictions. In order to evaluate

the abilities of learning machines in processing a series of features

like rigid body transformations that gives us a more accurate assess-

ment of the object poses and behaviour, we are using recurrent neural

networks that are known to process sequences and obtain proper gen-

eralizations by infering regression functions.

A simulated scenario using also polyflaps is described in [9]. The

authors formalise the learning problem in a probabilistic framework.

Explicit 3D rigid body transformations are predicted by that models

and they are tested against novel objects similar in shape to polyflaps.

Long Short-Term Memory machines have been used for problems

like time-series prediction, sequences classification, phoneme classi-

fication, reinforcement learning, among others [7, 6, 1]. They are ap-

propriate to handle long-term dependencies in data sequences. There-

fore, they seem to have a high potential to be used in learning tasks

where compositionality and conditional dependencies of events or

states is encountered through a relatively broad time period.

The work described in this paper is a follow-up of the one pre-

sented in [13].

3 Learning Scenario

Figure 2. Learning scenario with a polyflap

The learning scenario is shown in Fig. 2. The simulated arm cor-

responds to a Neuronics R© Katana 6MTM arm with a ball as a simple

finger. In order to simulate a pushing action we apply a linear trajec-

tory over a specified time period until it reaches the desired pose. The

arm has 6 joints, including the last joint for the finger which is static.

The representation of object poses are in Euler angles with respect to

a reference frame which is the origin in the scene (6-D pose).

The features corresponding to the arm are a starting 6-D pose vec-

tor for the end-effector e0, and a real value denoting a direction angle

Θ ranging from 60 to 120 degrees, parallel to the ground plane in the

direction to the center of the standing polyflap side. Together, these

features form the motor command feature vector denoted as m. The

values are all normalized to obtain vectors with mean 0 and standard

deviation 1.0. A 6-D pose vector corresponding to the polyflap pose

is denoted as pt at time t. The pose p0 is fixed for all experiments.

Then, the concatenation f0 = [m e0 p0] represents the feature

vector to be fed initially to the neural network. The subsequent fea-

ture vectors fed to the machine have the form ft = [0 et pt], where

the size of 0 is the size of m. This representation affords the learning

machine to attain a better convergence.

During the execution of the arm path, we obtain a series of poses

〈pt, et〉 to construct a feature vector ft. We extract then n polyflap

and effector poses and finally we build a sequence set S = {fn
t=1}.

So, a particular sequence set (an instance) is used in each iteration of

the experiment to be fed to the LSTM in n + 1 steps. For the time

step t, a training tuple 〈ft, tt〉 is used for the neural network learn-

ing procedure, where the feature vector ft represents the input vector

and tt = pt+1 the target (predicted) vector encoding the predicted

polyflap pose.

This representation then encodes the rigid body transformations

of polyflap and effector through these n steps and also encodes the

given robot control command that performs the pushing movement.

In order to discretize and reduce the dimensionality of the task, we

only used a discrete number of different starting positions for the arm

to start the pushing movement.

4 Offline Learning method

The learning process used for training LSTMs with the features de-

scribed in section 3 is described here. As mentioned in the previous

section, a dataset D containing a certain quantity of sequences Si is

obtained and we perform offline experiments with these data.

A LSTM machine is usually composed of an input layer, a hidden

layer and an output layer. In general, recurrent neural networks can

have recurrent connections for all their neurons. In particular, in this

work we only use recurrent connections for the hidden layers. We

also made preliminary experiments with networks with no recurrent

connections and we found less performance. The LSTM [7, 6, 1] ar-

chitecture was developed in order to solve some learning issues in

recurrent neural networks related to long-term dependencies learn-

ing. These problems sum up to the problem that errors propagated

back in time tend to either vanish or blow up. This is known as the

problem of vanishing gradients.

LSTM’s solution to this problem is to enforce constant error flow

in a number of specialized units, called Constant Error Carrousels

(CECs), corresponding to those CECs having linear activation func-

tions not decaying over time. CECs avoid to transmit useless infor-

mation from the time-series by adding other input gates that regulate

the access to the units. Thus, they learn to open and close access

to the CECs at appropriate moments. Likewise, the access from the

CECs to output units is controlled by multiplicative output gates and

they learn in a similar way how to open or close the access to the

output side. Additionally, forget gates [3] learn to reset the activation

of the CECs when the information stored in them is no longer use-

ful, i.e., when previous inputs need to be forgotten. The combination

of a CEC with its associated input, output and forget gate is called

a memory cell, as depicted in Fig. 3. Other additions are peephole

weights [4], which improve the LSTM’s ability to learn tasks that re-

quire precise timing and counting of internal states, and bidirectional

connections [16].

Output gate

Input gate

Forget gate

Net input

Net output

CEC

h

g
1.0

Figure 3. LSTM memory block with one cell. The internal state of the cell
is maintained with a recurrent connection of fixed weight 1.0. The three

gates collect activations from inside and outside the block, and control the
cell via multiplicative units (small circles). The input and output gates scale
the input and output of the cell while the forget gate scales the internal state.

The cell input and output activation functions (g and h) are applied at the
indicated places [6].

In this work, we used 10 memory blocks in the hidden layer, which

was found to be a good compromise between computational com-

plexity and convergence.

When some input vector is fed to the network, the forward pass is

calculated as follows. Let us denote an output neuron (unit) activation

yo, an input gate activation yin, and output gate activation yout and a

forget gate activation yf . Then, for the time step t each of them are

calculated in the following standard way:

y
i(t) = fi(

X

j

wijy
j(t − 1)), (1)

where wij is the weight of the connection from unit j to unit i, and

f the activation function. In this paper, we only consider one CEC

activation (one cell) for each memory block. The CEC activation sc

for the memory cell c is computed as follows:

sc(t) = y
fc(t)sc(t − 1) + y

inc(t)g(
X

j

wcjy
j(t − 1)), (2)

where g is the cell input activation function. The memory cell output

is then calculated by

y
sc(t) = y

outc(t)h(sc(t)), (3)

where h is the cell output activation function. The backward pass is a

steepest (gradient) descent method which updates the weights of the

different types of units. Consider a network input aj(t) to some unit

j at time t. In general, the gradient is defined as:

δj(t) =
δE

δaj(t)
, (4)

where E is the objective (error) function to be minimized and used

for training. For a detailed explanation of the backward pass equa-

tions for each unit type cf. [6]. Since we are dealing with a regres-

sion problem, we consider the sum of squares error as a performance

measure. The error function is defined as:

Et =
1

2K

X

i

(yi − y
′
i)

2
, (5)

where K is a normalization factor which depends on the size of each

sequence ni and the total number of sequences in the dataset k. yi is

the output unit activation and y′
i is the expected value. The learning

process is described in the Algorithm 1.

Data: A dataset D1 containing k sequences of variable size ni

for training. A dataset D2 containing z sequences of size

nj for testing.

Result: An LSTM machine after error minimization.

Nr. of epochs ep = 0.

repeat

for i=1 to k do

for j=1 to ni do
Input: Present training tuple 〈fij , tij〉 (jth forward

pass step).

end

Calculate error ei associated to current training

sequence Si.

Backward pass.

end

Evaluate error Et with the test set D2.

Epoch ep = ep + 1.

until No new network found with lowest error after 20 epochs ;

Algorithm 1: Offline learning process

For the purpose of calculating the number of training sequences

that are necessary so that convergence improves, we generated n-

fold cross-validation sets. We split a dataset D into n disjoint sets of

equal size that are used for testing. We used the remaining data for

training n different networks.

5 Experimental results for Offline Learning

In order to test the convergence of LSTMs we used 10-fold cross-

validation sets for three different dataset sizes, namely 100, 200 and

500. That allowed us to estimate the approximate number of samples

that are needed to learn with high precision the prediction task.

In Fig. 4 a comparison of the average sum of squares error (SSE)

and SSE standard deviation is shown. In this case, the SSE is aver-

aged among all the cross-validation sets. The picture shows that the

SSE is considerably reduced when more samples are used, as ex-

pected, and likewise the standard deviation of the SSEs.

6 Active Learning

The active learning procedure is based on the work of Oudeyer et

al. [10] about Intrinsic Motivation Systems. The general idea of

the Intelligent Adaptive Curiosity (IAC) algorithm is that a meta-

learning system samples a set of actions and selects one that maxi-

mizes the learning progress, which is a measure based on the differ-

ence between smoothed current and previous mean error quantities.

The learning progress Lr is associated to a region Rr in the senso-

rimotor space. Starting with one region, successive regions are ob-

tained by splitting the sensorimotor space depending on a measure

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

100
200

500

Nr. of samples

Comparison of SSEs given nr. of samples

SSE for CV training sets
SSE for CV testing sets

Figure 4. SSEs are reduced when increasing the dataset size.

of variance in the dataset Dr (exemplars used for Region Rr). This

division is performed after |Dr| achieves a certain threshold κ. A

dataset Dr for a Region Rr is split in two datasets Dr+1,Dr+2 (for

regions Rr+1,Rr+2). Let us denote

Dr = {Si}

the set of instances in region Rr . Then the split of Dr defined by the

index c with value vc is performed when the following criterion (Γ)

is met:

• all the instances Si of Dr+1 have the cth component of their motor

command vector mi smaller than vc.

• all the instances Si of Dr+2 have the cth component of their motor

command vector mi greater than vc.

• the quantity |Dr+1| · σ({[eij pij]
ni

j=1 ∈ Dr+1}) + |Dr+2| ·
σ({[eij pij]

ni

j=1 ∈ Dr+2}) is minimal, where

σ(S) =

P

v∈S ‖v −
P

v∈S v

|S|
‖2

|S|

where S is a set of vectors.

Each region stores all cutting dimension and values that were used in

its generation as well as in the generation of its parent regions. For

the region Rr a learning machine Mr is stored, and this machine is

inherited by the child regions. The learning process is described in

the Algorithm 2.

Data: An initial region R0 which encompasses the whole

sensorimotor space.

Result: A set of regions {Rr} with corresponding LSTM

machines {Mr}.

for i=1 to I do
Choose a motor command action

mr,i = arg max
m∈{Rr}{Lr,i} among all current regions

{Rr} by using a near to greedy policy with probability 0.3.

if κ then
Split region Rr into Rr+1 and Rr+2 according to Γ.

end

Calculate error er,i associated to current training sequence

Sr,i.

Update the machine Mr with a forward and backward pass.

Calculate smoothed mean error εr,i+1 and εr,i+1−τ with a

window parameter τ and a smoothing parameter θ.

Calculate the decrease in the mean error rate

∆r,i+1 = εr,i+1 − εr,i+1−τ .

Calculate the learning progress Lr,i+1 = −∆r,i+1.

end

Algorithm 2: Active learning process

7 Experimental Results for Active Learning

In order to test the active learning mechanism, the main idea is to

train offline a LSTM with a subset of all possible starting positions

producing a partial set of actions and thus a dataset D0 ⊂ P0, where

P0 is the sensorimotor manifold encompassing D0. Then, we use this

machine in the active learning loop allowing additional actions, so

that at the end we generate a dataset D1 ⊂ P1, where P0 ⊂ P1 . The

hypothesis is that the algorithm will start producing more frequently

actions corresponding to the sensorimotor regions associated to the

new actions.

Thus, we first trained offline a LSTM with a subset of possible

starting positions for the arm movement and a number of sequences

equal to 500. This generates the dataset D0. When initializing the

active learning procedure, we allowed all possible starting positions

for the arm movement. Then, we initialize the region R0 with the al-

ready trained machine M0 that introduces better generalization per-

formance according to the cross-validation sets. We apply a maxi-

mum number I = 300 of iterations, after which a new dataset D1

is generated. Then, we merge the datasets into a set D = D0 ∪ D1.

We use the set D to test the errors of the machine trained offline and

the ensemble of machines trained via active learning. The results are

shown in Table 1.

Table 1. An ensemble trained via IAC against an offline trained machine.

Machine Avg SSE

Offline 0.4251
Active 0.211991

The unique observation here is that the generalization performance

is improved by using the new active learner, which is a expected re-

sult. In order to check the hypothesis presented above, we analysed

the learning progress of the ensemble of machines created after split-

ting the sensorimotor space in different regions.

As expected, the algorithm starts to select very frequently actions

that are new or “interesting”. In Fig. 5, we can observe the frequency

of actions generated from each set of starting positions for a win-

dow of 20 iterations. For instance, from index ∼150 to ∼250 the

new set of actions are more frequent. This result also confirms the

generation of different stages of development that the IAC algorithm

produces [10]. We make the same observation for a specific region

(Fig. 6). In Fig. 7 the curves of learning progress and error for the

corresponding region are shown. We can observe that the learning

progress curve rises and the error drops.

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

V
al

u
es

Iterations

 Frequency of actions (window size: 20)

starting positions 1 - 9
starting positions 10 - 18

Figure 5. Frequency of actions in the experiment.

 0

 5

 10

 15

 20

 0 50 100 150 200 250 300

V
al

u
es

Iterations

Region 38

starting positions 1 - 9
starting positions 10 - 18
current region not active

Figure 6. Frequency of actions for a specific region (window size: 20).

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 100 120 140 160 180 200 220 240 260 280 300

V
al

u
es

Iterations

Region 38

Learning progress history
Errors history

Figure 7. Learning progress increase for a certain region.

In Figures 8,9 the prediction ability of a learning machine over a

sequence is illustrated.

Figure 8. Prediction of the flipping affordance. The blue polyflap is the
first predicted polyflap in the current sequence and the red one the last

predicted one.

Figure 9. Prediction of the sliding affordance.

8 Conclusions and future work

The experiments shown in this paper demonstrate the ability of re-

current neural networks, in particular Long Short-Term Memory ma-

chines to approximate a regression function encoding the trajectory

of simple geometrical objects when pushing actions are performed.

Therefore, these machines are useful for predicting the affordances of

pushing actions. We used 3-dimensional features and realistic simu-

lations that we can then apply to real environments. Sequences of fin-

ger effector and polyflap poses were used to feed the LSTMs, show-

ing the capacity of LSTM for prediction in relatively large time pe-

riods. The offline experiments showed great accuracy in prediction.

The use of an active learning mechanism where machines are special-

ized in different parts of the sensorimotor space was also tested. The

selection of actions is performed via a measure of learning progress

that improves generalization.

In this work, the motivation to select an action via active learn-

ing is mainly based on the curiosity-driven mechanism introduced

by the IAC algorithm. This mechanism forces the robot to select ac-

tions that maximize a learning progress measure. This encourages

the reduction of error for sensorimotor regions that are still not accu-

rately learned. The effectivity of the IAC-based strategy for assessing

learning progress in sensorimotor regions with spatio-temporal fea-

tures is confirmed. Moreover, machines that take into account spatio-

temporal information fit well into the active learning loop. However,

the gradient-based method for updating the networks still makes the

process slow, so that many iterations are needed to observe high im-

provements. It is possible to add additional drives or measures for

selecting actions in order to have different strategies for accelerating

the learning progress. Additionally, alternative algorithms for LSTM

training may also be considered.

The CrySSMEx[8] algorithm has been used to analyse recurrent

networks as dynamical systems by using a conditional Entropy based

method that extracts a probabilistic automaton associated to a ma-

chine. This method might be useful for active learning, because it

represents uncertainty and predictability during the processing of

spatio-temporal features.

REFERENCES

[1] Bram Bakker, ‘Reinforcement learning with long short-term memory’,
in Advances in Neural Information Processing Systems 14, pp. 1475–
1482. MIT Press, (2002).

[2] Paul Fitzpatrick, Giorgio Metta, Lorenzo Natale, Sajit Rao, and Giulio
Sandini, ‘Learning about objects through action - initial steps to-
wards artificial cognition’, in Proceedings of the 2003 IEEE Interna-

tional Conference on Robotics and Automation (ICRA), pp. 3140–3145,
(2003).

[3] Felix A. Gers, Jürgen Schmidhuber, and Fred Cummins, ‘Learning to
forget: Continual prediction with lstm’, Neural Computation, 12, 2451–
2471, (1999).

[4] Felix A. Gers, Nicol N. Schraudolph, and Jürgen Schmidhuber, ‘Learn-
ing precise timing with lstm recurrent networks’, J. Mach. Learn. Res.,
3, 115–143, (2003).

[5] J. J. Gibson, ‘The theory of affordances’, in Perceiving, Acting,

and Knowing: Toward an Ecological Psychology, eds., R. Shaw and
J. Bransford, 67–82, Lawrence Erlbaum, (1977).

[6] Alex Graves, Supervised Sequence Labelling with Recurrent Neural

Networks, Ph.D. dissertation, Technische Universität München, July
2008.

[7] Sepp Hochreiter and Jurgen Schmidhuber, ‘Long short-term memory’,
Neural Computation, 1735–1780, (1997).

[8] H. Jacobsson, ‘The crystallizing substochastic sequential machine ex-
tractor - CrySSMEx’, Neural Computation, 18(9), 2211–2255, (2006).

[9] M. Kopicki, J. Wyatt, and R. Stolkin, ‘Prediction learning in robotic
pushing manipulation’, in Proceedings of the 14th IEEE International

Conference on Advanced Robotics (ICAR 2009), Munich, Germany,
(June 2009).

[10] P-Y. Oudeyer, F. Kaplan, and V. V. Hafner, ‘Intrinsic motivation sys-
tems for autonomous mental development’, IEEE Transactions on Evo-

lutionary Computation, 11(1), (2007).
[11] L. Paletta, G. Fritz, F. Kintzler, J. Irran, and G. Dorffner, ‘Learning to

perceive affordances in a framework of developmental embodied cog-
nition’, in Development and Learning, 2007. ICDL 2007. IEEE 6th In-

ternational Conference on, pp. 110–115, (July 2007).
[12] B. Ridge, D. Skočaj, and A. Leonardis, ‘A system for learning basic ob-

ject affordances using a self-organizing map’, in International Confer-

ence on Cognitive Systems CogSys 2008, Karlsruhe, Germany, (2008).
[13] Sergio Roa and Geert Jan Kruijff, ‘Long short-term memory for affor-

dances learning’, in Proceedings of the 9th International Conference

on Epigenetic Robotics, eds., Lola Caamero, Pierre-Yves Oudeyer, and
Christian Balkenius, number 146 in Lund University Cognitive Studies,
pp. 235–236. o.A., (11 2009).

[14] Sergio Roa, Geert Jan Kruijff, and Henrik Jacobsson, ‘Curiosity-driven
acquisition of sensorimotor concepts using memory-based active learn-
ing’, in Proceedings of the 2008 IEEE International Conference on

Robotics and Biomimetics, pp. 665–670, (2008).
[15] Towards Affordance-Based Robot Control - LNAI 4760, eds., Erich

Rome, Joachim Hertzberg, and Georg Dorffner, Lecture Notes in Com-
puter Science LNAI 4760, Springer Verlag, Berlin, Germany, 2008.

[16] M. Schuster and K.K. Paliwal, ‘Bidirectional recurrent neural net-
works’, Signal Processing, IEEE Transactions on, 45(11), 2673–2681,
(Nov 1997).

[17] Aaron Sloman, ‘Polyflaps as a domain for perceiving, acting and learn-
ing in a 3-D world’, in Position Papers for 2006 AAAI Fellows Sympo-

sium, Menlo Park, CA, (2006). AAAI.

