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Abstract

This paper presents preliminary results of the ongo-
ing project RIMRES – Reconfigurable Integrated Multi-
Robot Exploration System1. The paper outlines the con-
cept of a novel approach for realising sliding autonomy
with a mixed team of humans and robots. In order to in-
crease the overall team efficiency, a formalised trust based
relationship between operator and system is suggested, al-
lowing a robotic system to use a self-confidence measure
to actively control its autonomy mode. This paper pro-
vides a survey on the current state of the art in the relevant
field and gives an outline of the developed concept and its
motivation. To support the understanding of the concept
initial experimental results are presented, followed by a
discussion of the concept.

1 Introduction

Robots are nowadays used in a variety of applica-
tions ranging from lawn cutting to exploring extraterres-
trial environments. The application of robots is most often
triggered by efficiency reasons and thus much research is
put into developing reliable and autonomously operating
robots. However, with a broad range of applications, yet
no robot with overall human-like capabilities has surfaced,
but most often robots are specialized for a selected set of
tasks. While some robots will operate fully autonomously
within this set of task, many others will be usually op-
erating on a scale between fully autonomous and manu-
ally controlled by an operator. The reasons lie in mini-
mizing associated risks, i.e. harming humans, damaging
property or loosing the robot itself, and originate from a
lack of technological abilities and limit of trust into au-
tonomously operating systems. This lack of trust into au-
tomation is even bigger, when there is a direct comparison
to human performance, while it will be far less for indus-

1The project is funded by the German Space Agency (DLR), Grant
No. 50 RA 0904. RIMRES is a cooperation between the DFKI Bre-
men - Robotics Innovation Center and ZARM - Center of Applied Space
Technology and Microgravity

trial applications which focus on speed and accuracy far
out of reach for human performance.

For robot operations at remote, previously inaccessi-
ble or even hazardous locations the highest risk associated
comes with the loss of the robot itself. Thus, such opera-
tions follow a rather conservative approach of controlling
robots, meaning a stronger tendency towards manual con-
trol. Commonly, this will mean that a mixed team of hu-
mans and robots perform such missions. For many mixed
teams an efficient execution of the overall mission is es-
sential and becomes even more important when deploying
a multi-robot system.

Multi-robot systems can be applied in a variety of
ways: be it as a collection of simple, but homogeneously
designed robots in swarms or as small teams of hetero-
geneous robots each designed to perform a specific task.
For most applications of multi-robot systems at least one
system operator will be necessary to monitor task execu-
tion. However, the risk of loosing the device and any di-
rectly associated costs vary independently, e.g. loosing a
single member of a robotic swarm with greater than 100
homogeneous devices versus loosing a member of a small
robotic team with about five members which have unique
capabilities. To reduce the risk, a ratio of 1:1 between the
number of operators and number of robots does provide a
possible solution, but requires additional organization and
communication strategies. Therefore an efficient solution
to mixed team control is required.

The development of an efficient team control for a
small team of robots is part of the project RIMRES. This
robotic team consists of two main robot types: a rover and
a scout. One of the main features of the team is its flexibil-
ity of combining functionality: the rover and the scout can
act as a single functional unit, i.e. combined they actually
represent a third main type of robot. In addition, standard-
ized modular components allow the dynamic creation of
further team members, e.g. by combining a battery mod-
ule with a payload module, or they add functionality to
rover or scout. All team members will also be able to per-
form autonomous operations such as executing scientific
experiments.



The project RIMRES evaluates the application of this
team for deployment on the lunar surface. The robotic
team is supported by ground operators. While there is
only one physical rover and scout in RIMRES, the project
also supports the deployment of a larger team of robots.
The number of main robots and modular components
therefore requires to find a control mechanism that opti-
mises the efficiency of the anticipated mixed human-robot
team.

Different concepts already exist to control robots em-
bedded in mixed human-robot teams. The field of sliding
autonomy [12] also known as adaptive/adjustable auton-
omy and mixed initiative control is one area that has been
focusing on this topic. Its central motivation of research
is increasing the efficiency of mixed teams by adjusting
the autonomy level of individual robots. In this paper, we
want to present a novel approach to allow optimisation of
a system’s autonomy and mixed initiative control. This
approach is based on a trust based relationship between
operator and system, eventually allowing the system to
use a self-confidence measure to actively control its level
of autonomy.

This paper is structured as follows. We highlight the
state of the art in the relevant areas of our approach in Sec-
tion 2. Our concept is described in Section 3. Initial ex-
periments to illustrate elements of the concept have been
performed and are presented in Section 4. Eventually, we
discuss our approach in Section 5, and conclude as well as
give an outlook in Section 6.

2 Background and Related Work

The following three sections will highlight the state of
the art in the relevant areas for our approach: definition of
autonomy levels, concepts for sliding autonomy, and trust
in automation.

2.1 Autonomy and autonomy levels
Definitions of individual levels of autonomy are

commonly used to describe the capabilities of an au-
tonomously operating system. Many approaches de-
fine a discrete set of autonomy levels, though Parasur-
aman et al. [20] stress, that the level of automation lies
on a continuous scale between fully manual and fully au-
tonomous operation as. Often these discrete level defini-
tions refer to the known ten point scale of Sheridan and
Verplank [22]. Sheridan and Verplank advocated a set of
ten discrete autonomy levels early on, using generic be-
haviours to define each level, e.g. operating with an au-
tonomy level of six allows a human a restricted time to
veto against the automatic action of a system. Here, levels
mainly refer to the source of initiative for requesting infor-
mation or making a decision. In [20], Parasuraman et al.
extend the initial approach of Sheridan and Verplank to a

four-stage model of human information processing con-
sisting of an automation level for information acquisition,
information analysis, decision selection and action imple-
mentation each, but stress the need for empirical evalua-
tion for level of autonomy especially for information ac-
quisition and analysis. Such evaluation can be found in
[7][8], where Fereidunian et al. confirm the need for dif-
ferent autonomy levels for each dimension.

Given a discrete set of autonomy levels, many re-
searchers use a context specific selection of dimensions
and levels. For example, Dorais et al. [5] consider the fol-
lowing aspects: (1) task complexity, (2) number of subsys-
tems, (3) situations when systems override manual con-
trol, and (4) duration of autonomous operation. The US
National Institute of Standards and Technology (NIST)
specifically addressed this issue and hosts an open work
group called ALFUS (Autonomy Levels For Unmanned
Systems), though seemingly inactive since 2008. The aim
of this group is to define autonomy ’from remote control
to full and intelligent autonomy’ in a metric based sys-
tem (again on a scale of zero to ten). NIST considers
three dimensions to define autonomy levels: (1) mission
complexity, (2) one of: human/operator independence, or
autonomy level and (3) environmental complexity. Here,
the highest autonomy level offers independent actions in
extreme environments. In contrast, Sholes [23] considers
another four specific dimensions for autonomy: environ-
ment observation, orientation, decision making and action
taking. He also uses ten autonomy levels, but in combina-
tions with the dimensions it leads to a four by ten auton-
omy control level matrix (ACLs). For each element of the
matrix he provides a detailed description of capabilities.

Another evaluation for autonomy levels lies in con-
trast to the previously described ones and is given by Hu-
ber [13]. From his point of view a robot’s level of auton-
omy depends on the robot’s sensitivity to external, pos-
sibly negative influences that try to corrupt the robot and
stand in contrast to resource dependencies that might arise
in multi-robot scenarios. To define an autonomy level a
single value computed as a weighted sum of two other
parameters representing social integrity and social depen-
dencies. The value representing social integrity is based
on the analysis of the robot internal flow of information.
Huber assumes that passing information through different
reasoning layers removes external influences. Thus, social
integrity is a more or less predefined characteristic of an
individual robotic system, since it depends only on inter-
nal information processing structures (path of influence).
As such social integrity quantifies the ’weakness’ of an
agent toward outer influences. In contrast, social depen-
dency can vary throughout a task given changing (social)
dependencies among agents.



2.2 Switching between autonomy levels

It is essential to understand the meaning of auton-
omy and autonomy levels. However, concepts for switch-
ing between autonomy levels are part of sliding auton-
omy research and try to develop concepts for the effi-
cient use of the existing autonomy levels. An overall ap-
proach of using sliding autonomy is shown in [21]. Sell-
ner et al. address the challenge of defining sliding au-
tonomy for multi-agent systems and identify three critical
factors: (1) a robot’s ability to request help, (2) an opera-
tor’s situational awareness (also stressed by Whitlow and
Dorneich [25]) once a robot requires help and (3) coor-
dination of the whole team, when an individual robot is
controlled manually. Their basic assumption is that au-
tomation serves to maximise the team efficiency and they
increase the success rate of team operations by embed-
ding a prediction for task duration and success (or failure).
They use empirical data for each task to compute priors for
autonomous operation and operator controlled execution,
and embed this concept into the more generic approach
of proactive planning. They use two specific modes de-
fined by Heger and Singh [12]: (1) System-Initiative Slid-
ing Autonomy (SISA), where robots request help from
the operator, and (2) Mixed-Initiative Sliding Autonomy
(MISA), where the operator constantly monitors progress
and interferes if required.

In many applications, system-initiative becomes an
important factor and Baker and Yanco [1] show that even
though switching autonomy levels can lead to higher effi-
ciency, requiring an operator to actively switch between
autonomy levels leads to poor performances. The pro-
cess of gaining situation awareness distracts operator from
its original task, and they tackle this problem by em-
bedding an algorithm to suggest to the operator when
to switch the autonomy level. Meanwhile, a variety of
system-initiative procedures have been developed. While
using system-initiative to trigger a scientific search [6] is
a rather simple example, Kaupp and Makarenko [15] use
a decision theoretic approach and include humans as a
resource for robots. They consider different sources of
information, and estimate the benefit of including infor-
mation from other sources into a future decision. Thus,
whether an operator has to be involved in a robotic ac-
tion or not depends only on usefulness and the autonomy
level is eventually reflected by the frequency of request-
ing information. In comparison Machinetta aka Multia-
gent Adjustable Autonomy Framework (MAAF) [10] uses
a decision-maker hierarchy and delegates control to a ca-
pable decision-maker at the time and follows a predefined
escalation sequence to do so. Decisions are forwarded un-
til a capable decision-maker be it human or robot has been
found, though Freedy et al. do not not clarify in this paper,
what the constraints are in order to be capable of making
a decision.

2.3 Trust in automation
In most autonomy concepts the factor trust is only

represented implicitly - by allowing a robot to act au-
tonomously one trusts the robot to be capable of perform-
ing actions without supervision. Nevertheless, various
studies relating trust in automation have been performed
within the field of human factor research: Lee and Moray
[18][17] investigate on the development of human trust
into automation, while Freedy et al. [9] try to give a ratio-
nal and analytical founded trust model [2] [16]. A good
general discussion of trust is provided by Madhavan and
Wiegmann [19], and showing that trust in automation does
reflect multiple factors ranging from self-confidence of the
operator to the perceived experience with a system and
thus reduces a complex situation initially to a rather fuzzy
description.

Blomquist [2] provides a collection of references to
social psychology that also holds for mixed human-robot
teams. First of all, trust comes with some information and
risk, since complete knowledge makes trusting obsolete,
while no knowledge does not give any grounds for trust.
Furthermore, trust requires belief into trustworthiness of
the counterpart and the consequence of the trusting person
(or system) to rely on it. Blomquist also acknowledges
that trust will be situation-specific and presents multiple
definitions of trust which vary throughout the fields of
philosophers, social psychologists, economists and more.

A first approach of modelling trust is presented by
Freedy et al. [9] who use a relative expected loss function
which weights the actual observed risk of a faulty opera-
tion against the number of operator overrides.

3 Concept

The following sections outline the motivation for our
concept and the essential elements of the concept itself:
measure of trust, measure of self-confidence, and the de-
sign of the system-initiated switch.

3.1 Motivation
It can be seen from the current state of the art, that

there are two complementary but insufficiently answered
questions: (1) when to automate, and (2) when not to au-
tomate. While (1) comes with a preference for manual
operation and mistrust into automation, (2) assumes ini-
tial full trust in automation with a need to limit this trust
in specific situation.

In our assumption we naturally thrive for maximising
automation. However, maximising automation does not
mean to automate at all cost, but automating tasks so that:
(1) the overall (mixed) team efficiency increases and (2)
that the goal is being achieving with an equal or better
result compared to a lesser degree of automation.



Similar to Heger and Singh [12], we aim at a com-
bined SISA/MISA mode which we redefine as mixed-
initiative mode. This takes into consideration their ob-
servation that choosing between SISA and MISA does
not make a big difference regarding efficiency, but that a
human’s attention does. In addition, many other authors
[4][5][21][24] have stressed the general importance of sit-
uation awareness for mixed human-robot teams as well.
However, we have to consider the finding of Baker and
Yanco [1] and focus on the system-initiative. Thus, we
will aim at using three main modes: (1) manual mode, (2)
mixed-initiative mode, and (3) (full) autonomous mode.
We also use three switching types: (1) preassigned switch,
(2) human-initiated switch and (3) robot-initiated switch.
The types have been already mentioned by Brookshire [3]
and Figure 1 illustrates their meaning for a task performed
by a mixed team.

Figure 1. Interaction methods for a mixed team

The mixed-initiative mode lies at the centre of atten-
tion, so that we aim at system-initiated switching between
autonomy levels, but also having one or more operators,
which are responsible for monitoring multiple systems.
We assume that each robot has an optimal setting of its
autonomy mode, were it maximises the team efficiency,
i.e. operating in a safe, autonomous manner, and request-
ing help when needed. Efficiency can be measured using
a cost function, which depends on following parameters:
risk of loosing the robot, costs of replacing the robot, num-
ber of operator interactions, number of human-initiated
switches, severity of the switching reason, amount of time
required for human-interactions, and the success of the
operation. Thus, we have to maintain a high reliabil-
ity, while minimizing human-interactions and especially
human-initiated switches, since they indicate problems
the robot could not even identify.

While a broad range of application and device specific
autonomy levels exist, we will try to achieve an implicit
definition of the autonomy level. The level of autonomy
should directly depend on the amount of external support
a system requires. In our scenario, the autonomy level has
therefore to reflect the dependency on human intervention.

Our reasoning for embedding a trust relationship with

Good’s [11] definition of trust, which fits our situation
best:

”Trust is based on an individual’s theory as
to how another person will perform on some fu-
ture occasion, as a function of that target per-
son’s current and previous claims, either im-
plicit or explicit, as to how they will behave.”

Similarly, Madhavan and Wiegemanns [19] describe trust
being based on predictability and consistency, and also
consider dependability, i.e. here a system’s level of confi-
dence in the operator. However, in our concept we neglect
dependability and assume a well trained operator.

3.2 A measure of trust and building trust
How much an operator can trust a robot, depends on

factors such as general knowledge about the robot’s capa-
bilities, information about the current state of the robot,
experience how the robot performed in the past, informa-
tion about the environment, and the task to perform. Trust
in our context will be (initially) simplified and equivalent
to the reliability of a robots performance on a specific task
(Parasuraman et. al. [20] already note that a considera-
tion of reliability only is not sufficient). We assume that
robots before being capable of performing a mission have
to be trained - similarly to human participants. This train-
ing generates the necessary experience with the robot and
eventually defines the level of trust. Operator trust will
then correspond to the likelihood of success given a spe-
cific autonomy level. Since the computation of trust re-
quires experience, we require a minimum number of sam-
ples in the database and embed a weighting with a trust
prior:

τ(α) = wP(S |ζ, α) + (1 − w)P(S ) (1)

τ trust function
α autonomy level
w weight, as min

(
1, #{number o f samples}

#{minimum required samples}

)
P(S ) prior probability of success
ζ command and environment parameters

Trust will directly correspond to an autonomy level,
but it can be claimed that changing the autonomy level
creates a number of new unknowns and thus requires to
reset the level of trust to a prior value. Changing to a
higher autonomy level requires experience. Thus, we will
use the trust associated with the preceeding, lower level of
autonomy as a prior value and apply the same weighting
function given by Equation 1.

Thus during the training phase the operator (or even
the system itself) will gain trust for each autonomy level
and will successively be able to increase the autonomy
level, until performance of the robot starts to deteriorate.
The number of human-initiated switches serves as an indi-
cator for performance deteriorization. Ideally, this process



allows a convergence to the maximum autonomy level for
a specific task.

3.3 A measure for self-confidence
As a counterpart to the operator’s trust, the robot’s

self-estimation is the essential parameter to switch be-
tween the autonomy modes. This self-estimation lies
combined in another scalar: a self-confidence measure
that provides the robot’s estimation of being able to suc-
ceed on a given task. This follows Blomqvist [2] inter-
pretation of confidence: ’The actor expects something to
happen with certainty, and does not consider the possibil-
ity of anything going wrong’. Thus, confidence can be
understood as an estimation of the probability of success-
fully completing a task given all current information. This
estimation represents an essential part of our concept.

Our concept models self-confidence as an estimation
of future performance based on: (1) experience, (2) cur-
rent state of the robot and (3) current task state. Experi-
ence of a robot can be analysed upon success given influ-
encing factors such as operation environment, command
parameters and system state at that time. In order to es-
timate the current state of the robot, system diagnostics
are essential. These diagnostics have to reflect the state
of the hardware that is relevant for the specific task, i.e.
battery status, the existence of a specific modular compo-
nent, and the available computational capabilities of the
robot. Jakimovski and Maehle[14] show an approach us-
ing Artificial Immune Systems to compute such a single
diagnostic value, which they call anomaly value. How-
ever, diagnostics also have to embed a healthy software
state, e.g. evaluate the working of required software com-
ponents. For these diagnostics, the current state of the task
can be measured using heuristics that initially compensate
for missing experience or later condense existing experi-
ence, and rules to embed constraints and explicit knowl-
edge. In Section 4 we will give an example of such confi-
dence computation.

3.4 System-initiated switch between autonomy
levels

We start with a simple definition for a system-initiated
switch which is defined using the trust of the operator τ
and the robot’s (self-)confidence κ, which are both nor-
malised scalar values. Any autonomous operation of the
robot requires that the relation defined by Inequality 2 is
fulfilled.

κ > 1.0 − τ (2)

This allows the following options for highest and lowest
autonomy mode: (1) manual control when trust τ = 0.0,
and (2) fully autonomous mode when trust τ = 1.0. The
mixed-initiative mode is active as long a 0.0 < τ < 1.0 and
κ > 0. While τ is constant over a single task execution, κ

will change dynamically during task execution. The ac-
tive autonomy level of a system will be equal to the trust
put into the system, thus the current level of trust and the
autonomy level are interchangeable. This approach allows
an intuitive interpretation, since a system can only operate
autonomously when being trusted and while having (suf-
ficient) self-confidence of success.

4 Experiments

To illustrate the concept outlined in the previous sec-
tion, we developed a simulation that embeds a model for a
human operator, the self-confidence of the autonomously
operating system and an optimisation strategy for finding
the optimal autonomy mode for a system. The model of
the robot’s confidence embeds randomly occurring events
that reduce the self-confidence significantly, eventually
leading to a switch between autonomy modes. Reliabil-
ity or rather trust is the probability of success:

P(S ) =
#{number o f success f ul task executions}

#{number o f task executions}
(3)

Figure 2 illustrates the switching between autonomy
modes. While the self-confidence will be greater than
0.9 in a normal situation, the system initiates an auton-
omy mode switch, i.e. requesting operator help, as soon
as the confidence drops below the threshold which is de-
fined by the autonomy level. The user interaction time is
modelled using a normal distribution with a mean of 60 s
and a standard deviation of 20 s. We modelled a probabil-

Figure 2. System initiated switching

ity of 10% that an operator’s intervention might not lead
to the given success, e.g. in Figure 2 a human interaction
after around 500 seconds of task execution does not lead
to an increase in the system’s self confidence. Instead, the
system switches back to manual mode since the situation
did not improve after the operator’s intervention. Thus,
our concept provides an implicit control of any human in-
tervention.



Figure 3. Online estimation of the task duration

Estimation of the task progress is an influencing fac-
tor for the system’s self-confidence. Figure 3 illustrates
the application of a heuristic in order to support the
computation task progress. Here, we selected the typ-
ical robotic task ’navigation’. For navigation the self-
confidence measure has to be reduced: (a) when a path
to the next waypoint cannot not be found, (b) a computed
path cannot be followed. We allow for an online estima-
tion of the task duration based on the left distance to the
target. By applying a least-square estimation over previ-
ous observations, the gradient can be the basis for influ-
encing the self-confidence in an anti proportional manner.

As already mentioned in Section 3 multiple assump-
tion can be made regarding the level of trust after changing
the autonomy level. For an unknown system we start with
a prior trust of 0.5. Figure 4 illustrates an optimisation
process, where the trust value of previous performances
that led to an increase of the autonomy level serves as
a prior. Switching to a higher autonomy level (as men-
tioned, trust level and autonomy level are interchange-
able) will only be allowed, when the minimum required
experience of 100 task executions has been gained along
with a reliability of at least 80% (trust = 0.8). Any de-
terioration of the reliability requires a correction of the
autonomy level. Here, we assume a failure rate of 10%
and increase this rate linearly with the distance of the cur-
rent to the optimal autonomy level. Since we allow for
additional errors by requiring only low reliability, the au-
tonomy level is optimised to meet this reliability and thus
deviates from the autonomy level that provides maximum
reliability. The optimal autonomy level is a predefined
setting in our model.

5 Discussion

We have developed the concept presented in this
paper using a top down approach and performed ini-
tial experiments using a simulation. Initially, our fo-

Figure 4. Optimisation of the autonomy level

cus lies on the definition of a conceptual framework and
the identification of the essential elements. State of the
art artificial intelligence techniques ranging from classi-
fication/regression, self-diagnosis using artificial immune
systems, and human-factor research will required for a fi-
nal realisation of this concept, and be part of our future
work.

The illustrated concept uses reliability to represent
trust. Since error variance can be of significant impor-
tance, e.g. many but small errors compared to few but
critical errors, an extension of our trust computation has
therefore to be part of further adaptations of the presented
concept along with the development of a good confidence
computation.

Our concept is based on an intuitive approach in or-
der to formalize the relationship between human and ma-
chine. However, applying an optimisation process is re-
quired, given that the application of autonomous systems
suffers from over- and undertrust into each system. Team
efficiency will benefit from a strategy to tackle the issue
of over- and undertrust. In Section 4 we gave an example
for such an optimisation strategy. Our concept is not lim-
ited to mixed teams, but can also be applied to teams of
robots only, e.g. for self-organisation purposes in order to
reach an optimal usage of the autonomy capabilities of its
individual members.

The definition of the autonomy level should reflect
the dependency of a system regarding human interven-
tion and the number and importance of required human
interactions allows a comparison between autonomy lev-
els. With a higher autonomy level, the frequency of the
requests for human interaction decreases, but the impor-
tance of an operator’s interaction rises. Meanwhile, the
self-confidence value has to provide a consistent and rea-
sonable interpretation of the robot’s state. A severe risk or
challenge has to be reflected in the self-confidence value,
while the autonomy level eventually defines whether the
robot can deal with the situation itself or not.



6 Conclusion and Future Works

The following sections will provide a brief summary
of this paper and an outlook to our future work.

6.1 Conclusions
This paper illustrates the intermediate results of a top

down approach of developing a measure for sliding au-
tonomy as part of the project RIMRES. The existing spec-
trum of autonomy levels and approaches towards realising
a sliding autonomy is broad, as we showed in our state
of the art collection. However, we described our motiva-
tional factors of using a formalised trust based relation-
ship between operator and system and presented a novel
approach for a system-initiated switch. It uses operator
trust and self-confidence of a robotic system to initiate a
switch between three different autonomy modes: manual
mode, mixed initiative mode, and full autonomous mode.
While we left the details to producing the self-confidence
on a conceptual level, our simulation experiments illus-
trated elements and aspects of the concept. Eventually,
this concept is a promising step towards optimising the
efficiency of mixed team operations by maximising au-
tonomy and keeping associated risks low.

6.2 Future Works
The current presentation is based on simulated user

and system experience. In our future work we will: (a)
realise the computation of a self-confidence measure for
individual robots, (b) evaluate it by comparing human
judgement of a situation versus the system’s judgement,
(c) extend our concept to address some of the existing
shortcomings and (d) embed the self-confidence measure
and test the concept presented in this paper on real robots.
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