
Global Caching for Coalgebraic Description Logics ?

Rajeev Goré1 and Clemens Kupke2 and Dirk Pattinson2 and Lutz Schröder3

1 Computer Science Laboratory, The Australian National University
2 Department of Computing, Imperial College London

3 DFKI Bremen and Department of Computer Science, Universität Bremen

Abstract. Coalgebraic description logics offer a common semantic umbrella
for extensions of description logics with reasoning principles outside relational
semantics, e.g. quantitative uncertainty, non-monotonic conditionals, or coali-
tional power. Specifically, we work in coalgebraic logic with global assumptions
(i.e. a general TBox), nominals, and satisfaction operators, and prove sound-
ness and completeness of an associated tableau algorithm of optimal complex-
ity EXPTIME. The algorithm uses the (known) tableau rules for the underlying
modal logics, and is based on on global caching, which raises hopes of practi-
cally feasible implementation. Instantiation of this result to concrete logics yields
new algorithms in all cases including standard relational hybrid logic.

Introduction

Description Logics (DLs) [2], which may be regarded as notational variants of vari-
ous extensions of modal logic, constitute one of the most important formalisms in the
area of logic-based knowledge representation. Two key features of DLs are support for
nominals, i.e. the ability to reason about particular individual states of the model rather
than about subsets only, and support for reasoning using global assumptions, a so-called
(general) TBox. The combination of these two features corresponds roughly to (i.e. is
slightly less expressive than) reasoning with global assumptions in hybrid logic [1].

On the other hand, reasoning about real-life problems typically calls for modal prin-
ciples beyond the standard existential and universal constraints that correspond in DL
notation to the boxes and diamonds of modal logic. Some of these principles, such as
qualified number constraints, are already incorporated in many DLs, while support for
others such as quantitative uncertainty (‘with likelihood at least p’), non-monotonic
conditionals (‘if a then normally b’), and strategic aspects (‘coalition C of agents can
force a’) is less well-developed. In particular, the complexity of hybrid or description
logics including these features was largely unknown until it was shown recently that
TBox reasoning in such logics is, under weak assumptions, in EXPTIME and, hence,
typically EXPTIME complete [20] The generic framework that makes results at this
level of generality possible is coalgebraic logic, which relies on the principle of en-
capsulating the type of systems underlying the semantics of a given modal or hybrid
logics (neighbourhood frames, Kripke frames, Markov chains, game frames etc.) as
coalgebras for a set functor.
? The second and third author supported by EPSRC grant EP/F031173/1. The last author sup-

ported by BMBF grant FormalSafe (FKZ 01IW07002).

From a practical point of view, the generic algorithm presented in [20] has two draw-
backs: it relies on decision procedures for infinite games, which guarantee EXPTIME
complexity but also induce average-case exponential run time; and moreover it starts
by guessing the theories of named states, which is practically infeasible. In the present
work, we drastically improve on this by presenting an EXPTIME tableau algorithm that
uses global caching. Tableau-based methods have been successful in providing efficient
decision procedures for modal and description logics [12], and in particular are em-
ployed in the leading current DL reasoners. They are relatively easy to implement but
often do not meet known upper complexity bounds for a given logic. For example, the
traditional tableau algorithm for theALC requires double exponential time in the worst
case, and known alternative EXPTIME tableaux are highly complex [8]. Global caching
has recently been proposed as a way of establishing tableau-based decision procedures
that do meet known optimality bounds, while at the same time offering good practical
efficiency and room for heuristic optimization. It has been successfully applied to the
description logics ALC and ALCI [10,11] and, more recently, to coalgebraic modal
logic with global assumptions [9].

The fundamental idea of global caching is that tableau sequents should be arranged
in a directed graph rather than in a tree. In this way one is able to avoid unnecessary
repetitions of calculations that would normally happen on various branches of a tree-
shaped tableau. The challenge in extending global caching to hybrid logics is to manage
the theories of named nodes in a consistent way across the tableau without resorting to
backtracking, which is what global caching tries to avoid. Our algorithm achieves pre-
cisely this. It instantiates to new tableau-based decision procedures for a wide range of
hybrid logics such as probabilistic and graded hybrid logics and hybrid coalition logic.
Even its incarnation in the traditional relational realm seems to be a new decision proce-
dure for global reasoning in hybrid K (or ALCO extended with satisfaction operators;
see [4,3] for an overview of existing tableau systems for hybrid K), to our knowl-
edge the first backtracking-free tableau-based procedure for hybrid K that matches the
known EXPTIME bound [1]. Compared to other approaches in the literature [4] we note
that our tableaux are unlabelled which allows us to avoid backtracking, as we do not
need to pay special attention to labels, and in turn entails the optimal complexity bound.

1 Global Caching for Hybrid Logics, Informally

We proceed to give a brief motivation of the main ideas of our algorithm, using two
very simple examples; the full description of the algorithm is given in Section 4. We
feel entitled to work in the standard example of hybrid logic over Kripke frames, as
our algorithm appears to be new even in this basic case, but we emphasize that our
method applies in the much wider setting of coalgebraic hybrid logic. Recall that the
main features that distinguish hybrid logic from plain modal logic (which comes with
an operator ♦ ‘there exists a successor state such that’, corresponding to existential
restrictions in description logic) are nominals which designate individual states, and
satisfaction operators @i ‘state i satisfies . . . ’. The main problem in designing tableaux
calculi for hybrid logics that are amenable to global caching is that the satisfaction op-
erators are global in nature, i.e. all states in the tableau have to agree on the truth values

of formulas of the form @iA. In complexity proofs, it is unproblematic to just guess
these truth values before building the tableau [14,20], but of course this is not a feasi-
ble approach in the design of a reasoning algorithm that aims for efficient average-case
behaviour. Standard tableau algorithms for hybrid logic (e.g. [3]) explore possible truth
values for @-formulas via backtracking; however, the driving idea behind the global
caching approach is precisely to minimize backtracking.

Our solution to this problem is roughly as follows. We view the construction of a
tableau in the standard way as a game between two players, Eloise (∃) and Abelard
(∀), where ∃ tries to prove satisfiability of the target formulas, and ∀ unsatisfiability. A
typical move by ∃ in a standard purely modal tableau would be, e.g., to select a disjunct
from a disjunction, while a typical move by ∀ would be, e.g., to pick a diamond formula
♦A for which ∃ then has to establish satisfiability of a new state labelled A. In the
hybrid setting, ∃ may stumble upon formulas @iψ in this process; she may choose to
just ignore these for the moment, but will later be forced to prove satisfiability of all such
formulas that she runs across. Our main idea is now to collect such @-formulas along a
potential winning strategy of ∃ and propagate this collection back through the tableau.
Collections of @-formulas, which we call @-constraints, are attached to standard nodes
via special links, along (one of) which ∃ may be forced to move to prove satisfiability.

As our first simple example, we have the following tableau for the sequent
♦@ip,♦(♦@iq ∨ ♦¬p) (with the comma read conjunctively).

@ip,@i¬p ♦@ip,♦(♦@iq ∨ ♦@i¬p)
∀

wwnnnnnnnnnn
∀

��

∃ //∃oo @ip,@iq

∀,∃
��

@ip ♦@ip

∀
��

∃oo ♦@iq ∨ ♦@i¬p

∃

~~}}
}}

}}
}}

}}
}}

}}
}}

}

∃

!!B
BB

BB
BB

BB
BB

BB
BB

BB
B

∃ //
∃

((

@iq i, p, q,@ip,@iq

OO

@ip @ip
∃oo @i¬p

@iq ♦@iq

∀
��

∃oo ♦@i¬p

∀
��

∃ // @i¬p

@iq @iq
∃oo @i¬p

∃ // @i¬p

The solid arrows above indicate unfolding of tableau rules. At the root node, ∀
has two challenges, corresponding to the two ♦-formulas, that ∃ can answer in each
case, and she can choose between two disjuncts at the node below the root. Ignoring @-
constraints, both choices would demonstrate satisfiability of the root. The @-constraints
are represented by dotted lines above, and are propagated from the bottom nodes that
contain @-formulas. At the node below the root, ∃ can demonstrate satisfiability if she
can satisfy either of the two constraints, which are propagated to the root node, and
induce (stronger) constraints that also account for the the second (left) ♦-formula. At
the root, each constraint represents a set of assumptions that need to be met in order for
∃ to demonstrate satisfiability, and the ability to establish satisfiability of the constraint
on the right finally gives satisfiability of the root node. Note that we could have declared

satisfiability even without unfolding the left disjunct at the node below the root, as the
satisfiability of a node hinges on the satisfiability of only one constraint. The situation
is different in the next example, a tableau for the sequent ♦@i⊥,♦A, where A is some
complex formula:

♦@i⊥,♦A
∃ //

∀
��

@i⊥, •

∀
��

@i⊥ @i⊥
∃oo i,⊥,@i⊥

Here, the root formula is clearly unsatisfiable, and ∀ can challenge the satisfiability
of the root by requiring successors for each of the ♦-formulas. Unfolding the left ♦,
this induces an unsatisfiable @-constraint that is propagated to the root, but as the right
♦ is not yet unfolded, this constraint is incomplete, indicated by • – further unfolding
and propagation would still require satisfiability of @i⊥. Challenging the satisfiability
of this (incomplete) constraint, ∀ demonstrates unsatisfiability of the root node, even
without fully unfolding the tableau.

2 Syntax and Semantics of Coalgebraic Hybrid Logic

To make our treatment parametric in the concrete syntax of any given modal logic,
we fix a modal similarity type Λ consisting of modal operators with associated arities
throughout. Throughout the paper, Prop and N denote two denumerable disjoint sets of
propositional variables and nominals, respectively. We will only be considering formu-
las in negation normal form, and abbreviate P = {p | p ∈ P} and Λ = {♥ | ♥ ∈ Λ}
where the derived dual modal operator ♥ has the same arity as ♥. The set H(Λ) of
hybrid Λ-formulas is given by the grammar

H(Λ) 3 A,B ::= x | A ∧B | A ∨B | ♥(A1, . . . , An) | ♥(A1, . . . , An) | @iA

where x ∈ P∪P∪N∪N is a possibly negated propositional variable or nominal,♥ ∈ Λ
is n-ary and i ∈ N is a nominal. We write

(Λ ∪ Λ)(F) = {♥(A1, . . . , An) | ♥ ∈ Λ ∪ Λ n-ary, A1, . . . , An ∈ F}

for the set of all formulas that can be constructed by applying a (possibly dualised)
modal operator to elements of a set F of formulas. A Λ-tableau-sequent, short Λ-
sequent or just sequent, is a finite set of Λ-formulas that we read conjunctively, and
we write S(Λ) for the set of Λ-sequents. A Λ-state is a Λ-sequent that neither con-
tain a top-level propositional connective nor a pair x, x of complementary proposi-
tional variables or nominals, and we write State(Λ) for the set of Λ-states. We de-
fine the negation A of a formula A ∈ H(Λ) by p = p, (A ∧B) = A ∨ B,
A ∨B = A∧B,♥(A1, . . . An) = ♥(A1, . . . , An),♥(A1, . . . , An) = ♥(A1, . . . , An)
and @iA = @iA. We use the standard definitions for the other propositional connec-
tives→,↔,∨. The set of nominals occurring in a formula A is denoted by N(A). This
extends to sets of formulas, and N(Γ) =

⋃
{N(A) | A ∈ Γ}. A formula of the form

@iA is called an @-formula, and a formula that does not begin with @ is called plain.

Semantically, nominals i denote individual states in a model, and an @-formula @iA
stipulates that A holds at i.

To reflect parametricity in the particular underlying logic also semantically, we
equip hybrid logics with a coalgebraic semantics extending the standard coalgebraic
semantics of modal logics [15]: we fix an endofunctor T : Set→ Set throughout that is
equipped with an assigment of an n-ary predicate lifting J♥K for every n-ary modal op-
erator♥ ∈ Λ, i.e. a set-indexed family of mappings (J♥KX : P(X)n → P(TX))X∈Set

that satisfies
J♥KX ◦ (f−1)n = (Tf)−1 ◦ J♥KY

for all f : X → Y . In categorical terms, [[♥]] is a natural transformationQn → Q◦T op

where Q : Setop → Set is the contravariant powerset functor.
In this setting, T -coalgebras play the roles of frames. A T -coalgebra is a pair (C, γ)

where C is a set of states and γ : C → TC is the transition function. If clear from the
context, we identify a T -coalgebra (C, γ) with its state space C. A (hybrid) T -model
(C, γ, π) consists of a T -coalgebra (C, γ) together with a hybrid valuation π, i.e. a map
P ∪ N→ P(C) that assigns singleton sets to all nominals i ∈ N. We often identify the
singleton set π(i) with its unique element.

The semantics of H(Λ) is a satisfaction relation |= between states c ∈ C in hybrid
T -models M = (C, γ, π) and formulas A ∈ H(Λ), inductively defined as follows. For
x ∈ N ∪ P and i ∈ N, put

c,M |= x iff c ∈ π(x) c,M |= @iA iff π(i),M |= A.

Modal operators are interpreted using their associated predicate liftings, that is,

c,M |= ♥(A1, . . . , An) ⇐⇒ γ(c) ∈ J♥KC(JA1KM , . . . , JAnKM)

where ♥ ∈ Λ n-ary and JAKM = {c ∈ C | M, c |= A} denotes the truth-set of A
relative to M and J♥KC(A1, . . . , An) = C \ J♥K(C \ A1, . . . , C \ An) for the case of
dual operators. If Ξ is a set of formulas (the global assumptions, or TBox), we write
Mod(Ξ) for the class of models M = (C, γ, π) such that M, c |= A for all A ∈ Ξ and
all c ∈ C. A formula A is satisfiable in Mod(Ξ) if it is satisfied in some state in some
model of Mod(Ξ).

The distinguishing feature of the coalgebraic approach to hybrid and modal logics
is the parametricity in both the logical language and the notion of frame: concrete in-
stantiations of the general framework, in other words a choice of modal operators Λ, an
endofunctor T and an assigment of predicate liftings, capture the semantics of a wide
range of modal logics, as witnessed by the following examples.

Example 1. 1. The hybrid version of the modal logic K, hybrid K for short, has
a single unary modal operator �, and we write � = ♦. Hybrid K is interpreted over
coalgebras for the powerset functor P that takes a set X to its powerset P(X) and
J�KX(A) = {B ∈ P(X) | B ⊆ A}. It is clear that P-coalgebras (C, γ : C → P(C))
are in 1-1 correspondence with Kripke frames, and that the coalgebraic definition of
satisfaction specialises to the usual semantics of the box operator.

2. Graded hybrid logic has modal operators ♦k ‘in more than k successors, it holds
that’, where we write ♦k = �k. It is interpreted over the functor B that takes a set X
to the set B(X) of multisets over X , i.e. maps B : X → N ∪ {∞}, by [[♦k]]X(A) =
{B ∈ B(X) |

∑
x∈AB(x) > k}. This captures the semantics of graded modalities over

multigraphs [7], which are precisely the B-coalgebras. One can encode the description
logic ALCOQ (which features qualified number restrictions ≥nR and has a relational
semantics) into multi-agent graded hybrid logic with multigraph semantics by adding
formulas ¬♦1i for all occurring nominals i to the TBox.

3. Probabilistic hybrid logic, the hybrid extension of probabilistic modal logic [13],
has modal operators Lp ‘in the next step, it holds with probability at least p that’, for
p ∈ [0, 1]∩Q. It is interpreted over the functorDω that maps a setX to the set of finitely-
supported probability distributions on X by putting [[Lp]]X(A) = {P ∈ Dω(X) |
PA ≥ p}. Coalgebras for Dω are just Markov chains.

3 Tableau Rules for Coalgebraic Logics

We now introduce the (type of) tableau rules we will be working with. Clearly, these
rules have to relate syntax and semantics in an appropriate way, and we cannot expect to
prove as much as soundness, let alone completeness, without the rules satisfying appro-
priate coherence conditions, which we introduce later. We begin with the propositional
part of the calculus, for which it is convenient to unfold propositional connectives in a
single step. This process is called saturation and is given by a map sat that is defined
inductively by the clauses

sat(∆′) = {∆′} sat(A ∨B,Γ) = sat(A,Γ) ∪ sat(B,Γ)
sat(x, x, Γ) = ∅ sat(A ∧B,Γ) = sat(A,B, Γ)

where A,B ∈ H(Λ) are formulas, Γ is a sequent, x ∈ P ∪ N is a propositional vari-
able or a nominal and ∆′ ∈ State(Λ) is a state, i.e. contains neither complementary
propositional variables nor top-level propositional connectives. As we interpret hybrid
formulas over the class of all (coalgebraic) hybrid models, it suffices to use modal rules
of a rather specific form where the premise contains only modalised formulas and the
conclusion is purely propositional in terms of the arguments of the modalities. Rules of
this type are called one-step rules and have been used in the context of tableau calculi
in [9,6] and originate from the (dual) sequent rules of [19].

Definition 2. A one-step tableau rule over Λ is a tuple (Γ0, Γ1, . . . , Γn), written as
Γ0/Γ1 . . . Γn, where Γ0 ⊆ (Λ ∪ Λ)(P ∪ P) and Γi ⊆ P ∪ P so that every variable that
occurs in the conclusion Γ1 . . . Γn also occurs in the premise Γ0, and every proposi-
tional variable occurs at most once in the premise Γ0.

We can think of one-step rules as a syntactic representation of the inverse image
γ−1 : P(TC) → P(C) of a generic coalgebra map γ : C → TC in that the premise
describes a property of successors, whereas the conclusion describes states. The re-
quirement that propositional variables do not occur twice in the premise is a mere tech-
nical convenience, and can be met by introducing premises that state the equivalence

of variables. While this rigid format of one-step rules suffices to completely axiomatise
all coalgebraic logics [17], it does not accommodate frame conditions like transitivity
(�p→ ��p), which require separate consideration.

Example 3. One-step rules that axiomatise the logics in Example 1 can be found (in
the form of proof rules) in [16,19]. Continuing Example 1, we single out hybrid K and
(hybrid) graded modal logic.

1. Hybrid K is axiomatised by the setRK of one-step rules that contain

(K)
♦p0,�p1, . . . ,�pn

p0, . . . , pn
for all n ≥ 0.

2. The rulesRB for graded modal logic contain

(G)
♦k1p1, . . . ,♦kn

pn,�l1q1, . . . ,�lmqm∑m
j=1 sjqj −

∑n
i=1 ripi < 0

where n,m ∈ N and ri, sj ∈ N \ {0} satisfy the side condition
∑n
i=1 ri(ki + 1) ≥

1 +
∑m
j=1 sj lj . The conclusion of (G) is to be read as arithmetic of characteristic

functions, and expands into a disjunctive normal form with only positive literals [19].

While the above are examples of one-step rules, the generic treatment of a larger class
of modal logic requires that we abstract away from concretely given rule sets. This is
achieved by formalising coherence conditions that link the rules with the coalgebraic
semantics. The following terminology is handy to formalise these conditions:

Definition 4. Suppose thatX is a set, P ⊆ Prop is a set of variables and τ : P→ P(X)
is a valuation. The interpretation of a propositional sequent Γ ⊆ P∪P relative to (X, τ)
is given by JΓ KX,τ =

⋂
{τ(p) | p ∈ Γ} ∩

⋂
{X \ τ(p) | p ∈ Γ} ⊆ X . Modalised

sequents Γ ⊆ (Λ ∪ Λ)(P ∪ P) are interpreted, again relative to (X, τ), as subsets of
TX by

JΓ KTX,τ =
⋂
{J♥KX(Jp1KX,τ , . . . , JpnKX,τ) | ♥(p1, . . . , pn) ∈ Γ}

where p1, . . . , pn ∈ P ∪ P and ♥ ∈ Λ ∪ Λ.

The coherence conditions can be formulated solely in terms of (the interpretation of)
propositional and modal sequents. In particular, we do not consider models for the logic
under scrutiny.

Definition 5. Suppose that R is a set of one-step tableau rules. We say that R is one-
step tableau sound (resp. one-step tableau complete) with respect to T if, for all P ⊆
Prop, all finite Γ ⊆ (Λ ∪ Λ)(P ∪ P), all sets X and valuations τ : P → P(X):
JΓ KTX,τ 6= ∅ only if (if) for all rules Γ0/Γ1 . . . Γn ∈ R and all renamings σ : P → P
(such that A 6= B implies Aσ 6= Bσ for all A,B ∈ Γ0) with Γ0σ ⊆ Γ , we have that
JΓiσKX,τ 6= ∅ for some 1 ≤ i ≤ n.

This means that a rule set is sound and complete if a modalised sequent is satisfiable
iff every one-step rule applicable to it has at least one satisfiable conclusion. We note
that the rule sets given in Example 3 are both one-step sound and one-step complete for
their respective interpretations. This is argued, in the dual case of sequent rules, in [19].

4 Caching Graphs for Coalgebraic Hybrid Logic

Caching graphs address the problem of deciding the validity of a sequent Γ0 under a
finite set of global assumptions (TBox) Ξ both of which we fix throughout. We write C
for the closure of Γ0, Ξ , i.e. the smallest set of formulas that contains Γ,Ξ and is closed
under taking subformulas, their (involutive) negations and prefixing of plain formulas
(that do not begin with @) with @i where i ∈ N(C); we then work with sequents over
C, i.e. subsets of C, but mostly omit explicit mention of C.

For a given one-step sound and complete set R of one-step rules, this allows us
to consider the set T (R) that consists of the rule instances that are needed to expand
sequents over C.

Definition 6. The set T (R) of tableau rules relative to C consists of the rules Γ/sat(Γ)
for Γ ∈ C and the rules

Γσ, Γ ′

∆1σ,Ξ . . . ∆nσ,Ξ

where Γ/∆1, . . . ,∆n ∈ R, σ : P → C is a substitution such that Γσ ⊆ C and σ does
not identify elements of Γ , and Γ ′ ⊆ C.

In other words, the set T (R) of tableau rules relative to C consists of all substitution
instances of one-step rules where we allow an additional sequent Γ ′ in the premise to
absorb weakening, and the set Ξ of global assumptions is added to every conclusion.
Informally, the conclusions of a modal rule specify properties of successor states, and
adding Ξ to each conclusion ensures that successor states also validate Ξ , leading to a
model that globally validates the TBox.

While the tableau rules are used to expand sequents, a second type of sequent is
needed to deal with the @-formulas: since @-formulas are either globally true or glob-
ally false, they need to be propagated across the tableau, and their validity needs to be
ascertained. This is the role of @-constraints that we now introduce, together with rules
that govern their expansion.

Definition 7 (@-Constraints). An @-constraint over C is a finite set of @-formulas
in C that may additionally include the symbol •. The expansion of @-constraints is
governed by the rules T (@) that contain, for each @-constraint Υ over C, the following
@-expansion rules

Υ

i, Υ/@i, Υ \ {•}, Ξ
where i ∈ N(Υ) is a nominal occurring in Υ and Υ/@i = {A | @iA ∈ Υ}.

The role of @-constraints is to record those formulas that are required to be globally
valid (and therefore need to satisfy the global assumptions Ξ)to guarantee the satisfia-
bility of a particular sequent. To check whether a particular @-constraint is satisfiable,
we therefore need to check, for each applicable @-expansion rule, the consistency of
the conclusion. The role of • as an element of an @-constraint is to denote an (as yet)
unknown constraint to be induced by a sequent that is yet to be expanded. We next in-
troduce caching graphs, which provide the fundamental data structure that allows for
the propagation of these constraints.

Definition 8. A caching graph over C is a tuple G = (S,C,LM , L@, λS , λC) where

– S and C are sets of sequents and @-constraints respectively
– LM = (L∀M , L

∃
M) is a pair of relations with L∀M ⊆ S×P(S) and L∃M ⊆ P(S)×S

– L@ = (L∀@, L
∃
@) is a pair of relations with L∀@ ⊆ C × S and L∃@ ⊆ S × C; we

require that L∃@ is upclosed, i.e. (Γ, Υ) ∈ L∃@ and Υ ⊆ Υ ′ imply (Γ, Υ ′) ∈ L∃@
– λS : S → {A,E,U,X} and λC : C → {T,D} are labelling functions.

We denote the upclosure (under ⊆) of a set B of @-constraints by ↑ B.

We think of LM as the “modal links” where L∀M links sequents to sets of conclusions of
modal rules, and L∃M links conclusions (sets of sequents) to their individual elements.
This reflects the fact that to declare a sequent Γ satisfiable, we need to select, for all
rules applicable to this sequent (all (Γ, Ψ) ∈ L∀M) one conclusion ∆ ∈ Ψ (there exists
(Ψ,∆) ∈ L∃M) which is recursively satisfiable. Similarly, L@ encodes the global con-
straints (which we later propagate) that ensure that a sequent is satisfiable. For example
for the sequent Γ = @iA ∨ @jB to be satisfiable, either the @-constraint @iA or the
@-constraint @jB needs to be satisfiable, so that {(Γ,@iA), (Γ,@iB)} ⊆ L∃@, and
we ask for the existence of a L∃@-successor of Γ . The required upclosure corresponds
to the fact that – in order to satisfy an @-constraint – it suffices to satisfy any larger
constraint. Technically, requiring upclosure simplifies the definition of @-propagation
below. To guarantee the satisfiability of @-constraints, we link every @-constraint to a
set of sequents (one for each nominal) that stipulate the validity of these constraints.
For example, the @-constraint Υ = @iA,@jB requires that A holds at i and B holds
at j which stipulates that both Υi = i, A, Υ and Υj = j, B, Υ should be satisfiable.
This is represented by stipulating that {(Υ, Υi), (Υ, Υj)} ⊆ L∀@ where again ∀ indicates
universal choice.

The role of the labelling functions is essentially for bookkeeping. The label λS(Γ)
of a sequent Γ indicates whether the sequent is satisfiable (E: a winning position for
the existential player), unsatisfiable (A: a winning position for the universal player),
unknown (U) or unexpanded (X). Similarly, the label of an @-constraint Υ indicates
that this constraint is expanded (D for done) or unexpanded (T for todo).

Remark 9. In a concrete implementation of caching graphs, it is sufficient to represent
the upwards closed sets L∃@(Γ) = {Υ | (Γ, Υ) ∈ L∃@} by means of a set of generators,
which dramatically reduces the size of caching graphs.

We now introduce a set of transitions between caching graphs that correspond to expan-
sion of both sequents and @-constraints, propagation of @-constraints and updating of
winning positions. We begin with sequent expansion.

Definition 10 (Sequent Expansion). Suppose G = (S,C,LM , L@, λC , λS) is a
caching graph. We put G→E G′ and say that G′ arises from G through sequent expan-
sion if there is an unexpanded sequent Γ ∈ S (i.e. λS(Γ) = X), and G′ arises from G
by inserting all relations (Γ, Ψ) where Γ/Ψ ∈ T (R) is a rule into L∀M , all ensuing rela-
tions (Ψ,∆) with ∆ ∈ Ψ to L∀M , updating S to contain new sequents ∆ that have been
encountered in this procedure and setting their status to unexpanded (i.e. λS(∆) = X),
equipping them with all @-constraints that contain • and finally marking Γ as unknown
(λS(Γ) = U).

The situation is somewhat dual for @-constraints, where the universal links are added
by a simple expansion process, but the existential links arise via propagation. Given
that satisfiability of a sequent is conditional on the satisfiability of one of the associ-
ated @-constraints, we need a mechanism to check their satisfiability. In a nutshell, for
an @-constraint to be satisfiable, we need to check, for each nominal, that the formu-
las deemed to be valid at this nominal are jointly satisfiable. While this results in an
(ordinary) sequent, this process may uncover more constraints, and we therefore need
to remember the set of @-constraints that we started out with. Formally, expansion of
@-constraints takes the following form:

Definition 11 (@-Expansion). Suppose G = (S,C,LM , L@, λS , λC) is a caching
graph. We put G →@E G′ and say that G′ arises from G through @-expansion if
there exists a ‘todo’-constraint Υ ∈ C (i.e. λC(Υ) = T and G′ arises from G by
inserting all sequents Γ for which Υ/Γ ∈ T (@) to L∃∀(Υ) and adding all new sequents
to S, marking them as unexpanded (λC(Γ) = X , equipping new sequents with all
@-constraints containing •, and finally marking Υ as done (λC(Υ) = D).

Informally, every @-constraint Υ specifies, for each nominal i, a set of formulas that
are to be valid at i, which are collected in the @-demands. As the expansion of these
formulas may unearth further @-formulas (possibly involving nominals distinct from
i), the original @-constraint Υ is remembered in the @-demand. For the existential @-
links the situation is more complicated, as @-links emanating from a sequent describe
constraints (sets of @-prefixed formulas) that need to be satisfied for the sequent to be
satisfiable. As @-prefixed formulas are either globally true or globally false, these con-
straints must hold at all points of a putative model. This necessitates distributing those
constraints from one node of a tableau graph to the others. In general, every tableau
node comes with a finite number of @-constraints where each particular constraint rep-
resents one requirement under which the associated sequent is satisfiable, such @iA or
@jB for the above-mentioned example sequent @iA ∨ @jB. As a consequence, we
need to analyse the universal / existential branching structure of the caching graph dur-
ing the propagation phase. As we are dealing with a possibly circular graph (due to the
global assumptions), propagation is formalised as a greatest fixpoint computation.

Definition 12 (@-propagation). Let A denote the set of all @-constraints that can be
formed in the closed set C. Suppose G = (S,C,LM , L@, λS , λC) is a caching graph
and R ⊆ S ×A. The set CR(Γ) of R-constraints of Γ consists of all @-constraints of
the form Υ1, . . . , Υk such that for some (∆1, . . . ,∆k) ∈

∏
(Γ,Ψ)∈L∀M

Ψ , (∆i, Υi) ∈ R
and λS(∆i) 6= A for i = 1, . . . , k. In other words, anR-constraint of Γ collects, for ev-
ery rule applicable to Γ , one constraint of one rule conclusion. In particular,CR(Γ) = ∅
if (Γ/∅) ∈ L∀M (i.e. Γ is inconsistent) and CR(Γ) = {∅} in case no rule is applicable
to Γ . Recall that L∃@ is maintained as an upclosed relation of type S × A. Thus, let
R = {R ⊆ L∃@ | R upclosed}, and define a monotone operator W@ : R → R by

W@(R)(Γ) =

{
↑ {{•}} (λS(Γ) = X)
↑ {@Γ,Θ1, Θ2, | Θ1 ∈ R(Γ), Θ2 ∈ CR(Γ)} (otherwise)

where @Γ = {@iA | i, A ⊆ Γ and A not an @-formula}∪{A ∈ Γ | A an @-formula}
so that to an expanded sequent, we associate its own @-formulas together with one

previously computed constraint and one constraint that is propagated upwards from its
children. We put G→@P G

′ if G′ = (S,C ′, LM , L′@, λS , λ
′
C) where

– C ′ = C ∪ {Υ | ∃Γ ∈ S ((Γ, Υ) ∈ νW@)},
– L∃@

′ = νW@ and L∀@
′ = L∀@

– λ′C(Υ) = λC(Υ) if Υ ∈ C and λ′C(Υ) = T , otherwise

and say that G′ arises from G through @-propagation.

Some comments are in order regarding the above definition of @-propagation. Updating
L∃@ requires us to compute an upclosed relation R ⊆ S ×A; because constraints grow
monotonically (due to sequent expansion), we will haveR ⊆ L∃@ (possibly throwing out
some smaller constraints). To propagate @-constraints from the children of a sequent
Γ up to Γ itself, note that Γ is satisfiable if for all applicable rules Γ/Ψ , there exists
at least one satisfiable conclusion in ∆ ∈ Ψ . In particular, one of the @-constraints
associated with ∆ needs to be satisfiable. In other words, for Γ to be satisfiable it is
necessary to be able to simultaneously select one @-constraint Υ ∈ R(∆) from one of
the conclusions∆ ∈ Ψ for each of the rules Γ/Ψ that are applicable to Γ . If we think of
R as defining an over-approximation of @-constraints, we keep for each Γ only those
constraints that contain the @-formulas of Γ and one of the R-constraints of Γ . This is
precisely the effect of one application of W@, and we compute the greatest fixpoint of
W@ to propagate this information across cycles in the tableau graph.

The final crucial step is the updating of winning positions. Here, the intuition is
that a given sequent is satisfiable if we can select a complete set of @-constraints so
that all @-demands of this set are satisfiable – i.e. for each of the @-demands, we must
be able to (recursively) pinpoint a complete set of @-constraints for which the same
condition holds. We call a set of @-constraints complete if it represents full information,
that is, collects all constraints that ensure that – if these constraints are satisfied – the
sequent under consideration does not have a closed tableau. This is where • comes in:
@-constraints that do not include • are complete. On the other hand, ∀ can win from a
given sequent if all of the (possibly still incomplete) @-constraints (recursively) have at
least one unsatisfiable @-demand.

Definition 13 (Position Propagation). Suppose that G = (S,C,LM , L@, λS , λC) is
a caching graph. By abuse of notation, write

U = λ−1
S (U) E = λ−1

S (E) and A = λ−1
S (A)

for the sets of sequents that are labelled withU,E andA respectively. Define two mono-
tone operators M,W : P(U)→ P(U) by

M(X) = {Γ ∈ U | ∀(Γ, Υ) ∈ L∃@ ∃(Υ,∆) ∈ L∀@ (∆ ∈ X ∪A)}
W (X) = {Γ ∈ U | ∃(Γ, Υ) ∈ L∃@ (• /∈ Υ) and ∀(Υ,∆) ∈ L∀@ (∆ ∈ X ∪ E)}.

We put G→P G
′ if G′ = (S,C,LM , L@, λ

′
S , λC) where λ′S(Γ) = A if Γ ∈ A∪µM ,

λ′S(Γ) = E if Γ ∈ E ∪ νW and λ′S(Γ) = λS(Γ), otherwise, and say that G′ arises
from G through position propagation.

We now have all ingredients in place to describe the algorithm for deciding the satisfia-
bility of a sequent Γ ⊆ H(Λ). This algorithm non-deterministically applies expansion,
propagation and update steps until the initial sequent is either marked A (unsatisfiable)
or E (satisfiable).

Algorithm 14. Decide whether Γ0 is satisfiable in Mod(Ξ).

1. Initialise: put G = ({Γ0, Ξ}, ↑ {{•}}, ∅, L@, λS , λC) where
– λS(Γ0, Ξ) = X , and λC(Υ) = T everywhere;
– L∃@ is total and L∀@ = ∅.

2. While (λS(X)−1 6= ∅) or (λ−1
C (T) 6= ∅) do

(a) choose G′ with G→E G′ or G→@E G′ and let G := G′;
(b) (optional) choose G′ with G→@P G

′ and let G := G′;
(c) (optional)

– choose G′ with G→P G
′ and let G := G′;

– return ‘yes’ if λS(Γ) = E and ‘no’ if λS(Γ) = A.
3. Find G′ with G→@P G

′, let G := G′, and continue with Step 2.
4. Find G′ with G→P G

′ and let G := G′.
5. Return ‘yes’ if λS(Γ) = E and ‘no’ if λS(Γ) = A.

In the above formulation, the algorithm nondeterministically expands sequents or @-
constraints and interleaves @-propagation and position update. Since @-propagation
may create new @-constraints, we need to make sure that all @-constraints are eventu-
ally created, which is ensured by going back to Step 2 after @-propagation in Step 3.
This procedure terminates, after at most exponentially many steps, as there are at most
exponentially many @-constraints and sequents (measured in the size of the initial se-
quent Γ0 and the TBox Ξ), and the final position update ensures that all sequents are
marked accordingly. Note that we may terminate at any time after the initial sequent
has been marked as either satisfiable or unsatisfiable after a position update.

5 Correctness and Completeness

We begin by showing that a sequent marked as satisfiable by Algorithm 14 is indeed
satisfiable. This necessitates the construction of a satisfying model, which is based on
a named tableau graph. Simply put, a named tableau graph consists of sequents Γ so
that for every rule applicable to Γ , one of the conclusions occurs in the tableau graph,
and is connected to Γ . In order to also satisfy @-formulas, we require that the tableau
graph be named, as introduced next.

Definition 15. A tableau graph over a finite set S of sequents is a graph GT = (S,L)
where L ⊆ (S × P(S)) ∪ (P(S)× S) is such that

– for all Γ ∈ S and all Γ/Ψ ∈ T (R) there exists∆(Γ,Ψ) ∈ Ψ such thatL = {(Γ, Ψ) |
Γ/Ψ ∈ T (R)} ∪ {(Ψ,∆(Γ,Ψ)) | Γ/Ψ ∈ T (R)}.

We say that (S,L) is a named tableau graph if additionally

– for each i ∈ N , there exists exactly one Γi ∈ S with i ∈ Γ , and

– for all Γ ∈ S and all @iA ∈ Γ we have A ∈ Γi.
The crucial stepping stone in the correctness proof for Algorithm 14 is the fact that we
can construct a satisfying model based on a named tableau graph.

Lemma 16 (Model Existence Lemma). If GT is a named tableau graph over a set
S of sequents, there exists a coalgebra structure σ : W → TW on the set of states
contained in S and a hybrid valuation π : N ∪ P → P(W) such that Γ ∈ JAK(W,w,π)

for all A ∈ Γ .

In order to be marked as satisfiable by a position update step in Algorithm 14, we need
to be able to select a •-free @-constraint for every satisfiable sequent. This entails the
existence of a tableau graph for this sequent, and we will later merge these graphs.

Lemma 17. Suppose that during the execution of Algorithm 14, (Γ, Υ) ∈ L∃@ with
• /∈ Υ for a caching graph G. Then there exists a (not necessarily named) tableau
graph (S, T) with Γ ∈ S.

The first part of the correctness assertion can now be established as follows:

Lemma 18 (Completeness). Every sequent marked ‘satisfiable’ by Algorithm 14 is
satisfiable in Mod(Ξ).

The second half of the correctness of Algorithm 14 needs the following preliminary
lemma that shows that satisfiable sequents have satisfiable @-constraints.

Lemma 19. Throughout the construction of the caching graph G =
(S,C,LM , L@, λS , λC) by Algorithm 14, it holds that for every satisfiable se-
quent Γ ∈ S there exists an @-constraint Υ ∈ C such that (Γ, Υ) ∈ L∃@, @Γ ⊆ Υ , and
Υ \ {•} is satisfiable.

With the help of the last lemma, the second half of correctness of Algorithm 14 can now
be established as follows:

Lemma 20. Every sequent marked ‘unsatisfiable’ by Algorithm 14 is unsatisfiable in
Mod(Ξ).

Finally, we need to establish that Algorithm 14 in fact marks the initial sequent Γ0, Ξ
as either satisfiable or unsatisfiable, which only requires proof if Algorithm 14 termi-
nates in Step 5. This rests on the final position update, and we first show that every
@-constraint is ‘morally’ complete, that is, can be turned into a complete @-constraint
by removing •. This trivialises the condition • /∈ Υ in the definition of position update,
which is used in the following lemma.

Lemma 21. If Algorithm 14 terminates in Step 5, then the following holds for all Γ ∈
S: If (Γ, Υ) ∈ L∃@ then (Γ, Υ \ {•}) ∈ L∃@.

Finally, we show that Algorithm 14 always delivers a result (which is correct by Lemma
20 and Lemma 18), and thus finally confirm correctness.

Lemma 22. When Algorithm 14 terminates in Step 5, each sequent is either marked
satisfiable or unsatisfiable.

Correctness of Algorithm 14 is a consequence of Lemma 18, Lemma 20 and Lemma 22.

Theorem 23. For any given sequent Γ , Algorithm 14 delivers the answer ’yes’ if Γ is
satisfiable in Mod(Ξ) and the answer ’no’ otherwise.

6 Complexity

We proceed to analyse the runtime of the global caching algorithm, under suitable sanity
assumptions on the set of modal rules. Specifically, in order to ensure that executions
of the algorithm run in exponential time, we need to assume, as in [9,20], that our set
R of one-step rules is EXPTIME-tractable in the following sense. To begin, a demand
of a sequent ∆ is a sequent Γiσ, i ≥ 1, where Γ0/Γ1 . . . Γn ∈ R is a modal rule and σ
is a substitution such that Γ0σ ⊆ ∆ and σ does not identify any two formulas in Γ0. In
this case, σ matches Γ0/Γ1 . . . Γn to ∆. Then, we say that R is EXPTIME-tractable if
there exists a coding of the rules such that all demands of a sequent can be generated by
rules with codes of polynomially bounded size, validity of codes and membership of a
sequent in the set of premises of a coded rule are decidable in EXPTIME, and matching
substitutions for a given rule code/sequent pair can be enumerated in exponential time.

Theorem 24. If the given set R of one-step rules is EXPTIME-tractable, then every
execution of the global caching algorithm (Algorithm 14) runs in EXPTIME.

We emphasize explicitly that, although the global caching algorithm is non-
deterministic, it does not have any inherent non-determinism: every terminating exe-
cution yields the correct answer, so that the non-determinism works in favour of the
implementer, who now has a chance to achieve improved average case behaviour by
using suitable heuristics in his strategy for choosing expansion, propagation, and up-
date steps. In particular, the above theorem does reprove the tight EXPTIME bound
from [20].

7 Conclusions

We have presented an optimal tableau algorithm for hybrid modal logic over arbitrary
TBoxes that is applicable to all (hybrid) logics with coalgebraic semantics. Instantiated
to the modal logicK or a multi-modal variant, such as the description logicALCO, this
provides, to our knowledge, the first purely syntax driven and backtracking-free tableau
algorithm that realizes optimal (EXPTIME) complexity bounds. However, the scope of
the coalgebraic framework is much broader, and the built-in parametricity uniformly
provides us with optimal tableau-based decision procedures, e.g., for hybrid graded
modal logic (or the description logic ALCOQ), hybrid probabilistic modal logic, or
hybrid logics for coalitional power in games. The compositionality of coalgebraic logics
[18] in particular allows us to obtain optimal tableau algorithms for logics that mix the
above features (see [20] for examples). The most pressing research concern at this point
is, of course, experimental evaluation, which is the subject of ongoing work, and we
plan to extend the CoLoSS system [5] that already implements the (modal) proof rules
for a large variety of logics.

References

1. C. Areces and B. ten Cate. Hybrid logics. In P. Blackburn, J. van Benthem, and F. Wolter,
eds., Handbook of Modal Logic. Elsevier, 2007.

2. F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, eds. The
Description Logic Handbook. Cambridge University Press, 2003.

3. T. Bolander and P. Blackburn. Termination for hybrid tableaus. J. Log. Comput., 17:517–554,
2007.

4. T. Bolander and T. Braüner. Tableau-based decision procedures for hybrid logic. J. Log.
Comput., 16(6):737–763, 2006.

5. G. Calin, R. Myers, D. Pattinson, and L. Schröder. CoLoSS: The coalgebraic logic satisfi-
ability solver (system description). In Methods for Modalities, M4M-5, ENTCS. Elsevier,
2008. To appear.

6. C. Cı̂rstea, C. Kupke, and D. Pattinson. EXPTIME tableaux for the coalgebraic µ-calculus.
In Computer Science Logic, CSL 09, vol. 5771 of LNCS, pp. 179–193. Springer, 2009.

7. G. D’Agostino and A. Visser. Finality regained: A coalgebraic study of Scott-sets and mul-
tisets. Arch. Math. Logic, 41:267–298, 2002.

8. F. M. Donini and F. Massacci. EXPTIME tableaux for ALC. Artif. Intell., 124:87–138, 2000.
9. R. Gore, C. Kupke, and D. Pattinson. Optimal tableau algorithms for coalgebraic logics.

In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 10, LNCS.
Springer, 2010. To appear.

10. R. Goré and L. Nguyen. EXPTIME tableaux for ALC using sound global caching. In
Description Logics, DL 07, vol. 250 of CEUR Workshop Proceedings, 2007.

11. R. Goré and L. Nguyen. EXPTIME tableaux with global caching for description logics with
transitive roles, inverse roles and role hierarchies. In Automated Reasoning with Analytic
Tableaux and Related Methods, TABLEAUX 07, vol. 4548 of LNCS, pp. 133–148. Springer,
2007.

12. I. Horrocks and P. F. Patel-Schneider. Optimising description logic subsumption. J. Logic
Comput., 9:267–293, 1999.

13. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. Comput., 94:1–28,
1991.

14. R. Myers, D. Pattinson, and L. Schröder. Coalgebraic hybrid logic. In Foundations of Soft-
ware Science and Computation Structures, FoSSaCS 2009, vol. 5504 of LNCS, pp. 137–151.
Springer, 2009.

15. D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theoret. Comput. Sci., 309:177–193, 2003.

16. D. Pattinson and L. Schröder. Cut elimination in coalgebraic logics. Inf. Comput. To appear.
17. L. Schröder. A finite model construction for coalgebraic modal logic. J. Log. Algebr. Prog.,

73:97–110, 2007.
18. L. Schröder and D. Pattinson. Modular algorithms for heterogeneous modal logics. In

Automata, Languages and Programming (ICALP 07), vol. 4596 of LNCS, pp. 459–471.
Springer, 2007.

19. L. Schröder and D. Pattinson. PSPACE bounds for rank-1 modal logics. ACM Trans. Comput.
Log., 10:13:1–13:33, 2009. Earlier version in LICS 06.

20. L. Schröder, D. Pattinson, and C. Kupke. Nominals for everyone. In International Joint
Conferences on Artificial Intelligence, IJCAI 09, pp. 917–922. AAAI Press, 2009.

21. W. Thomas. On the synthesis of strategies in infinite games. In Symposium on Theoretical
Aspects of Computer Science, STACS 95, vol. 900 of LNCS, pp. 1–13. Springer, 1995.

A Appendix: Omitted Proofs

Proof of the model existence lemma (Lemma 16)

One first constructs a coherent coalgebra structure w : W → TW on W where
coherence is as in [9]. This structure is then equipped with a coherent valuation
π : N ∪ P→ P(W) so that π(i) = Γi. The claim follows by induction on the structure
of formulas as in op.cit.. ut

Proof of Lemma 17

This follows by analysing the individual steps of the algorithm, where the step of
interest is @-propagation. Note that Γ has a tableau graph if Γ ∈ νWT where
WT : P(S)→ P(S) and

WT (X) = {Γ ∈ S | ∀Γ/Ψ ∈ T (R) ∃∆ ∈ Ψ (∆ ∈ X)}.

We thus have to show that

X = {Γ ∈ S | ∃(Γ, Υ) ∈ L∃@ (• /∈ Υ)} ⊆ νWT

which follows, by coinduction, if we can show that X ⊆ WT (X). The latter inclusion
follows from the definition of WT and W@ by observing that X = {Γ ∈ S | ∃(Γ, Υ) ∈
νW@ (• /∈ Υ)} since νW@ = L∃@. ut

Proof of the completeness lemma (Lemma 18)

We show that whenever the algorithm marks a sequent Γ as satisfiable (λ(Γ) = E)
then there exists a named tableau graph for Γ by analysing the different steps of the
algorithm, and the claim then follows from Lemma 16. The step of interest here is
position update, so let G = (S,C,LM , L@, λS , λC) be a caching graph that has been
constructed during the run of Algorithm 14 and suppose that G →U G′ and G′ =
(S,C,LM , L@, λ

′
S , λC). We may assume inductively that λC(Γ) = E implies that Γ

has a named tableau graph. Now consider Γ ∈ λ−1
S (U) such that λ′S(Γ) = E; we need

to show that Γ has a named tableau graph. In this case, Γ ∈ νW , with W : P(U) →
P(U) as in Definition 13. We consider the following two-player game, played on G
with initial position Γ : the existential player (Eloise) may move from a sequent ∆ to
an @-constraint Υ with • /∈ Υ if (∆,Υ) ∈ L∃@, and the universal player (Abelard) may
move from an @-constraint Υ to a sequent ∆ if (Υ,∆) ∈ L∀@. Plays are lost by the
player who cannot move, and Eloise wins all infinite games. The fact that Γ ∈ νW
entails that Eloise has a winning strategy in the above game. We know by Lemma 17
that each sequent encountered along this winning strategy has a tableau graph. These
tableau graphs can be merged to form a named tableau graph. ut

Proof of Lemma 19

Induction over the steps of the algorithm, where all induction steps are trivial except the
one for @-propagation. Thus, let G = (S,C,LM , L@, λS , λC) be the caching graph
before application of an @-propagation step. Let Γ be satisfiable, and let Υ be the @C-
theory of a model containing a state that satisfies Γ , so that in particular @Γ ⊆ Υ .
Put

R(∆) = {Υ ∪ {•}}

in case ∆ is satisfied in some state of M , and R(∆) = ∅ otherwise. We will be done
once we show that in the notation of Definition 12, we haveR ⊆ νW@. By coinduction,
it suffices to proveR ⊆W (R), i.e.R(∆) ⊆W@(R)(Γ) for all∆. This is trivial if∆ is
not satisfied in M . Thus let ∆ be satisfied in a state of M , so that R(∆) = {Υ ∪ {•}}.
If λs(Γ) = X then trivially Υ ∪ {•} ∈ W (R)(Γ). Otherwise, because ∆ is satisfiable
in M , we have (Ξ1, . . . , Ξk) ∈

∏
(∆,Ψ)∈L∀M

Ψ such that Ξi is satisfiable in M for
i = 1, . . . , n, and hence R(Ξi) = Υ ∪ {•}. Moreover, @∆ ⊆ Υ , so that indeed
Υ ∪ {•} ∈W@(R)(∆). ut

Proof of Lemma 20

Let Γ be marked A in an update step from G = (S,C,LM , L@, λS , λC) to G′ =
(S,C,LM , L@, λ

′
S , λC) as in Definition 13. By induction over the number of steps

in the algorithm, we assume that in G, A consists only of unsatisfiable sequents. We
proceed by a further induction over the least fixed point µM , and hence have that for all
Υ such that (Γ, Υ) ∈ L∃@, there exists (Υ,∆) ∈ L∀@ such that ∆ is unsatisfiable which,
by definition of @-expansion, just means that Υ \ {•} is unsatisfiable. By Lemma 19, it
follows that Γ is unsatisfiable. ut

Proof of Lemma 21

Let G = (S,C,LM , L@, λS , λC) be the caching graph reached upon termination. Put

R = {(Γ, Υ − {•}) | (Γ, Υ) ∈ L∃@}.

In the notation of Definition 12, we are done once we show that R ⊆ L∃@ = νW@.
By coinduction, it suffices to show R ⊆ W@(R). Thus let (Γ, Υ) ∈ L∃@; we have
to show Υ \ {•} ∈ W (R)(Γ). Now by the fixed point property of νW@, we have a
decomposition

Υ = @Γ,Θ1, Θ2, Θ3

where Θ1 ∈ L∃@(Γ), Θ2 ∈ CL∃@(Γ), and Θ3 ∈ A. Then we have

Υ \ {•} = @Γ,Θ1 \ {•}, Θ2 \ {•}, Θ3 − {•}

where now Θ1 \ {•} ∈ R(Γ), Θ2 \ {•} ∈ CR(Γ), and Θ3 \ {•} ∈ A, so that indeed
Υ \ {•} ∈W@(R)(Γ) as required. ut

Proof of Lemma 22

Let G = (S,C,LM , L@, λS , λC) be the caching graph reached upon termination. In
the notation of Definition 13, we have to show that U = ∅. Since sequent expansion
is not applicable to G, we have S = E ∪ A ∪ U . By Lemma 21, the fixed points µM
and νN determine the positions in U for which ∀ and ∃, respectively, have history-free
winning strategies in an infinite reachability game played on S∪C, where positions in S
belong to ∃ and positions in C belong to ∀. Positions in A and E are winning positions
for ∀ and ∃, respectively, and do not have any moves. Other positions have moves
determined by L@. All infinite games are won by ∃. By the history-free determinacy of
such games [21], U is the disjoint union of µM and νN , and because position update
does not apply to G, both these fixed points must be empty. ut

Proof of Theorem 24

Using rule codes in a polynomial-size representation of sets of rule conclusions, we
can ensure that the caching graph has only exponentially many candidate nodes (se-
quents, @-constraints, and sets of rule conclusions), and hence takes at most exponen-
tially many expansion, propagation, or update steps. All fixed point computations that
occur are on complete orders of at most exponential size, and hence all steps can be
performed in EXPTIME. ut

