
LAF/GrAF-grounded Representation of Dependency Structures

Yoshihiko Hayashi§, Thierry Declerck¶, Chiharu Narawa§

§Graduate School of Language and Culture, Osaka University
1-8 Machikaneyama, Toyonaka, 5600043, Japan

{hayashi, narawa}@lang.osaka-u.ac.jp
¶DFKI GmbH, Language Technology Lab

Stuhlsatzenhausweg, 3, D-66123 Saarbrücken, Germany
declerck@dfki.de

Abstract
This paper shows that a LAF/GrAF-based annotation schema can be used for the adequate representation of syntactic dependency
structures in many languages. We first argue that there are at least two types of textual units that can be annotated with dependency infor-
mation: words/tokens and chunks/phrases. Based on this consideration, we discuss a sub-typing of GrAF to represent the corresponding
dependency structures. We then describe a wrapper program that, as a proof of concept, converts output data from different dependency
parsers in proprietary XML formats to the GrAF-compliant XML representation.

1. Introduction

Dependency structures attract a great deal of attention as a
representation of natural language utterances, which is of-
fering a good support for semantic annotation in the context
of the Semantic Web and other communities. This inter-
est is underlined by a recent increase of the publicized lan-
guage resources based on the notion of dependency, includ-
ing text corpora (Brants et al., 2002; Kurohashi and Nagao,
2003) as well as parsing tools (Kudo and Matsumoto, 2002;
Marneffe and Manning, 2008; K̈ubler et al., 2009).

In order to ensure the reusability and interoperability of
these resources, a standardized annotation of dependency
structures that can be applied to a variety of languages
should be used. LAF/GrAF (Ide and Romary, 2006; Ide
and Suderman, 2007) and SynAF (Declerck, 2008) are
on-going ISO TC37/SC4 standardization activities1, which
deal respectively with a generic meta-model for linguistic
annotation and with a meta-model for syntactic annotation,
including dependency structures.

This paper presents concrete experiments done with those
annotation models, which also provided feedback to the ed-
itorial committees of the corresponding ISO groups. We
focus on the basic units of dependency relations that can
be detected in the analysis of texts in many languages.
We argue, in line with the SynAF initiative, that there
should be at least two types of textual units that can be
annotated with dependency information: words/tokens and
chunks/phrases. Based on this consideration, we discuss a
sub-typing of GrAF to represent the corresponding depen-
dency structures. Finally we describe wrapper programs
that, as a proof of concept, convert output data from dif-
ferent dependency parsers in proprietary XML formats to
the GrAF-conformant XML representation, which is also
giving the base for the SynAF representation format.

1http://www.tc37sc4.org/

2. Representation of Dependency Structures
2.1. Definition of Dependency Structure

Dependency structure is a way of representing the syn-
tactic properties of a natural language utterance by focus-
ing on directed binary relations (dependencies) between
two elements of the utterance: One element is called the
head/governorand the other themodifier/dependent. A de-
pendency relation can be labeled with a specific type of
grammatical/functional relation and annotated by some ad-
ditional information such as the estimated probability of oc-
currence. A dependency structure of an utterance can be
formally modeled by a graph, where a node in the graph
represents a linguistic unit, and a (directed) edge linking
two nodes in the graph is denoting the dependency relation
between a head/governor and a modifier/dependent.

2.2. Basic Units of Dependency

(Kübler et al., 2009) and other literatures state that the basic
unit of dependency in general is aword. We however argue
that there are at least two types of linguistic units that can
be annotated with dependency information:words/tokens
andchunks/phrases. We motivate the necessity of the latter
type as follows.

2.2.1. Japanese dependency structure
Japanese is a head-final language and the syntactic struc-
ture of a sentence can be represented with so-calledKakari-
Uke structure. A Kakari-Uke structure is described by a
set of non-projective relations, in which a phrasal unit (or
Bunsetsu chunk; hereafterB-chunk) modifies another one
(modifee) that is somewhere right to the modifier. Many
Japanese syntactic parsers, for example CaboCha (Kudo
and Matsumoto, 2002)2, make use of this property. Note
that a B-chunk consists of one or more content word
and zero or more succeeding functional words. Thus
a B-chunk could be aligned, in English, to a minimum
noun/prepositional phrase, adverb phrase, or verb phrase.

2http://sourceforge.net/projects/cabocha/



私/のMy

犬/はdog-SUBJ いたずら/でfor fun 猫/をcat-OBJ

追いかけ/たchase-PAST DDD
D

example:私/の/犬/は/いたずら/で/猫/を/追いかけ/た(My dog chased a cat for fun)
Figure 1: An example of Japanese dependency structure.

Figure 1 exemplifies a Japanese Kakari-Uke structure,
where each node represents a B-chunk and each directed
edge represents a dependency relation between B-chunks.
Note also in Fig. 1 that a B-chunk consists of more than
one words, whose boundaries are indicated by ”/” for con-
venience.
For the syntactic analysis of Japanese sentences, depen-
dency parsing has been excessively utilized since the 1980’s
rule-based machine translation era, since the syntactic be-
havior of B-chunks is much clearer (more specified) than
that of words (Kurohashi and Nagao, 2003), and the struc-
ture is very suitable for semantic analysis that utilizes, for
example, the case frame of the main verb. Another reason
lies in the fact that Japanese allows word order variations
(or scrambling) in the B-chunk level.

2.2.2. Collapsed representation of English
dependency structure

Marneffe and Manning (2008) propose a collapsed repre-
sentation of English dependency structure, where a node
for certain types of words, typically prepositions in English,
is collapsed and turned to a part of the dependency rela-
tion label. Figure 2 illustrates an example of the collapsing
representation, as generated by the Stanford parser3. Each
node corresponds to a word in the sentence, and each edge,
except the one labeled asprep for , represents a depen-
dency relation between words. In this representation, there
exists no node for the word ”for”; instead, a dependency
labelprep for is introduced for the prepositional phrase
“ for fun.”Notice here that this representation is quite simi-
lar to the Japanese dependency structure as shown in Fig. 1,
where each node is essentially devoted to a content word.
This type of representation scheme has been introduced by
carefully examining the trade-off between the linguistic fi-
delity and the usability of the representation, arguing that
the collapsed representation is more useful for semantic
tasks such as relation extraction. The collapsed represen-
tation could be further collapsed towards a higher semantic
representation level, which could be more adequate when
we are to align dependency structures cross-linguistically.

3http://nlp.stanford.edu/software/
lex-parser.shtml

My
dog cat

chased
funposs

nsubj prep_fordobj

a
det

example:My dog chased a cat for fun
Figure 2: An example of English collapsed dependency
structure.

2.3. Relevant Work on Standardization of Annotation
of Dependency Structures

As mentioned earlier, dependency structures can be rep-
resented by the kind of graphs described in the ongoing
ISO LAF/GrAF initiative. LAF (Linguistic Annotation
Framework) (Ide and Romary, 2006) provides a general
framework for representing linguistic annotations. The data
model is based on directed graph, where a node represents
a linguistic unit, and a edge indicates a relation between the
linguistic units. These nodes and edges may be labeled by
feature structures. LAF does not contribute to semantic in-
teroperability of linguistic annotations, as it does not spec-
ify anything about the linguistic categories in annotations.
It however provides us with a solid conceptual foundation
for the syntactic interoperability of linguistic annotations.
GrAF (Ide and Suderman, 2007) is an XML serialization of
the generic graph structure of linguistic annotations spec-
ified by LAF. The presented work has utilized the XML
schema obtained from the Web site4.
As the LAF/GrAF is a highly generic framework for rep-
resenting unconstrained/untyped linguistic annotations, we
need to go into more details for proposing a graph-based
representation scheme, which is appropriate for dependen-
cies. In this regard, we can base on the on-going SynAF
(Syntactic Annotation Framework) (Declerck, 2008) activ-
ity which is dealing with the multi-layered annotation of
both constituency and dependency structures. The work
we describe in this paper is actually proposing in a way
a bridge between SynAF and LAF/GrAF. Since in SynAF
no concrete annotation examples are available at this stage,
we want to show the validity of the GrAF approach for the
particular dependency annotation task.
Toward the standardization of dependency structures anno-
tation, we also need to develop a reasonable inventory of
dependency relation labels together with their proper defi-
nition. Some work has already started in this direction at
ISO in the context of the release of the ISOcat platform5,
also as a complement to the SynAF annotation model.

4http://www.xces.org/ns/GrAF/0.99/
5http://www.isocat.org/



3. Sub-typing GrAF for Representing
Dependency Structures

We describe an informative sub-typing of GrAF to ade-
quately represent the two types of basic units of depen-
dency relations we suggested above. Sub-typing GrAF in
this context means introducing sub-types of GrAF node and
edge. Figure 3 overviews our proposal on sub-typing GrAF,
where the thick dotted arrow represents a dependency be-
tween the chunks.

headdependent
dependency

chunk
token

region
constituency

Figure 3: Overview of the Sub-typing of GrAF.

3.1. Sub-typing of GrAF Node and Edge

In order to represent the two basic units of dependency
relations, we need two node types: a node type for
words/tokens and a node type for phrases/chunks. Accord-
ing to the GrAF specification, these types of nodes can be
annotated by attaching feature structures. To a word/token
node we assign a feature structure describing its morpho-
syntactic information, while to a phrase/chunk node we as-
sign a feature structure describing its syntactic category.
Every token node is associated with the corresponding span
(or region) in text by a<link> element: GrAF specifica-
tion allows a<node> element to have<link> elements
as the immediate daughters. In addition, we further intro-
duce another type of node for representing dependency. A
dependency node carries information on a dependency re-
lation, such as its label and other information such as the
estimated probability of occurrence.
For edges, we introduce two types: one is to represent a
chunk constituency (chunk constituency edge) and the other
is to represent a dependency relation (dependency element
edge). The chunk constituency edge links a chunk node
to its constituent token nodes; or to other chunk nodes if
the chunk is complex. As the SynAF strongly encourages,
we allow a complex chunk that includes nested smaller
chunks6. A dependency element edge denotes a part of a
dependency relation: it links a dependency node with a to-
ken node or a chunk node, depending on the type of the
dependency structure. The dependency element edge can
be further divided into two sub-types: one marks the head
of a dependency relation, while the other marks the depen-
dent.

6To represent Japanese Kakari-Uke structures, however, no
nested chunks are necessary.

The sub-typing of GrAF edge can be summarized as fol-
lows, where the values offrom and to attributes of
<edge> element are constrained.

edge type = chunk constituency

from : chunk node

to : token node, chunk node (for complex chunk)

type in <as> element : ”chunk const”

edge type = dependency element

from : dependency node

to : token node (for token-based dependency), chunk
node (for chunk-based dependency)

type in <as> element : ”dep head” (for head),
”dep dependent” (for dependent)

There exists an obvious alternative to represent a depen-
dency structure, in which an edge directly encodes the de-
pendency. With this rendering, it turned out thatfrom and
to attributes carry special connotation:from denotes a
head, whileto denotes a dependent. This may not be ade-
quate, becausefrom/to attribute of a GrAF edge should
simply designate the source/destination, and has nothing to
do with the semantics of a dependency structure.

Figure 4: English dependency structure in the Stanford
Parser XML format.



3.2. Working Examples
Here we show examples from the Stanford English parser
and the Japanese dependency parser CaboCha.
Given the example sentence shown in Fig 2, the Stanford
parser returns the analysis result in its proprietary XML
format as shown in Fig. 4. As seen in the figure: only
the part-of-speech information is assigned to each word;
a dependency relation is encoded by using<dep> ele-
ment, in which the head (<governor> ) and the dependent
(<dependent>) are designated by word indices (idx at-
tribute); the dependency type is given as the value oftype
attribute.
This XML document is converted into the GrAF-compliant
XML document as shown in Fig. 5 by the dependency
parser wrapper described in the next section. Although each
top-level XML element is folded in the figure7, some of
them are unfolded and shown in Fig. 6 (token nodes) and
in Fig. 7 (a dependency node and the corresponding depen-
dency element edges). These together represent ansubj -
type dependency whose head is the word ”chased” (w3) and
the dependent is the word ”dog” (w2).

Figure 5: LAF/GrAF compliant XML document for the
Stanford parser (folded).

CaboCha returns the analysis result in its proprietary XML
format as shown in Fig. 8, given the example sentence
shown in Fig 1. A dependency relation is encoded in
the<chunk> element by usinglink attribute, where the
value denotes the id of the head B-chunk. Also notice from
this example that morphological information for a token is
given withfeature attribute in the<tok> element.

7The figure is captured from the Firefox screen.

Figure 6: LAF/GrAF compliant XML document for the
Stanford parser (partial; tokens).

Figure 7: LAF/GrAF compliant XML document for the
Stanford parser (partial; dependency).

As in the Stanford parser example, the dependency parser
wrapper converts the XML document into the GrAF-
compliant XML document. Figure 9 focuses on three parts
in the resulted XML document:chunk2 , shown in (b),
(consists oftok3 and tok4 ; both shown in (a)) is the
head of the dependency relationdep1 whose dependent
is chunk1 as shown in (c).
Let us remind again here that the English dependency struc-
ture is word-based, while the Japanese dependency struc-
ture is chunk-based.

4. Dependency Parser Wrapper
As a proof of concept, we have developed wrapper pro-
grams that convert data in proprietary format coming from
an actual dependency parser to the data compliant to
the proposed LAF/GrAF-based XML schema. Figure 10
schematizes the dependency parser wrapper configuration.
These wrappers are currently implemented with hand-
crafted XSL stylesheets and a generic XSLT processor. The
definition of XML schema good for both types of depen-
dency structure is rather straightforward, and the resulted
XML schema can be utilized to validate XML data gener-



Figure 8: Japanese dependency structure in CaboCha XML format.

a

c

b

Figure 9: LAF/GrAF compliant XML document for CaboCha (partial).

ated by the wrapper. Note here that the XML schema is an
extension of the GrAF XML schema: any XML documents
validated with the schemata are also GrAF-compliant. The
benefit of such a wrapper in the Web service context is ob-
vious, improving the re-usability and interoperability of the
results of existing dependency parsers.

5. Discussions
There surely exist alternatives for representing dependency
structures; these include the simple data format empolyed
by CoNLL-2008 shared task for ”Joint Learning of Syntac-
tic and Semantic Dependencies”8 and the TEI P5 schema
presented in (Przepiórkowski, 2008). The latter allows

8http://www.cnts.ua.ac.be/conll2008/



GrAF schema
Schema for dependency structures sub-typing

a standardized Web APIfor dependency parsers
Dependency parser foo

Application Dependency parser bar
Wrapper
Wrapper

Figure 10: Configuration of the dependency parser wrap-
per.

chunk-based dependency structure as proposed in this pa-
per. These schemata are especially dedicated to econom-
ical representation of dependency structures. The pro-
posed sub-typing of LAF/GrAF for representing depen-
dency structures, on the other hand, might be a kind of
näıve adoption of the ISO proposal that is still under the
discussion. However, as stated in the paper, the presented
proposal demonstrates a possible way to bridge between
SynAF and LAF/GrAF. Kountz et al. (2008), like our pro-
posal, presented a schema for representing syntactic anno-
tations based on LAF/GrAF. Their proposal includes an ex-
tension to LAF that allows flexible encoding of underspec-
ified representation that is required for annotating syntacti-
cally ambiguous sentences.
As discussed in (Marneffe and Manning, 2008), fidelity is
a key issue in the representation of linguistic structures. In
the context of global interoperability of language resources
in multiple languages, this might be reconsidered. We
may need a rather coarse level representation, where lan-
guage dependent idiosyncrasies are abstracted away. The
Japanese B-chunk-based dependency structure could be a
candidate representation level of the kind, and we think we
should explore comparable chunking in other languages,
say in English. If this direction is correct and feasible,
proper chunking should be a part of the wrapper process.
This direction also may facilitate the development of stan-
dardized inventory of dependency relation labels that could
be more of a semantic type rather than purely grammatical.

6. Concluding Remarks

This paper proposed a sub-typing of LAF/GrAF framework
for representing two types of dependency structures that
should be essential in handling multiple languages. It also
partially proved the value of an international standard like
LAF/GrAF in the Web service context: an existing depen-
dency parser can be, in a sense, standardized, once wrapped
by a data format conversion process.
For future work, along with the issue of more semantic-
oriented representation, a mechanism to link data syntax
(XML schemata) with data semantics (ontological knowl-
edge) (Hayashi et al., 2008) should be explored. This line
of work would allow us to develop a method to (semi-
)automatically generate a wrapper program given the on-
tological specification of a parser at hand.

7. Acknowledgments
The authors would like to thank both Ulrich Heid and
Kerstin Eckart (IMS, Stuttgart) for the helpful discussion;
Nancy Ide, and Keith Suderman for their useful suggestions
on utilization of GrAF XML schema. The presented work
has been supported by Strategic Information and Com-
munications R&D Promotion Programme (SCOPE) of the
Ministry of Internal Affairs and Communications of Japan,
and by the project D-SPIN funded by the German Federal
Ministry of Education and Research (BMBF).

8. References
Brants, S. Dipper, S., Hansen, S., Lezius, W., and Smith, G.

(2002). The TIGER Treebank.Proc. TLT’02.
Declerck, T. (2008). A Framework for Standardized Syn-

tactic Annotation.Proc. LREC2008.
Hayashi, Y., Declerck, T., Buitelaar, P., and Monachini,

M. (2008). Ontologies for a Global Language Infras-
tructure.Proc. ICGL2008, pp. 105–112.

Ide, N., and Romary, L. (2006). Representing Linguistic
Corpora and Their Annotations.Proc. LREC2006.

Ide, N., and Suderman, K. (2007). GrAF: A Graph-based
Format for Linguistic Annotations.Proc. Linguistic An-
notation Workshop, pp. 1–8.

Kountz, M., Heid, U., and Eckart, K. (2008). A LAF/GrAF
based Encoding Scheme for Underspecified Representa-
tions of Syntactic Annotations.Proc. LREC2008.

Kübler, S., McDonald, R., Nivre, J. (2009).Dependency
Parsing. Synthesis Lectures on Human Language Tech-
nologies, Morgan & Claypool Publishers.

Kudo, T., and Matsumoto, Y. (2002). Japanese De-
pendency Analysis using Cascaded Chunking.Proc.
CONLL2002, pp. 63–69.

Kurohashi, S., and Nagao, M. (2003). Building a Japanese
Parsed Corpus while Improving the Parsing System. In:
Anne Abeille (Ed).Treebanks, pp. 249–260, Kluwer
Academic Publishers.

de Marneffe, M., and Manning, C.D. (2008). The Stan-
ford Typed Dependencies Representation.Proc. COL-
ING2008 Workshop on Cross-framework and Cross-
domain Parser Evaluation.

Przepíorkowski, A. (2008). TEI P5 as an XML Standard
for Treebank Encoding.Proc. TLT8


