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Abstract. This paper presents a computer vision system for tracking
and predicting flying balls in 3-D from a stereo-camera. It pursues a
“textbook-style” approach with a robust circle detector and probabilis-
tic models for ball motion and circle detection handled by state-of-the-
art estimation algorithms. In particular we use a Multiple-Hypotheses
Tracker (MHT) with an Unscented Kalman Filter (UKF) for each track,
handling multiple flying balls, missing and false detections and track
initiation and termination.
The system also performs auto-calibration estimating physical parame-
ters (ball radius, gravity relative to camera, air drag) simply from observ-
ing some flying balls. This reduces the setup time in a new environment.

1 Introduction

Robotics is not only about relieving mankind from laborious and dangerous
tasks. It is also about playfully exploring the world of dynamic motion and per-
ception from the perspective of a machine. The latter view led to the RoboCup
2050 vision of a human-robot soccer match as proposed by Kitano and Assada [1].
Our interest lies in the vision part, namely visually perceiving a soccer match
from the players perspective. In previous work [2] we have investigated how to
predict a flying ball from images of a moving camera. This paper presents a
system for robust tracking and prediction of multiple balls from a static camera.

We provide three contributions with the overall system: First, a novel circle
detector avoids hard decisions and thresholds for the sake of robustness. Sec-
ond, a multi-hypothesis tracking (MHT) system based on the implementation
by Cox [3] robustly handles several flying balls and false or missing measure-
ments. And third, an auto-calibration mechanism learns physical parameters
(ball radius, gravity vector in camera coordinates, air drag) simply by observing
flying balls.

Ball tracking is important in TV sport scene augmentation. The vision sys-
tems in [4–6] exploit the TV perspective, with the field as a static uniform
background. In contrast, in the long run our system shall work from the player’s
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Fig. 1. System Overview: In the left and right image circle candidates are detected.
These are fused by an MHT establishing the stereo correspondence, assignment to
tracks and track initiation and termination. The two detectors run in parallel.

perspective with a moving camera. Hence we propose a novel circle detector to
find the ball in front of moving and cluttered background. The system by Gedikli
et al. [6] uses MHT as we do, but for player tracking, complementary to our task.

In RoboCup tracking is often 2-D with a coloured ball and manually tuned
heuristics as for instance in the CMVision [7] software. Experience in the com-
petitions shows, that usually hours are needed to tune the vision system to new
environments. We experienced the same with a trade-fair demonstration of a
ball catching robot [8]. This motivated our ball detection algorithm that does
not need tuning parameters. Voigtländer et al. [9] propose a tracking system
that fits a 3-D parabola to stereo triangulated ball positions. This ignores the
uncertainty structure of stereo triangulation, where depth is most uncertain. We
model the metrical uncertainty of circle detection in an UKF [10] to improve
accuracy and the uncertainty, whether the circle is actually a ball, in an MHT
to improve robustness.

Indeed, we see our contribution in presenting a “textbook-style” algorithm
without heuristics that still works in real-time.

2 System Architecture

The architecture for our proposed ball tracking system is a two-staged bottom-
up process (Fig. 1). In the first stage, circle candidates are extracted from a
pair of cameras exhaustively searching through all centers and radii (Sec. 3). In
the second stage, the circle candidates of both images are fused to ball tracks
using the MHT algorithm (Sec. 5). We use the implementation by Cox [3]. This
algorithm defines a systematic method for setting up association-hypotheses be-
tween multiple-targets and measurements considering false-alarm and missing
measurements and evaluating them probabilistically. For our system, a target
corresponds to a single ball trajectory whereas a measurement is a circle candi-
date from the detector. Hypothetical associations between tracks and measure-
ments are evaluated by an UKF, which provides the probabilistic model for a
single track (Sec. 4). The most likely association hypothesis and its tracked ball
trajectories are returned by the MHT.

After the system description, the method for learning the parameters of the
physical model is given in Sec. 6. Last, experimental results are presented.



3 Circle Detection

This section describes the circle detection algorithm that is used to find the
flying ball(s) in the image. It assumes that the ball has a circular outline in the
image with a radial intensity gradient. The algorithm ignores the circle’s interior,
which could in future be used for recognising false detections.

3.1 An Improved Definition for a Circle Response

Our approach is related to the well known circle Hough-transform [11, 12] as
both define a circle response CR(xc, yc, r) as a function of the circle center
(xc, yc) and radius r and search for local maxima of CR(xc, yc, r). The circle
Hough-transform basically goes through all edge pixels of the image and moves
perpendicular to the edge for a distance of r ∈ [−rmax . . . rmax]. For all resulting
pixels (x(r), y(r)) the circle response CR(x(r), y(r), |r|) is incremented.

So, CR(xc, yc, r) is the number of edge pixels closer than rmax, where this per-
pendicular line goes through (xc, yc) within half a pixel. This definition involves
two hard decisions designed to facilitate efficiency. The first is the classification of
edge pixels with a threshold that is sensitive to illumination and image blur. The
second is the half-a-pixel criterion for the perpendicular line, which is sensitive
to noise. Such early decisions impair robustness.

We now present a circle response definition that is illumination invariant
and continuous with no thresholds. It represents the average fraction of image
contrast along the circle that can be explained as a radial intensity gradient. This
notion can be formalized mathematically, but we omit the derivation here for
lack of space. The idea is as follows: A local image patch around a point can
be decomposed into a sum of components, similar to Fourier decomposition.
One component is the image structure we expect, namely a linear intensity
gradient in radial direction. The sum of the squared norm of all components, is
the local image variance. So, if we take the squared norm of the linear intensity
component and divide it by the local image variance, we get an illumination
invariant measure that indicates which fraction of the local image contrast is a
radial gradient.

Practically, the result is a contrast-normalized Sobel filter C, where the vec-
tor length indicates gradient purity rather than gradient intensity. The circle
response R(α)(x, y) in a point (x, y) is then the squared scalar product of the
radial direction ( cosα

sinα ) with C.
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It can be seen, that in (1) the nominator is the ordinary Sobel filter. The de-
nominator is the image variance computed as the weighted mean of I2 minus the
squared weighted mean of I. This follows from the well known variance formula
Var(X) = E(X2)− (E(X))2. The factors

√
2 and 16 make R(α) ∈ [0 . . . 1].



The circle response is now the average fraction of radial gradient on the circle.

CR(xc, yc, r) =
1

2π

∫ 2π

α=0

((
cosα
sinα

)
· C
(
xc + r cosα
yc + r sinα

))2

dα (2)

Normalizing the contrast on each pixel individually is important. Otherwise one
large gradient dominates the response making it higher than for a small gradient
on the whole circle. False circles tangential to intense edges would result.

Finally, the Ncand largest local maxima are circle candidates for the MHT.

3.2 Real-Time Implementation

We have taken considerable effort to implement (2) in real-time3. C in (1) is
only computed once per pixel and well suited for Single Instruction Multiple
Data (SIMD) optimization (Intel SSE here). We exploit that the convolutions in
(1) are all combinations of blurring by 1

4 (1, 2, 1) and differentiation by (−1, 0, 1)
in x and y respectively. This shows again the relation to the Sobel filter. The
result is well represented with 7 bits plus sign reducing memory throughput.

The key challenge is computing the integrand of (2) for every pixel on every
circle considered (πr2maxwh = 15·109 times in our case). Furthermore, the pattern
of memory access on C is regular regarding xc, yc but not for r and α. Hence,
we iterate on r, α, yc, xc from outer to inner loop, so we can SIMD-parallelize
in xc. However, this sequence of loops would require C to be loaded many times
(πr2max) from memory. To avoid the bottleneck, we process blocks of 16×16 pixel
in xc, yc and nest the loops as yc block, xc block, r, α, yc in block, xc in block.
Furthermore, the vector ( cosα

sinα ) and the relative memory address of ( r cosα
r sinα ) is

precomputed in a table with one entry for every pixel along each circle.
Even though the integrand of (2) is computed in 0.42ns, the whole computa-

tion still needs 6.6s (Intel Xeon, 2.5GHz). Our solution is a multi-scale approach
where we define a detection radius rdet (3 pixel) and successively halve the image.
Starting from the lowest resolution we search for circles of radius rdet . . . 2rdet−1
and successively refine the circles found before. So every circle is detected at that
resolution where its radius is in the above interval. This multi-scale approach
just needs 13.1ms in which the image is scaled down up to one fourth of the
original size.

For comparison, the openCV implementation of circle Hough-transform needs
85ms. However, we believe that with comparable implementation effort, Hough-
transform would be faster than our detector. The main advantage is, that our
detector uses no thresholds making detection more robust from our experience.

4 Single Track Probabilistic Model

This section describes the Kalman Filter used to track the ball as a single target
from circle measurements of the camera images. It presents the probabilistic
model both for the motion of the ball and for the cameras observing the ball.
3 The implementation is available upon request.



When tracking a ball, we are interested in its position over time. We also need
the velocity to predict the ball’s upcoming position. Therefore, the estimated
state vector xb = [x v] consists of the ball’s 3D-position x and 3D-velocity v.

The change of the ball’s state during flight, required by the filter’s prediction
step, is modeled by classical mechanics including gravitation g and air drag α.

ẋ = v, v̇ = g − α · |v| · v +N (0, σ2
v), α = 1

8πcdρd
2m−1 (3)

The factor α determines the air drag, with cd drag coefficient, ρ density of air,
d ball diameter, and m ball mass. The uncertainty in this process is modeled as
Gaussian noise with zero mean and the covariances σv perturbing the velocity.

The measurement equations used in the update step model the position and
radius of the circle detected in a single camera image. We use a pin-hole camera
model plus radial distortion [2] that provides a function h which maps a point
from a 3D-scene into the image plane. To project a ball into an image, we
calculate two orthogonal vectors with length d/2 orthogonal to the ball’s line-
of-sight. We then add x and project these four points using h into the image
plane. The results (px,i, py,i) are recombined to center and radius:

( xc
yc ) = 1

4

∑4
i=1

( px,i
py,i

)
, r =

√
1
4

∑4
i=1(px,i − xc)2 + (py,i − yc)2 (4)

This method implicitly triangulates at the ball diameter to obtain depth.
Generally, tracking systems of this kind use the Kalman filter which repre-

sents the state distribution as a Gaussian random variable and requires linear
dynamic and measurement models. For our models linearization is required. One
could use the Jacobians which is known as the Extended Kalman Filter (EKF).
Better results are achieved by the Unscented Kalman Filter (UKF) [10] which
utilizes the so-called unscented transform to linearize the model at a given state.
It represents the state’s mean and covariance by a set of so-called sigma points,
which are computed such that their sample mean and covariance corresponds to
the state’s mean and covariance. With these, the whole Gaussian is transformed
by propagating each sigma-point through the nonlinear function. The propagated
sigma-points are then combined to mean and covariance of the transformed state.
This method reduces linearization errors that perturb tracking. Therefore, we
use the UKF to estimate the state of a single track over time.

5 Multiple Hypotheses Tracking

In the previous section, we considered how to track a single ball (the target)
from a series of measurements originating from that ball. In practice, associating
a series of measurements with its corresponding track, when there are multiple
measurement candidates and multiple targets, is difficult for a number of reasons.
First, measurements might be missing, i.e. occluded or not detected. Second, all
false measurement candidates (e.g. a person’s head) need to be correctly classified
as false-alarm measurements and therefore not associated with any track. Finally,
tracks start and finish at an unknown points in time.



5.1 The approach of Cox and Reid

One solution to such a data association problem was proposed by Reid [13] and
later enhanced to our case by Cox and Hingorani [3] and is known as the multiple
hypothesis tracking algorithm (MHT). This algorithm systematically maintains
a set of association hypotheses involving multiple targets and multiple, possi-
bly false-alarm, measurements. Formally, a hypothesis is an assignment of each
measurement candidate to a track or to “false-alarm”. On arrival of new mea-
surement candidates, each hypothesis from the previous time-step is expanded
to a set of new hypotheses by considering all possible associations of measure-
ment candidates to tracks in the current time-step. Each measurement may be
at most associated with one track and vice versa. Furthermore, the initiation or
termination of tracks are considered while generating hypotheses.

The algorithm computes the probability for each hypothesis. This proba-
bility is effectively the product of individual probabilities for “everything that
happened”. For most events (track initiated, track terminated, measurement
missed, false-alarm) it is simply a preconfigured constant. For the event of a
measurement being associated with a track, the single track model gives the
probability. This probability expresses, how well the measurements assigned to
the track fit metrically to the model. If they fit well, the most likely hypothesis
is that they form a track, otherwise it is more likely that they are false-alarms.
This behaviour is the essence of the functionality provided by the MHT.

Formally, for the hypothesis m at time k the probability is [3]

P (ωkm|Zk) =
1
c
P (ωk−1

l(m)|Z
k−1)λυNλ

φ
F

mk∏
i=1

Nti(zi(k))τi

∏
t

(P tD)δt(1− P td)1−δt(P tχ)χt(1− P tχ)1−χt (5)

where c is a normalizing factor, P (ωk−1
l(m)|Z

k−1) is the probability of the parent
hypothesis and known from the previous time-step, λN is the density of new
targets, λF is the density of false-alarm measurements, υ is the number of new
targets and φ the number of false alarms in this hypothesis. N (zi(k))τi is the
likelihood of the measurement zi at time k given the target ti provided by the
single track model, P tD is the probability of detecting and P tχ is the probability
of ending track t. τt, δt, χt are 1 if zi(k) is associated with a known track, if
track t detected at time k − 1 is also detected at time k or if track t known at
time k − 1 is terminated at time k, respectively. Otherwise they are 0.

Although, we can evaluate the probability of every hypothesis, the expo-
nential complexity of the ever-growing tree of hypotheses makes an efficient
implementation infeasible. Therefore, several strategies for removing unlikely
hypotheses proposed by Cox and Hingorani [3] are used. Ratio pruning removes
all hypotheses whose ratio to the best hypothesis is below a certain threshold.
This is efficiently done by generating only the k best hypotheses following Murty.
Last, N -scan-back pruning removes hypotheses based on the assumption, that
ambiguities can be resolved within N time-steps.



5.2 Track Initiation

Within the MHT algorithm, a track is automatically created for every observed
measurement. Obviously, one measurement defines the ball’s position via the in-
verse of (4) by triangulating over the ball diameter. However, it does not define
velocity. So we set the initial velocity covariance to a large prior representing an
upper bound on typical velocities. When later a nearby measurement is associ-
ated with the track, the velocity is implicitly computed by the UKF. Still, such
a prior is important, because it bounds the area where measurements could be
associated with this track thereby limiting the number of hypotheses.

Furthermore, we correctly initialize the covariance of the ball’s position using
the Jacobian of the inverse of (4). This prevents false associations compared to
the widely used initialization with a constant covariance.

5.3 Circle candidate correspondence

When using stereo vision, correspondences between features found in both cam-
era images must be established. With MHT there are two possibilities. First, one
could match candidates from both images prior to the tracking and integrate the
result as 3D-measurements into the MHT. Second, one could integrate the set of
circle candidates of each camera image successively. Then, MHT implicitly han-
dles the correspondences when associating candidates to the same track, leading
to more hypotheses though. We implemented this, because it could process tracks
observed from just one camera, where the other one would not find a match.

Future work is to compare with a particle filter replacing both UKF and
MHT. The challenge is the following: Due to the low dynamic noise, a particle
filter effectively selects from the particles initialized from the first few mea-
surements the particle fitting best with all measurements. This requires many
particles since, in particular the velocity uncertainty decreases by a large factor.

6 Physical Parameter Learning

The model (3) and (4) require the gravity vector g (relative to the camera), the
air drag α, the ball diameter d and the stereo-camera calibration. The latter is
calibrated only once, but g, which depends on the camera’s orientation, and α,
d, which depend on the used balls, change with every new environment.

For easy setup, the parameters are estimated from flying balls during a cali-
bration phase. There the UKF runs with (g, α, d) in the state. The first challenge
is that with the additional states, many more false tracks fit to the model, lead-
ing to wrong estimates. It would be most rigorous to run another MHT or robust
estimator to fuse (g, α, d) estimates of different tracks. We currently proceeds
simpler. First, we provide some rough prior information (|g| = 9.81 ± 0.05 m

s2 ,
d = 0.21 ± 0.1m, α = 0.015 ± 0.1m−1) and second, only estimates from tracks
which lasted at least 15 frames are accepted. Technically, the prior on |g| can
only be integrated after the uncertainty in g is low enough to linearize |g|.



Fig. 2. Camera view of the tracking scenario and overlaid detection results
(red circles) and predicted ball trajectories (coloured circles). A filled circle
denotes an association to a track. For a video of the tracking results visit
http://www.informatik.uni-bremen.de/agebv/en/MHBallTracking.

Tracks in roughly opposite direction are needed to distinguish g and α. This
is because air drag and the component of g in the direction of flight have similar
effect. Hence, when a track is accepted, the final (g, α, d) estimate with covariance
becomes the prior for new tracks. So information is collected over several tracks.

7 Experiments

The system described above has been implemented and evaluated. The experi-
mental setup consists of a calibrated camera pair (1024× 768 pixel, 30Hz) with
a 20cm baseline. Both images are processed in parallel by Two Quad-Core Xeon
2.5 GHz processing units and then fused by the MHT (see Fig. 1). The precon-
figured constants for the MHT algorithm were PD = 0.3, λχ = 40, λN = 4 ·10−9

and λF = 3.65 ·10−6. PD was chosen lower than the actual detection probability,
to allow tracks to continue for a few frames without the integration of measure-
ments. This compensates for correlation between detection in successive frames
which is not modeled by the MHT. The pruning strategies were initialized with
0.01 for ratio, 5 for k best hypothesis and 10 for N -scan-back pruning.

In the experiment, four people were throwing up to three volleyballs to each
other outdoors. Fig. 2 shows two camera images, with overlaid detection and pre-
diction. Not only the trajectory of the ball flight is visible, but also trajectories
created by false-alarm measurements. This is inevitable, since every measure-
ment might be a possible new track. To evaluate the performance of the system,
the detection and tracking results were manually analyzed by annotating ball
detections and tracks (Fig. 3). In the sequence of 417 stereo frames 2257 balls
were visible forming 32 trajectories. The detector postulated 13637 candidates,
from which 1567 were balls, leading to 69.4% detection rate. The large number
of false alarms was intended, because the detector is used to return the 17− 20
circle candidates with highest response. This avoids making early decisions in
the detector, where the MHT has much more information. When forming the
best hypothesis, the MHT rejected to associate 100 correctly detected measure-
ments. On the other hand, it wrongly associated 76 false-alarm measurements.



Fig. 3. Stacked bar chart denoting the number of errors the system made at each time-
step. The red bar indicates missed balls, the blue bars show correctly detected balls
not associated with any track and the green bars visualize the number of false-alarm
measurements that were associated with a track.
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Fig. 4. Processing time of the circle detector (left/right parallel) and the overall system.

A large part of these occurs when the circle detector mistakes a shadow on the
ball for the ball returning a circle that is slightly of center and too small. This
suggests to avoid the two-stage feed-forward approach and instead look back
in the original circle responses during tracking. Then the true circle could be
accepted by the tracker, even though it has a slightly worse response than the
false circle because it fits better to the motion model [14].

The computation time is shown in Fig.4. One could also be interested in
evaluating the metrical prediction. This is left to future work since here the
focus is on the MHT.

8 Conclusion and Outlook

We have presented a system for tracking and predicting multiple flying balls
from a static stereo camera, consisting of a novel circle detector and the MHT
algorithm applied to the physical model of a flying ball. The system is very
“textbook-style” containing almost no heuristics and no tuning parameter in
the circle detection. Still it works very robustly in real-time.

In the long term, we want to move the system onto a helmet worn by a human
player and track the ball from the player’s perspective [14]. This requires inte-
grating an inertial sensor for egomotion perception into the single track model.
It also poses a subtle challenge for the MHT tracker, because different tracks are
not independent any more, but linked by the unknown pose of the camera.



Finally, a long term goal would be to avoid the two-stage architecture and
instead optimize a likelihood that includes both the motion model and the circle
response CR(xc, yc, r). Then, a ball that is visually as vague as many false detec-
tions in the image, would still be accepted if it fits well with the motion model.
We expect that this approach could further increase the systems robustness.
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