
Combining Evaluative and Generative
Diagnosis in ActiveMath

George GOGUADZE a, Erica MELIS b

a Univesity of Saarland
b German Research Center for Artificial Intelligence (DFKI)

Abstract. Generative and evaluative approaches are two different ways
of diagnosing students’ input that have been realized in a number of

intelligent tutoring systems. We describe how ActiveMath’s exercise

subsystem realizes both types of diagnosis and how it can combine them.
A framework for distribution of diagnostic services is extending the ex-

isting web-service approach to mathematical services with the notion of

context. In addition to an appropriate diagnosis, a goal is the interop-
erability of diagnosis services.

Keywords. diagnosis, evaluative and generative approach, user modeling,
interoperability

Introduction

Generative and evaluative approaches are two different ways of diagnosing stu-
dents’ input that have been realized in a number of intelligent tutoring systems
so far. The most common instances of generative and evaluative diagnoses are
model-tracing (e.g., in cognitive tutors and Andes1) and constraint-based diag-
nosis (e.g., in SQL tutor, database place, KERMIT, NORMIT, CAPIT), respec-
tively. Both approaches can yield feedback to errors. That is, a generative di-
agnosis can find a student’s solution path (as well as an expert solution path),
while the evaluative diagnosis deal with the student’s solution (as well as with an
expert’s solution).

Mitrovic, Koedinger, and Martin as well as Kodaganallur, Weitz, and Rosen-
thal [6,4] have discussed the specificities, advantages and shortcomings of these
approaches and even extended this discussion in critique and its response[7,5].
These discussions led to a better understanding of techniques at a general level
and to suggestions on when to use which.

Wouldn’t it be nice to use both, possibly even combined, to deliver appropri-
ate diagnoses which are – after all – the basis for useful feedback and for student
modeling?

Contribution. This paper describes ActiveMath’s current diagnosis framework
that makes use of generative mechanisms as well as evaluative ones and even com-
bines these in cases. The employed generative principles are not novel themselves,
just domain reasoning – although quite efficient by design. What is new for the



generative diagnoses is the (web-)service-approach for domain reasoners, which
makes it possible to call several domain reasoners on the web even interleaving
and to use standardized queries for this purpose. We describe a generic format
for queries and the set of queries we currently use in ActiveMath.

The evaluative diagnosis differs from the typical constraint-based diagnoses
in that it is represented by three evaluations : syntactic, numeric and semantic
equivalence which are very generic – maybe more generic than what is claimed in
[4].

The paper is organized as follows. First we review relevant parts of the knowl-
edge representation and architecture of ActiveMath’s exercise subsystem. Then
we describe the diagnosis framework and queries to mathematical services, and
finally evaluative and generative diagnoses and their interoperability.

1. Preliminaries about ActiveMath

ActiveMath is a web-based learning platform for mathematics. In addition to its
adaptive course generation [11] and student model [3] a central component is its
subsystem for interactive exercises that features ActiveMath’s main function-
alities of ’intelligent tutoring’ including the student input’s diagnosis. We briefly
describe the overall architecture of ActiveMath’s exercise subsystem.

Moreover, the knowledge representation of mathematical expressions (which
belong to the problem to be solved and the student’s input) and of interactive
exercises is also relevant for the diagnosis as described below.

1.1. Knowledge Representation

Throughout ActiveMath, the OpenMath standard [10] is used to encode math-
ematical formulas. This semantic representation is a basis for the interoperability
of various (web-)services in the diagnosis process. It allows for semantic diagnosis
using external Computer Algebra System (CAS) and domain reasoner services. In
order to enable communication to external diagnosis services their representation
formats should be mapped to OpenMath. For this, so called phrasebooks are
used. A phrasebook is a software application realizing the translation back and
forth from OpenMath to the native language of a particular CAS or domain
reasoner.

Exercises in ActiveMath are represented as finite state machines (possi-
bly to be generated) which consist of nodes representing system-provided tasks,
feedbacks and interactions, and transitions between nodes representing conditions
that have to be satisfied for the learner’s input in order for the transition to fire as
well as corresponding diagnosis. A condition represents a query to the diagnosis
services. Such a query can represent a constraint upon the user answer which can
be evaluated by a CAS or it can be a query to a domain reasoner service. We
describe the diagnosis services in more detail in section 2.



Figure 1. Exercise subsystem architecture

1.2. Architecture of ActiveMath exercise subsystem

Figure 1 shows components of the exercise system architecture. Pale yellow are
the ActiveMath components external to the exercise subsystem and grey com-
ponents are the CAS and domain reasoner services that are external to Active-

Math and communicate with the exercise system.
The central component of the exercise subsystem is the Exercise Manager,

which coordinates the other components of the subsystem and controls the exer-
cise process. Another important component is the Exercise Generator which is
responsible for generating the nodes of the exercise.

This nodes can either be obtained from an authored part of the exercise rep-
resentation, as well as generated automatically. Such a generation depends on the
diagnosis of the learner’s answer and on the tutorial strategy. The Diagnoser

remotely connects to external services capable of generative or evaluative diag-
nosis via the Query Broker. Based on the diagnosis of the user action provided
by a CAS or by a domain reasoner, the Feedback Generator component gen-
erates feedback automatically. Various Tutorial Strategies can be applied to
the exercises [1] that define, e.g., what type of feedback has to be generated de-
pending on the situation of the student, his previous activities and the strategy’s
pedagogical approach.



2. Diagnosis in ActiveMath

The Diagnoser module can access and query two kinds of systems, – actually
two kind of services – that use mathematical domain knowledge for diagnosing
the student’s input:

• the first are generic computer algebra systems, which have their own solu-
tion algorithms that may be very different from how humans solve math-
ematical problems. Currently, ActiveMath integrates and communicates
with the CASs: YACAS, Maxima, and WIRIS; phrasebooks for Maple and
Mathematica are available too

• the other type of systems/services are domain reasoners such as SLOPERT
[12], which encapsulate expert (and buggy) rules as humans use them in a
specific (mathematical) domain, e.g., symbolic differentiation

Correct/incorrect diagnosis provided by a CAS can lead to the generation of
a flag feedback. CASs also deliver final correct solutions. Authored exercises can
encode queries to CAS that match the user answer against a buggy rule. A more
detailed diagnosis can be obtained when a domain reasoner is available for the
domain of the exercise. Additional queries can be sent to the domain reasoner
in order to generate hints for the learner such as next step hint, or what is the
correct answer for a current step, etc.

Both kinds of systems - CAS and domain reasoners can be queried by the
Diagnoser for authored as well as for generated or for partially generated exer-
cises.

2.1. Architecture of the diagnosis framework

Few systems try to make mathematical services such as CAS and even more
advanced theorem provers accessible through the web. Examples of such are
MONET services [8], or MathServe [13].

ActiveMath implements a novel service architecture for the diagnosis of
student’s actions in mathematical problem solving. The diagnosis task imposes
some requirements upon such services, which we describe below. In ActiveMath,
a broker architecture supports the Diagnoser to distribute queries to external
diagnosis services, as shown in Figure 2.

The Query Broker accesses those services that are registered for the (math-
ematical) domain needed for the diagnosis. For instance, a domain reasoner for
symbolic differentiation is only queried for problems in symbolic differentiation.
The subscribed mathematical services themselves can also send a query back to
the broker. For example, a domain reasoner for symbolic differentiation can send
a query back to the broker if it needs to simplify an arithmetic expression. The
Broker passes this new query to a CAS or arithmetic domain reasoner.

2.2. Evaluative Diagnosis in ActiveMath

In mathematics, different expressions can be considered ’correct’ for a problem,
i.e., ’equivalent’ to a given solution. For instance, 1

2 is (numerically) equivalent



Figure 2. Diagnosis framework architecture

to 0.5 and 1
a
b

is (semantically) equivalent to b
a . Not in all cases, the result 1

a
b

is

pedagogically as desirable as b
a , and in such cases the student’s input has to be

checked for syntactic equivalence too. That is, the three basic types of equivalences
to be evaluated in ActiveMath’s diagnoses are syntactic, numeric, and semantic
equivalence. Syntactic equivalence is used for comparing the student’s answer with
the final correct result, numeric equivalence checks correctness up to a numeric
simplification. Semantic comparison can be used for matching intermediate steps
as well as for matching some typical errors and their semantic equivalents.

Syntactic equivalence holds if the student’s answer and an expected correct
result are literally the same. Numeric equivalence holds if the student’s answer can
be transformed numerically to an expected correct result. Semantic equivalence
holds if the student’s answer can be transformed semantically to an expected
correct result.

More complex constraints are possible within semantic equivalence, for which
a so called lambda comparator is used. Lambda comparator is a complex con-
straint that has to be satisfied for the learner’s answer. In order to represent such a
constraint, a lambda expression of the form λx.P (x) is used, where x is the bound
variable corresponding to the user input and P is a predicate representing the
constraint. For instance, the condition λx.x < 3 is satisfied for any input which
is smaller than 3. In general, such a comparator is needed if there are more than
one input field in a required step and the learner’s answer has to be handled as
a vector. Then, the lambda comparator has a form λx1...xn.P (x1, ..., xn), where
P (x1, ..., xn) is an n-ary predicate. For example, λx, y.(x = 2 ∗ y) is satisfied by
an input pair of any expression and its double.

2.3. Generative Diagnosis in ActiveMath

The generative diagnosis leads to feedback of the types

• goal decomposition hints



• next step hints
• strategic hints
• worked out solution of the whole problem or a sub-problem
• identifying erroneous paths of student

ActiveMath’s generative diagnosis is realized via queries to domain reason-
ers. Queries are sent to Query Broker which distributes them to the appropriate
domain reasoner.

As usual, the domain reasoners can return expert and buggy solution paths
and, if needed, a complete problem solving space. They can return paths starting
and ending at given nodes in the problem solving space.

2.4. Queries.

We defined generic queries used to access any diagnosis service. Note that the main
compare queries, which can be answered by CASs are indeed domain independent.
Insofar, they support the claim that evaluative diagnosis is domain independent,
i.e., no modeling of the domain is necessary upfront.

A context that can be included into queries characterizes the domain in even
more detail: it defines (sub-)sets of rules and functions that a domain reasoner or a
CAS is allowed to use for the diagnosis. The background for this restriction is that
depending on the activity history, situation of a student and on the pedagogical
approach, different rules (and functions) should be usable.

Consider the following example: The task of the student is to differentiate a
function f(x) = (x+ 1) · x.

If this exercise is used in a situation when the student has not yet learned the
product rule, a possible correct next step would be an arithmetic transformation
that opens brackets, rather than product rule. In this case the evaluation of the
student’s answer needs to be done in a context excluding the product rule but
including arithmetic context.

In order to formalize queries for evaluative and generative diagnosis we defined
a representation that consists of :

• action of the query (e.g. getResults, getUserSolutionPaths)
• (list of) expressions e.g., task, user answer, correct answer
• context of action identifying the set of applicable rules (e.g. arithmetic,

differentiation, logic)
• number of iterations defines how many atomic steps the domain reasoner

should perform in the given context

In the following e, e1, e2, are OpenMath expressions, C is a context of a query,
N is the number of iterations. A solution path is a list of results of consequent
rule applications, annotated with rule identifiers.

Here are some queries currently used in ActiveMath:

• query(getResults, e, C, N) - returns the list of final nodes of all paths of
length N starting at e in the context C

• query(compare, e1,e2, C, N) - returns true if there exists a path of the
length N from e1 to e2 in the context C, false otherwise



• query(getRules, e, C) - returns the list of identifiers of expert production
rules applicable to e in the context C

• query(getUserSolutionPaths, e1, e2, C, N) - returns the list of all paths
of length N from e1 to e2 in the context C

Consider a following example query to a domain reasoner:
Example query: Calculate the next two steps for computing derivative of the

function f(x) = (x+1)·x using only arithmetic simplifications and differentiation
rules except for a product rule.

Using our query format we can formalize the example query as follows:
query(getResults, (x+ 1) · x, C, 2), where C is the composite context con-

sisting of arithmetical context and differential rules without product rule.
It is easy to see that the comparisons relating to the three basic types of

equivalences defined above correspond to instances of the query compare. Syntac-
tic comparison corresponds to an empty context, numeric comparison to a specific
numeric context, and semantic comparison to the global context.

2.5. Combinations of Generative and Evaluative Diagnosis

In manually authored exercises, transitions containing semantic equivalence
queries to CAS or to domain reasoner can be authored. On the other hand, when
a reasoner for the domain of the given problem is available, each new step of an
exercise can be automatically generated based on diagnosis of the student input
provided by this domain reasoner or by a CAS. Moreover, the evaluative and gen-
erative approach can be combined for exercises that are partially authored and
enhanced on fly as explained below.

Currently, there are three ways to combine evaluative and generative diagnosis
in ActiveMath.

Domain reasoner calls CAS As mentioned above, the domain reasoner might
send a query back to the Query Broker since it might need to evaluate an expres-
sion in a different context then its own, and the query can then be forwarded to a
CAS. An example from above is the domain reasoner for symbolic differentiation
quering a CAS for arithmetic simplification.

Diagnoser Calls to Domain Reasoner and CAS are Sequenced. If a chosen tuto-
rial strategy has to provide Informative Feedback (ITF) [9] rather than only flag
feedback and bottom-out-hint, then more diagnosis is required.

Suppose the strategy requires to show the error position to the student. In this
case, the Diagnoser first queries CAS to find out whether the student’s answer
is correct, and in case it is incorrect, it queries a domain reasoner in order to
identify what is incorrect.

After this the Feedback Generator generates flag feedback, marking the er-
ror position, using the information on error position obtained from the domain
reasoner.

Domain Reasoner is Called by a Tutorial Strategy. Even if an exercise is us-
ing evaluative diagnosis only, a tutorial strategy can decide that the Feedback
Generator has to query the domain reasoner for the names of involved concepts,



or ask a domain reasoner to generate the next correct step in a solution in order
to provide a hint.

3. Conclusion

We described how both, evaluative and generative diagnosis, is performed in Ac-
tiveMath and how it can be combined in places in order to use the best of both
worlds, where it is appropriate. More specifically, we describe, how (mathemat-
ical) web-services are integrated to provide information for the Diagnoser and
how they become interoperable.

Acknowledgement This article results from the ATuF project (ME 1136/5-1)
funded by the German National Science Foundation (DFG).

References

[1] G. Goguadze, E. Melis One Exercise - Various Tutorial Strategies Proceedings of the

International Conference on Intelligent Tutoring Systems ITS-2008 volume 5091, pages

755–757,
[2] G. Goguadze, I. Tsigler, Authoring Interactive Exercises in ActiveMath, In Proceedings of

MathUI Workshop at Mathematical Knowledge Management Conference, June 2007.

[3] A. Faulhaber and E. Melis. An efficient student model based on student performance and
metadata. In N. Fakotakis M. Ghallab, C.D. Spyropoulos and N. Avouris, editors, 18th

European Conference on Artificial Intelligence (ECAI-2008), volume 178 of Frontiers in

Artificial Intelligence and Applications, pages 276–280. IOS Press, 2008.
[4] V. Kodaganallur, R.R. Weitz, and D. Rosenthal. A comparison of model-tracing and

constraint-based intelligent tutoring paradigms. International Journal For Artificial Intel-

ligence in Education, 15:117–144, 2005.
[5] V. Kodaganallur, R.R. Weitz, and D. Rosenthal. An assessment of constraint-based tu-

tors: A response to Mitrovic and Ohlsson’s critique of ’a comparison of model-tracing and
constraint-based intelligent tutoring paradigms’. International Journal For Artificial In-

telligence in Education, 16:291–321, 2006.
[6] A. Mitrovic, K.R. Koedinger, and B. Martin. A comparative analysis of cognitive tutoring

and constraint-based modeling. In A. and F. de Rosis P. Brusilovsky, A. Corbett, edi-

tor, Proceedings of the Ninth International Conference on User Modeling, pages 313–322,

Berlin, 2003. Springer-Verlag.
[7] A. Mitrovic and S. Ohlsson. A critique of Kodaganallur, Weitz and Rosenthal, ’a compar-

ison of model-tracing and constraint-based intelligent tutoring paradigms’. International

Journal For Artificial Intelligence in Education, 16:277–289, 2006.
[8] MONET Architecture Overview, The MONET Consortium, Deliverable D04, March, 2003

[9] S. Narciss. Informatives Tutorielles Feedback. Habilitationsschrift, Technische Universität
Dresden, Fak. Mathematik und Naturwissenschaften, Dresden, Mai 2004.

[10] The OpenMath Standard, http://www.openmath.org

[11] C. Ullrich. Pedagogically Founded Courseware Generation for Web-Based Learning – An

HTN-Planning-Based Approach Implemented in PAIGOS. Number 5260 in Lecture Notes
in Artificial Intelligence. Springer, 2008.

[12] C. Zinn. Supporting tutorial feedback to student help requests and errors in symbolic
differentiation. In K. Ashley M. Ikeda, editor, Proceedings of Intelligent Tutoring Systems

8th. International Conference ITS-2006, volume LNCS 4053 of Lecture Notes in Computer

Science, pages 349–359. Springer-Verlag, June 2006.
[13] J. Zimmer and S. Autexier, The MathServe System for Semantic Web Reasoning Ser-

vices, Proceedings of the 3rd International Joint Conference on Automated Reasoning

(IJCAR’06), volume 4130, pages 140–144, Springer Verlag, August 2006.


