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ABSTRACT
While current image annotation methods treat each input image in-
dividually, users in practice tend to take multiple pictures at the
same location, with the same setup, or over the same trip, such that
the images to be labeled come in groups sharing a coherent “style”.

We present an approach for annotating such style-consistent
batches of pictures. The method is inspired by previous work
in handwriting recognition and models style as a latent random
variable. For each style, a separate image annotation model is
learned. When annotating a batch of images, style is inferred using
maximum likelihood over the whole batch, and the style-specific
model is used for an accurate tagging.

In quantitative experiments on the COREL dataset and real-
world photo stock downloaded from Flickr, we demonstrate that
– by making use of the additional information that images come
in style-consistent groups – our approach outperforms several
baselines that tag images individually. Relative performance
improvements of up to 80% are achieved, and on the COREL-5K
benchmark the proposed method gives a mean recall/precision of
39%/25%, which is the best result reported to date.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Retrieval and Indexing

General Terms
Algorithms, Measurement, Experimentation

Keywords
Image Annotation, Style Modeling

1. INTRODUCTION
Image annotation is targeted at automatically labeling pictures

with semantic “tags”, which are associated with objects in the im-
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forest park

Figure 1: An illustration of style consistency for image annota-
tion: when viewed individually, the bottom right image is diffi-
cult to annotate automatically (potential tags might be ”forest”
or ”park”). By taking into account the fact that other pictures
in the same batch show mostly urban scenes, this conflict can
be disambiguated and the correct tag is identified to be ”park”.

age, locations, scene types, or activities. The task poses a difficult
challenge due to enormous intra-class variation and large vocabu-
laries of potential tags, and current systems do not give a perfor-
mance sufficient for a fully automatic labeling. Yet, image annota-
tion is useful in applications like semi-automatic tagging or search.

Typically, tagging systems learn statistical models of concept ap-
pearance and use them to label previously unseen pictures, dealing
with each image individually. In practice, however, the pictures we
take tend to come in groups – for example, imagine categories at
social photo sharing websites in which pictures are organized [21],
or consider a user coming back from a holiday trip and annotating a
batch of pictures he took there. In both cases, the images in a group
are not independent (as is assumed by most annotation models) but
are correlated, sharing similar locations and capture conditions.

We focus on this situation where the input images to be annotated
come in correlated groups. Two basic assumptions are made:

1. A grouping of pictures is assumed to be given, i.e. it is known
which images belong to a batch. Users may provide this in-
formation explicitly (by grouping pictures previous to anno-
tation) or implicitly (by placing them in the same folder or



uploading them to the same Flickr group). Also, grouping
information may be inferred automatically from meta-data
like capture time and location.

2. The images in a batch are assumed to share a certain coherent
appearance. The reasons for such style consistency may be
manifold and subtle: for example, the pictures in Figure 1
could be considered to form a style-consistent batch as they
have been taken on the same trip to Rome and thus show
similar buildings, weather conditions, and shot types.

In the following, we will assume that images in a batch are isoge-
nous (i.e. sampled from the same source [23]), and that there is a
finite number s1, .., sm of such sources (or styles). Our use case
will be the tagging of personal holiday snapshots, where different
styles correspond to different kinds of holiday trips. For example,
there might be a “sightseeing” style s1 and a “nature trip” style s2.
Both are considered generative sources from which a variety of im-
ages is sampled with a certain distribution – for example, pictures
from the “nature trip” style tend to show close-ups of animals as
well as panoramic landscape views, while pictures from the “sight-
seeing” style show street scenes and snapshots of buildings.

We demonstrate in the following that – if the images to be an-
notated come in style-consistent groups – taking style information
into account can give significant improvements over a plain annota-
tion of individual images. This idea is illustrated in Figure 1: con-
sider the image at the bottom right showing an outdoor scene with
trees and greenery. Using evidence from this single image only, an
automatic annotation system might easily confuse the tags “forest”
and “park”. However, if further taking into account that the image
belongs to a batch showing mostly urban scenes, this ambiguity can
be resolved, and the correct tag “park” can be inferred.

To achieve such disambiguation, we turn to statistical models
from handwriting recognition. This domain bears a strong resem-
blance with the annotation of style-consistent image batches: like
groups of pictures, handwritten documents can be viewed as collec-
tions of samples (namely the single characters) sharing a consistent
style. In both cases, the concept of style is merely driven by sample
appearance, and the reasons for different styles can be manifold and
subtle. Yet, it has been demonstrated for handwriting – and will be
in the following for image annotation – that style can be captured
effectively. For this purpose, we combine image annotation with a
style model from Sarkar and Nagy [23]. Style is modeled as a latent
random variable, and for each style a specific annotation model is
built. Generally, a variety of probabilistic image annotation meth-
ods could be used for this purpose (though for this paper we choose
the approach by Monay and Gatica-Perez [18] based on probabilis-
tic latent semantic analysis (PLSA) [12]). When tagging a batch of
images, a reliable style decision is made by maximizing the likeli-
hood of the whole batch, and tags for each image are inferred using
the accurate style-specific model.

We test our approach in experiments on the COREL dataset and
real-world photo stock downloaded from Flickr. As our focus is on
personal holiday snapshots, we choose our test styles to be location-
or event-based (though our model is not restricted to those cases
in general). For the COREL data, a 1:1 correspondence between
picture batches and COREL folders (like “England” and “Kyoto”)
is imposed. Similarly, in the Flickr case style-coherent batches
correspond to Flickr groups (we distinguish travel scenarios like
“African Safari” and “New York Sightseeing”). It is demonstrated
that style-consistency helps image annotation to disambiguate and
improves the overall tagging performance significantly compared
to an image-wise annotation.

2. RELATED WORK
Since Mori et al’s pioneering work on automatic image anno-

tation [19] a variety of approaches have been suggested. Usu-
ally, an image X is viewed as a collections of local image regions
X = {x1, .., xn}, which can be obtained using a segmentation
(like in [15]) or a sampling of local patches [10]. The goal is to map
the image to tags t from a pre-defined vocabulary T . Since tags of
interest can include all kinds of semantic concepts, image annota-
tion unifies related tasks such as object category recognition [9] and
scene recognition [22].

The most frequent approach is to infer the posterior P (t|X )
by modeling a joint distribution of local features and tags P (x, t)
(some exceptions based on global image similarity exist, like [16]).
For this joint distribution, topic models have been suggested that
mine collections of annotated training pictures for latent aspects [2,
18]. Other options are Gaussian mixtures [4] or relevance mod-
els [10, 15]. Approaches from a second category view image an-
notation as a weakly labeled learning problem: it is assumed that
the presence of a tag is caused by a certain region in the image, and
tagging involves the explicit identification of “relevant” regions.
To infer this mapping between regions and tags, the EM algorithm
has been suggested [7] as well as multiple instance learning tech-
niques [26] or probabilistic models formulating constrained learn-
ing problems [13]. While all these methods differ in terms of fea-
tures and underlying statistical models, the approach presented here
is orthogonal to those distinctions. Instead, our approach is targeted
at exploiting information that is present in style-consistent batches
of pictures. The proposed method can generally be used as a wrap-
per around probabilistic image annotation models.

More recently, a number of image annotation and categorization
methods have been proposed which employ structural information
in image collections in a fashion similar to the proposed method.
The most frequent approach is to group the pictures of personal
photo collections to events that resemble the notion of different
styles in our approach. Cao et al. [3] use the resulting grouping
information in form of correlation terms in a conditional random
field (CRF) model. Naaman et al. [20] propagate labels through
the event structure to estimate the identity of persons in picture
collections. Gallagher et al. [11] match images with events in a
calendar, whereas a content-based categorization serves as a filter.
Finally, Cristani et al. [6] present an extension of a topic model
that integrates the capture location of pictures as a latent aspect.
All these approaches demonstrate impressive results by employing
the structure of image collections beyond an annotation of individ-
ual images. In this paper, we follow the same target, but approach
the problem from a slightly different perspective: the approaches
mentioned above focus strongly on the challenge of how to infer a
grouping of images using meta-data such as capture times [11] or
capture locations [6]. While this is clearly an important problem,
we focus on situations in which such a grouping is already given.
For these situations, we present a well-justified model for image
annotation and validate performance improvements over tagging
individual images.

Finally, as our approach is adopted from handwriting recog-
nition, related work in this domain on the classification of
style-consistent batches should be mentioned. Baird and Nagy [1]
present an approach for font adaptation based on the assumption
of style consistency. Their approach adapts a given multi-font
baseline classifier in a iterative self-training. Sarkar and Nagy [23]
model style as a finite random variable that is inferred using a
maximum-likelihood approach over the whole batch, an approach
that we adopt here. Beyond this, hierarchical Bayesian methods
have been proposed [17] that model style implicitly in form of



Figure 2: Graphical models depicting the sample generation process for image features v and tags t. (a) the baseline PLSA model.
(b) the “appearance-only” style extension. (c) the “appearance-and-tags” style extension.

prior distributions on the underlying parameters of a sample
generation process. Since these methods overcome the need for
explicit discrete styles, they might be an interesting extension of
the approach presented in this paper.

3. APPROACH
In this section, a framework is presented that integrates a PLSA-

based image annotation model [18] with a style model adapted
from handwriting recognition [23] to achieve an improved anno-
tation of style-consistent image batches. We start with the plain
annotation model, which will also serve as a baseline in later ex-
periments (Section 3.1). After this, two style-based extensions of
this model will be presented (Sections 3.2 and 3.3). A graphical
illustration of all models is given in Figure 2.

3.1 Baseline: Coupled PLSA
This section briefly introduces the image annotation method by

Monay and Gatica-Perez [18], which models two distributions cou-
pled in one PLSA model (one for image tags and one for discretized
image features called “visual words” [24]). A set of training images
D is given, whereas each image d is represented by tags t ∈ T
and a set of visual words v from a vocabulary V . The PLSA
model posits that tags and visual words are conditionally indepen-
dent given latent topics z ∈ Z. Both are sampled from the follow-
ing distributions by marginalizing over topics:

P (v|d) =
X
z∈Z

P (v|z) · P (z|d)

P (t|d) =
X
z∈Z

P (t|z) · P (z|d)
(1)

The distribution P (z|d) assigns topics to images, and the topic dis-
tributions P (t|z) and p(v|z) determine how tags and visual words
are sampled from each topic. The number of topics |Z| is assumed
known and fixed. Both learning and inference are based on a max-
imization of the following likelihood:

L =
Y

d∈D

"
P (d) ·

Y
v

P (v|d)n(v,d) ·
Y

t

P (t|d)n(t,d)

#
, (2)

where n(., d) denotes the number of occurrences of tags and visual
words in image d.

3.1.1 Learning
For PLSA models, learning (i.e., the estimation of topics and

topic distributions) is based on expectation maximization (EM) or
variants [12]. For the coupled PLSA model used here, we fol-
low a similar asymmetric two-step procedure for which Monay and
Gatica-Perez have reported improved results [18]:

1. The distribution of visual words is neglected, and the topic
distribution P (z|d) is learned by maximizing the likelihood
of the textual image descriptions only:

LT =
Y
d∈D

"
P (d) ·

Y
t

P (t|d)n(t,d)

#
. (3)

For optimization, expectation maximization is used (for
more information, please refer to [12]).

2. Then, the topic distribution P (z|d) is fixed, and PLSA is
run on the visual words to compute P (v|z). Again, the EM
algorithm is used for optimization:

LV =
Y
d∈D

"
P (d) ·

Y
v

P (v|d)n(v,d)

#
. (4)

3.1.2 Inference
Given a previously unseen batch D∗ of test images d∗ to be

labeled, the baseline approach treats all images independently.
Thereby, the visual words of image d∗ are given, and the tag
distribution P (t|d∗) is inferred by inverting the training procedure:
first – given P (v|d∗) – P (z|d∗) is computed using the EM
algorithm for LV , whereas the topics P (v|z) learned in training
are kept fixed. Then the distribution of tags is estimated as:

P (t|d∗) =
X

z

P (t|z) · P (z|d∗) (5)

A set of tags with maximum posterior probability is finally selected
as annotations of d∗.

3.2 Style Variant 1: Appearance Only
In this section, we present an extension of the baseline approach

from Section 3.1 for labelling picture batches that share a coherent
style. Thereby, style is modeled as a latent random variable s ∈ S
(as discussed previously, these styles might correspond to differ-
ent holiday types like “sightseeing” or “nature trip”). Images of a



batch are assumed to be independent samples drawn from the same
style-specific model. We assume that style can be inferred reliably
from the whole batch, and that a style-specific model gives a more
accurate image annotation.

The visual word distribution P (v|z) from the baseline model is
replaced with style-specific appearance models P (v|z, s). Then,
the visual word distribution of an image d with style s can be rewrit-
ten as:

P (v|d, s) =
X

z

P (v|z, s) · P (z|d) (6)

The tag distribution P (t|z) remains unchanged, i.e. we assume
that the frequency with which a tag appears does not depend on the
style. Appearance, however, may differ between styles (for exam-
ple, a “building” in an “Africa” style and in a “New York City” style
may look different). We will refer to this model as the “appearance
only” style model in the following.

3.2.1 Learning
Like for the baseline model, a two-step learning procedure is

used similar to the one in Section 3.1.1. First, standard EM on
all input images (regardless of style) is used to learn P (t|z) and
P (z|d) by maximizing the tag likelihood (Equation (4)). Second,
the distribution of visual words P (v|z, s) is learned separately for
each style. For this purpose, we assume that the style s(d) for each
training image d is given. For each style s, the following likelihood
is maximized:

Ls
V =

Y
d:s(d)=s

"
P (d) ·

Y
v

P (v|d, s)n(v,d)

#
. (7)

Again, optimization is carried out using EM, whereas the topic dis-
tributions P (z|d) are kept fixed.

3.2.2 Inference
Compared to inference in the baseline model (Section 3.1.2), the

key difference is that the style variable s is unknown. As Sarkar
and Nagy demonstrate, globally optimal Bayesian inference of tags
and style is usually infeasible [23]: since tags and style are both
unknown and influence each other, optimal inference requires to
test all combinations of tags, whose number grows exponentially
with the number of test images in a batch. To resolve this problem,
we follows a similar strategy as in [23]: it is assumed that – for
image batches of sufficient size – the style parameter can be reliably
inferred by maximizing the visual word likelihood:

s∗ = arg max
s

" Y
d∗∈D∗

 
P (d∗) ·

Y
v∈V

P (v|d∗, s)n(v,d∗)

!#
(8)

This leads to an annotation procedure in which the appearance like-
lihood (Equation (8)) is computed for each style, and after this a
style-specific annotation is run for the best style s∗.

3.3 Style Variant 2: Appearance and Tags
The appearance-only style model from Section 3.2 makes lim-

ited use of style information in a sense that the distribution of tags is
still style-independent. In practice, however, tags may be strongly
correlated with style (for example, the tags given to pictures from
a New York City trip may differ significantly to the ones given
to pictures from a visit to Rome). To exploit this information to
its full potential, a second style variant is proposed in which both
appearance and tags are modeled by style-dependent distributions
P (v|d, s) and P (t|d, s). This leads to a set of entirely decoupled

Figure 3: A random sample of pictures from our FLICKR
dataset, which consists of 8,000 images from 8 Flickr groups
like “Africa” or “New York City”.

style-specific annotation models, i.e. each style is trained and ap-
plied independently.

3.3.1 Learning and Inference
Since styles are completely decoupled, training simplifies

to learning a separate PLSA-based annotation model per style.
Similar to the baseline from Section 3.1.1 the EM algorithm is
used, only that the distributions P (v|d) and P (t|d) are replaced
with style-specific equivalents P (v|d, s) and P (t|d, s) that are
trained on style-specific training image sets {d|s(d) = s}.

For inference, annotation is run for all styles, and the target style
is determined using the same maximum likelihood criterion as for
the appearance-only style model in Equation (8) (only that P (t|d)
is replaced by its style-specific equivalent P (t|d, s)).

4. EXPERIMENTS
In this section, we evaluate the proposed combination of style

modeling and image annotation in quantitative experiments. The
use case scenario is a tagging of holiday snapshots – different styles
of holidays (like “New York” or “African Safari”) are learned from
Flickr groups and then used to annotate style-consistent batches of
personal pictures.

We first present results on images from the COREL dataset and
from the photo-sharing website Flickr, in which we compare our
approach with several canonical baselines and oracle-based control
runs. Afterwards, our method is compared to results from the lit-
erature on the COREL-5K image annotation benchmark [7]. The
grouping information required by our style modeling is provided in
form of COREL folders or FLICKR groups.

4.1 Experiment 1: COREL and FLICKR
The goal of this experiment is to provide an in-depth analysis of

style modeling and a comparison with several canonical baselines.
We first describe the experimental setup, starting with the datasets:

Small size COREL (COREL-13) 13 folders (1, 300 images over-
all) were selected from the COREL dataset corresponding to
countries, regions, and cities (for example, “Africa” and “Ky-
oto”). Images in the same folder are assigned to the same
batch, i.e. assumed to share the same style. A vocabulary of
644 tags from the COREL annotations was used. Since the
average number of tags per image is 4, we select the 4 tags
with the highest scores P (t|d∗) as annotations.



Figure 4: The visual word distribution of Topic No. 12 for the
styles “Africa” (top), “Kyoto” (center), and without modeling
style (“bottom”). It can be seen that style has a massive influ-
ence on the appearance of a topic.

Large size COREL (COREL-45) To evaluate the performance of
style modeling for more styles, a dataset similar to COREL-
13 was sampled, only that 45 folders (4, 500 images overall)
were used. The tag vocabulary size is 1, 257. Similar to
COREL-13, the top 4 tags are selected as annotations.

FLICKR This dataset contains 8, 000 images downloaded from
Flickr. Style corresponds to Flickr groups [21] representing
travel scenarios like “New York Sightseeing” and “African
Safari” (for sample pictures, please refer to Figure 3). 8
styles were used with 1, 000 images each. A vocabulary of
544 tags was created from the most frequent original Flickr
tags by filtering unsuitable tags (like “d40”, “2008”, or
“Olympus”). Since the average number of tags per image is
about 6, the 6 most probable tags are returned as annotations
by each method.

For all three datasets, visual words were sampled from the im-
ages using a dense regular sampling of SIFT features at several
scales, giving ca. 4, 800 patches per image on average. These were
clustered to 2, 000 visual words using K-Means (we used a fast ver-
sion [8] available from http://mloss.org). Test results were
averaged over multiple runs (20 for COREL-13 and FLICKR, 5
for COREL-45), whereas in each run a random stratified split into
80% training and 20% testing was done. Test images were joined
to style-consistent batches of 20 pictures each. As a measure of
annotation performance, the F-measure (weighted harmonic mean
of precision and recall) is used. For each test image d∗, the anno-
tation result TR(d∗) is compared with the ground truth annotations
TGT (d∗), computing the image-wise precision P (d∗) and recall
R(d∗):

P (d∗) =
|TR(d∗) ∩ TGT (d∗)|

|TR(d∗)| , R(d∗) =
|TR(d∗) ∩ TGT (d∗)|

|TGT (d∗)|

By averaging these over all test images, the mean image-wise pre-
cision P̄ and recall R̄ are obtained. These are finally combined to
the F-measure:

F-measure = 2 · (P̄ · R̄)/(P̄ + R̄)

Apart from the final annotation results, we also evaluate the perfor-
mance of the maximum likelihood style decision by displaying the

Figure 6: The visual words corresponding to Topic No. 12,
which is strongly linked to the tags “people” and “temple”. The
non-style result is on the left (red patches), the “Kyoto” style on
the right (green). For the style model, more patches can be
found that activate the topic, and better tagging results can be
expected.

accuracy Pstyle over varying image batch size:

Pstyle =
#image batches assigned correct style

#image batches

Eight different methods were tested, whereas the number of top-
ics was fixed to |Z| = 20 (which gave the best results in previous
tests):

Baseline, few topics This is the plain PLSA annotation model
from Section 3.1 using |Z| topics. Images are tagged
independently, and style information is discarded.

Baseline, many topics To make sure that potential performance
improvements with style are not attributed to a higher num-
ber of topics, we also test the baseline with |Z| · |S| topics
(which equals the overall number of topics in the appearance-
and-tags style model).

Appearance-only style, by single image The model from Section
3.2. The batch size is set to 1, i.e. each image is mapped to a
style and labeled independently. Serves as another baseline.

Appearance-only style, by batch The same model, but now style
is decided based on the whole batch.

Appearance-only style, by assignment The same model, but the
correct style is assigned automatically (serves as an oracle-
based control experiment to estimate performance loss due
to incorrect style assignment).

Appearance and tag style, by single image The model from
Section 3.3. Style is assigned for each image individually
(serves as a baseline).

Appearance and tag style, by batch The same model, but now
style is decided based on the whole batch.

Appearance and tag style, by assignment The same model, but
the correct style is assigned automatically (serves as a control
experiment).

We start the results with a short illustration of style modeling
by validating a fundamental assumption, namely that style-specific
topic models differ from their non-style equivalents. This is demon-
strated for a sample topic and the two styles “Africa” and “Kyoto”
from the COREL dataset. We pick a topic (referred to as “Topic No.

http://mloss.org
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Figure 5: Quantitative experimental results for Experiment 1. Key observations are that style modeling improves performance
significantly, that appearance-and-tag style modeling performs best, and that tagging based on the batch always outperforms single-
image tagging.

12” in the following) whose most frequent tags contain the words
“people” and “temple”. In Figure 4, we visualize the distribution
of visual words P (v|′′topic 12′′) for the baseline model, as well as
P (v|“topic 12′′, “africa′′) and P (v|′′topic 12′′, “kyoto′′) (for
the appearance-only style approach). Obviously, the appearance
learned for the two styles differs strongly from the one in the global
model.

The next question is how style modeling influences the fitting
between topics and image appearance. This is illustrated in Figure
6, which shows sample images related to the tags “people” and
“temple” associated with Topic No. 12. The visual words with
highest topic scores P (v|′′topic 12′′) ≥ 0.5 are highlighted for
the non-style case (left, red) and the style “Kyoto” (right, green).
While in the baseline model only few patches can be found related
to the topic, for the style approach multiple patches activate Topic
No. 12, and a better annotation result can be expected.

Quantitative results for all three datasets are given in Figure
5. These plots provide several insights: first, style modeling
improves annotation performance significantly compared to the
non-style baselines: For both versions of the baseline, relative im-
provements between 46.5% (COREL-13) and 130.1% (FLICKR)
are measured. Second, appearance and tags style outperforms the
appearance-only style model on all datasets. Again, these relative
improvements are significant, ranging from 14.0% (FLICKR) to
19.6% (COREL-45). Third, some performance loss occurs due to
incorrect style decisions. This can be observed when comparing
the “style by batch” versions with the oracle-based “style by
assignment” control runs. For all datasets and style versions, a
moderate performance loss can be observed ranging from 5.3%
(COREL-13, appearance-and-tag style) to 12.9% (FLICKR,
appearance-and-tag style). When comparing the COREL-13
and COREL-45 runs, it can be seen that this performance loss
increases slightly with the number of styles. This can be attributed
to an increasing confusion due to a higher number of styles
(correspondingly, the accuracy of style decision decreases from
83.1% to 65.8%). Overall, the benefits of style modeling in terms
of annotation performance decrease slightly when scaling from 13
to 45 styles, but remain significant. Finally and most importantly,
batch-wise annotation outperforms image-wise annotation in all
cases, i.e. it helps to use the style consistency of an image batch.
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Figure 7: Both the accuracy of style decision (left) and the
overall annotation performance (right) increase with the test
batches’ size. The leftmost point in both plots corresponds to a
tagging of individual images.

This can be seen when comparing the “style-by-batch” results with
the “style-by-image” ones. Relative performance improvements
range from 14.4% (COREL-13, appearance-only style) to 83.8%
(FLICKR, appearance-only style).

It seems that annotation performance is correlated with test
batches’ size, as the style decision becomes more reliable with
increasing image batch size. This fact is supported by Figure
7, which plots both the accuracy of style decision and the
overall annotation performance for the COREL-13 test (using
the tag-and-appearance style model and averaging over 10
cross-validation runs). Image batches of varying size are used in
testing. It can be seen that – by increasing batch size from 1 to 20
– the style decision accuracy can be improved significantly from
31.6% to 86.8%, and correspondingly the annotation performance
(F-measure) increases from 26.5% for 34.4%. Even for a rather
small batch size of 8 images, a relative performance improvement
of 20% is achieved.

Finally, we tackle the question what styles tend to be confused
most often. Figure 8 illustrates the confusion matrix of style de-
cision on the COREL-45 dataset. An in-depth inspection reveals
that the most frequently confused classes do in fact show an in-
tuitive resemblance: for example, style 18 (“Kenya”) and style 2



Figure 8: The confusion matrix of style decision on the
COREL-45 dataset. The most frequent confusions tend to oc-
cur for visually similar styles (like “Kenya” vs. “Africa”)

(“Africa”) are often confused by our system (the probability is near
0.5). Other frequent confusions are style 34 (“Rome”) with style 24
(“Monaco”), both showing similar buildings, or style 44 (“Yemen”)
with style 45 (“Zimbabwe”).

5. EXPERIMENT 2: COREL-5K
In a second experiment, the proposed style consistency model is

compared to other approaches from the literature. Therefore, the
popular COREL-5K benchmark for image annotation is used [4, 7,
10, 14, 25]. The dataset consists of 5, 000 images from the COREL
dataset corresponding to 50 folders of 100 images each. Like in
the previous COREL tests, a 1:1 correspondence between styles
and folders is imposed. The dataset is split into a training set of
4500 images (90 images per style) and a test set of 500 images
(10 images per style), i.e. the batch size is set to 10. Similar to
previous tests in the literature, we use the same tag vocabulary of
374 terms and return the top 5 words as annotation results. The
original COREL images were downscaled to a width of 192 pixels
(we want to thank R. Manmatha and Shaolei Feng for providing the
dataset). Visual words were extracted by a regular sampling of ca.
5, 400 patches of side length 12 per image. These were described
using DCT coefficients in YUV space. A K-Means clustering to
2, 000 visual words was used.

A few sample annotations of the proposed style model in Fig-
ure 9 illustrate the benefits of style modeling for image annota-
tion. As quantitative results, we report the same performance mea-
sures as used in the literature: for each tag t, the per-word pre-
cision and per-word recall are measured over all test images d∗.
These values are averaged over all 251 tags occurring in the test
set to obtain the mean per-word precision and recall. Further, the
number of tags t with R(t) > 0 is reported. The results in Ta-
ble 1 include a variety of figures reported by other researchers: the
co-occurrence model by Mori et al. [19], the machine translation
model from Duygulu et al. [7], two relevance models by Man-
matha and co-workers [10, 14], supervised multi-class labeling by
Carneiro et al. [4], and several other annotation models [25, 5].
Our tests also include two baseline approaches run by ourselves:
the non-style PLSA model [18] (Section 3.1) – which does not em-
ploy style consistency – and the appearance-and-tags style model
applied to images individually. Both baselines show a low perfor-
mance (F-measures 5% / 16%). However, by tagging images in

Table 1: A comparison with methods from the literature on the
COREL-5k benchmark. By making use of style consistency,
the proposed approach achieves the best result reported on the
benchmark so far.

Approach #words
with
rec.>0

mean
prec.

mean
rec.

F-
mea-
sure

co-occurrence [19, 4] 19 0.02 0.03 0.02
Translation [7, 4] 49 0.04 0.06 0.05
kernel densities with
tag co-occurrence [5]

91 0.11 0.13 0.12

SVDCos [25] 102 0.15 0.15 0.15
CRM [14] 107 0.16 0.19 0.17
CSD-Prop [25] 130 0.20 0.27 0.23
MBRM [10] 122 0.24 0.25 0.24
SML [4] 137 0.23 0.29 0.26
CSD-SVM [25] 127 0.25 0.28 0.26
PLSA (no style) [18] 57 0.04 0.09 0.05
PLSA (by image) 106 0.13 0.23 0.16
PLSA (by batch) 141 0.25 0.39 0.31

style-consistent batches, the proposed approach achieves the best
result reported on the COREL-5k benchmark so far, with a recall of
39%, precision of 25%, and F-measure of 31%. It should be noted,
though, that this is achieved by using the structure of image content,
a source of information which is neglected by all other approaches
in Table 1. Note also that this improvement cannot be attributed to
the underlying annotation model (which by itself performs rather
poorly), but is clearly due to the exploitation of style consistency.
Consequently, it can be expected that other probabilistic annota-
tion models (like [10] or [4]) could benefit from style consistency
modeling in a similar fashion.

6. DISCUSSION
In this paper, we have presented an image annotation framework

making use of the fact that pictures to be labeled often come in
groups of coherent appearance. An approach from the domain
of handwriting recognition – which can generally be used as a
wrapper around probabilistic image annotation approaches – was
demonstrated to improve annotation results significantly compared
to tagging images individually. Alternatively, our method could be
used as a style inference approach to provide users with group rec-
ommendations for their pictures.

Potential future directions along the proposed line of research
are the integration with other style models to overcome the need
for discrete styles [17], or a combination with other approaches that
may in a broader variety of practical use cases provide the grouping
information that was assumed to be given in this work. One infor-
mation source to infer such a grouping is meta-data such as capture
time and location [3]. Alternatively, it might be interesting to learn
styles using a content-driven clustering [2]. Both approaches come
with the benefit of a fully automatic learning free of external style
information.
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