A generic layout-tool for summaries of meetings
in a constraint-based approach

Sandro Castronovo, Jochen Frey, and Peter Poller

Deutsches Forschungszentrum fiir Kiinstliche Intelligenz GmbH
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany,
sandro.castronovo[at]dfki[dot]de
jochen.frey[at]itemis[dot]lde
peter.poller[at]dfki[dot]lde

Abstract. We present SUVI - Summary Visualizer -, a generic layout-
tool which displays a multimodal summary of a meeting in either a story-
board style or newspaper-style. The system relies on constraint solving
techniques in such a way that the two layouts have been extensively
modeled in a series of constraints representing the underlying design
knowledge. While the story-board aims to give the reader an overview of
the chronological sequence of the meeting, the newspaper-layout focuses
on presenting the topics of a meeting depending on their relevance. We
also show two methods for connecting the whole AMI meeting corpus as
a large input resource for the story-board part of SUVI and present a
first end-to-end implementation of our system.

1 Introduction

One of the main goals of the AMIDA project' is the automatic generation of
multimodal meeting summaries. Apart from their generation, there are many
ways of presenting these summaries to the user. A very appealing presentation
style has been realized by the SUVI-tool (Summary Visualizer). Based on actual
audio and video data it generates a story-board layout or displays the meeting
in the style of a newspaper.

The major task of SUVI was the modeling of the necessary design knowledge
for the layout process of the respective output presentation style. Consequently,
we implemented SUVI based on hand-generated input data for just a single
meeting. The primary goal of the development was to show the general feasibility
of a constraint-based layout approach. Later on, in order to greatly extend the
number of available input resources, we developed M2SUVI, a generic interface
to the whole AMI meeting corpus. In the compound system it is even possible
to implement different ways of filling the story-board layout with content very
quickly giving us the flexibility to adapt the system to completely new domains
in a very short amount of time.

! Augmented Multiparty Interaction with Distance Access (AMIDA) is an Integrated
Project funded by the ECs 6th Framework Program FP6-0033812, Publication ID -
AMIDA-26, jointly managed by IDIAP (CH) and the University of Edinburgh (UK).

This paper presents first the SUVI system in section 2 and the layout con-
straints used for the story-board part of SUVT in section 3. We elaborate the
generic interface which makes the whole AMI meeting corpus accessible for SUVI
in section 4 and show the robustness of our implementation by a batch-run over
the whole AMI corpus in section 5. Our first online end-to-end implementation
of the compound system which was configured to generate a story-board layout
of a selected part of the first AMIDA review meeting is presented in section 6.
Finally, section 7 lists related work and gives an overview of the future work in
this context.

2 SuVi

SUVI - Summary Visualizer is a constraint based layout system for the automatic
visualization of multimodal meeting summaries either in a multimedia story-
board style or in the style of a newspaper. While the newspaper component
focuses on the hierarchical topic presentation, e.g., showing more relevant topics
more prominently on the page, the story-board layout aims to represent the
chronological sequence of a meeting. Figure 1 depicts the resulting layout for
the newspaper style and an example of the story-board layout is shown in figure
4. In this section we give a general introduction to our constraint-based layout
approach and explain the story-board layout component of SUVTI.

11003b mﬁ ol R [y

The Program Manager Ul design: Easy to use
opens the industrial design mesting. e
o and sophisticated

owing apens

the meeteg
rodduting the

Progiam Manager
The remote control should be wireless even
if the costs are higher!

Flare

d of
na laser nternat
techrology snce stargards.

Closing ofthe | Marketing Expert presentation about
meeting and task

product
distribution a customer survey requirements

MNaw

Fig. 1. Example of a newspaper layout

2.1 Architecture of SuVi

From a functional point of view, the constraint-based layout-system SUVT is
a self-contained, generic and parameterizable layout generator for multimodal
meeting summaries. It realizes a broad spectrum of functionalities:

— full automatic layout generation of meeting summaries
— API for different layout-specifications
— user adaptivity by offering a variety of parameters for layout generation

Figure 2 shows the architecture of SUVI from the story-board point of view.
SUVTI consists of three main components which are coordinated by a central
distributor component. The central architecture is the same as for the newspa-
per layout. The major difference is the constraint based modeling of the target
domain, the different layout objects and the varying layout manager.

[Topics J [Speaker J[Parameters}
utterances

reader
Constraint L Layout Layout
e Distributor

Layout objects

(Panel) (Textbox) (Balloon)

Fig. 2. Architecture of SUVI

The input data consists of meeting topics, speaker utterances and parameters
for the layout generation. The user can exert an influence on the topics used in
the layout and the parameters of the generation, e.g., the number of panels on
a page. Speaker utterances are used to fill the layout objects, namely text-boxes
and balloons. All of this data is analyzed and appropriately represented by the
input reader. Based on that representation, the constraint solver derives
the necessary constraint variables which are stored within corresponding layout
objects. These are are shown in the resulting layout in figure 4. The layout
objects that are used in the story-board implementation of SUVI are balloons,
panels and text-boxes. Like the input data for the layout objects, the background
images were hand-set in SUVT.

The constraint solver is comprised of the mechanisms needed to process the
layout knowledge by initially producing and then solving appropriately defined
general constraints for all layout objects. More details of these different con-
straints are given in the following section.

Finally, the layout manager component creates a corresponding layout rep-
resentation in XML-format from the instantiated layout objects. This format is
then processed by Comiclife®, a commercial software which is used by SUVI to
render the resulting story-board layout.

3 Constraints

Story-board generation by SUVTI distinguishes between two types of layout con-
straints: Page layout constraints and panel layout constraints. Furthermore, all
constraints are split into hard and soft constraints. The former have to be fulfilled
by the constraint solver in order to find a solution at all. The latter represent
optimizations but do not necessarily have to be fulfilled. They are used to opti-
mize found solutions with respect to the story-board specific design knowledge,
e.g., how it’s layout elements are organized in general. For example, be aware of
the effect that appropriate locations of the balloons in a panel must consider the
fact, that these locations “imply” a reading order for them, e.g., left to right vs.
top down.

The system relies on Choco? , a constraint solver implemented in the program-
ming language JAVA. Below we describe the most important constraints in more
detail.

3.1 Hard page layout constraints

These constraints model the alignment of the story-board panels on a single
page.

Page border constraints: A panel must not poke out the page margins.

Beginning constraint: The first panel is always placed on the top left position
of a page.

Panel width constraint: The panel width is determined by the panel type,e.g.,
the width of a panorama panel is larger than a portrait panel, because the
first one shows the whole meeting room, while the latter shows a close-up of
a participant.

Brick wall constraint: A brick wall is the typical layout of a story-board and
modeled by this constraint. Its purpose is to emphasize the reading direction,
e.g., from left to right. Thus the leftmost panels in subsequent rows must
not have the same width. Figure 3 shows a typical brick wall layout.

Maximum balloon constraint: Every panel must not contain more than five
balloons.

% http://choco-solver.net

Fig. 3. A typical brick wall layout

3.2 Hard panel layout constraints

These constraints control the positioning of text-boxes and speech balloons inside
a single panel.

Balloon border constraint: Balloons must not exceed the borders of a panel.

Text-box placement constraint: The alignment of the speech balloons must
reflect the natural reading direction of the user, e.g., from the top left corner
to the bottom right corner.

3.3 Soft constraints

Soft constraints are variables defined over a range of values. Their optimization
is used to find the best layout solution out of a number of valid solutions.

End of line constraint: In order to exploit the available space of each line,
the horizontal gap between the last panel of a line and the right border of
the page should be minimized.

End of page constraint: The vertical gap between the last panel (i.e., last
line) of a page and the bottom of that page should also be minimized. This
constraint is used for for the optimal utilization of the available space on a

page.

3.4 Resulting layout

The story-board that results from the application of all the constraints shown
above on the hand-generated input is shown in figure 4. Text-boxes are rendered
in green in the upper left corner of the panels which fulfills the text-box place-
ment constraint. The panels are positioned according to the brick wall constraint,
e.g., the first two panels in the first row have different widths unlike the first
two panels in the second row. Also, all balloons fit into the panels as required
by the balloon border constraint. The tails of all balloons are statically set in
dependence of the panel type. The problem of overing the faces of the speakers
is addressed in section 7.

- JISTO03s

THE USER INTERFACE DESIGNER
DISCUSSED SOME CHARATERISTICS

AND FUNCTIONS TO CONSIDER IN A REMOTE TV
DESIGNING THE REMOTE AND CONTROL, HAS VBRY

SOPHISTICATED
INTRODUCED AN IDEA FOR GIVING FUNCTIONS.

SO WE WANT TO
DESIGN AN
ELEGANT, EASY TO
USE INTERFACE.

'3 '

”
I7'S MAYBE)
DIFFICULT TO Mﬁ‘fasﬁ V’GU HAvE
HAVE BOT iy
- H- INTERNATIONAL
STANDARDS.

A VERY GOOD
EXAMPLE 1S
GOCGLE, BECAUSE
HIS POWERFUL.
FUNCTION BUT WITH
VERY EASY TC USE
INTERFACE.

Fig. 4. Story-board layout of meeting 1S1003b

4 MZ2SuVi

The AMI meeting corpus offers a huge amount of annotated meetings and several
video streams for each meeting but not explicitly contains story-board annota-
tions. In order to use the data as input for SUVI, we need to find a mapping
between the available corpus resources and the layout objects we described in
the previous chapter. Therefore, we developed M2SUVTI - meeting to SUVI. The
following layout elements need to be filled automatically:

— The content of the text-boxes
— The content of the balloons
— Background images for the panels

SUVI needs the content for the balloons and text-boxes as complete sentences
which are not available in the AMI corpus. Second, SUVT uses all sentences which
are fed into the system for the layout. It is impossible to use all the data in a
meeting and therefore a selection of relevant data for a story-board layout has
to be made. We elaborate and implement two promising approaches for filling
the layout objects with content taken from the AMI corpus.

First, we give an overview of the general system architecture in section 4.1.
Then we describe the two approaches to make AMI corpus data available for
automatic summary generation in section 4.2 and 4.3, respectively.

4.1 Architecture of M2SuVi

Figure 5 depicts the architecture of M2SUVI. The Input Reader of the system
needs appropriate input data in the Nxt-Format® from the AMI corpus. Depend-
ing on the particular Content Creator the data are then extracted and converted
into a special internal content representation which is depicted in figure 6. The
linked Hash-map shown on the left contains the content for each topic. Every
topic in turn comprises the contents for the text-box shown in green in figure
4 and the content for the assigned balloons. We additionally store the speaker,
time and topic for each balloon to preserve the reading order. For filling the
panels with appropriate pictures the Image Extractor uses the available video
streams of a meeting and take time synchronized still-pictures. Otherwise, it uses
a default picture. As a fallback for cases in which the required video stream is not
available. Section 4.4 describes this extraction process in more detail. Finally,
the Output Writer uses the resulting data to output the story-board file which
is understood by SUVTI.

Content-
_> —
Cregtor 1
Input Content- Image Output
> —) —>
Reader Creator 2 Extraction Writer
N Content-
Creator n

Nxt-Corpus Story-board
File

Fig. 5. Architecture of M2SUVI

4.2 Content creation with abstract summaries

Our first implementation gathers input data for the story-board generation from
the AMI-corpus based on the abstract summaries of a meeting. Abstract in that
sense, that they contain a hand written summary of the whole meeting. They are
divided in the sections “abstract”, “decisions”, “action points” and “problems”.
In order to cover the whole meeting, we use the abstract-section of a summary
for our approach. In the corpus, each sentence of the abstract summary is linked
to a series of actually uttered sentences in the meeting. Moreover, it summarizes

3 http://www.ltg.ed.ac.uk/NITE/index.html

LinkedHashMap

<id0, TopicContent 0>
Textbox
<id1, TopicContent 1> sentence
Speaker
<id2, TopicContent 2> [— Balloon 0
Balloon 1 Time
Balloon 2 .
Topic
<id_n, TopicContent n>
Balloon n
"

Fig. 6. Internal representation of the content

all these linked sentences.

The idea is to transform this type of annotation into a story-board layout by
taking the sentence from the abstractive summary for a text-box while all linked
sentences are taken for filling the balloons. Figure 7 illustrates the relation be-
tween a summary link from the abstractive summary, its linked sentences and
the role they play in the story-board layout. In order to restrict the number of
balloons for each summary sentence, the maximum number of links to follow can
simply be set by a system parameter.

[Dialog act layer] [Dialog act layer]

,—| Summary link — 1
pointer Po"lter 1 poirlter n
Abstract
summary sentence | i
children children
Word layer Word layer

BALLOON BALLOON

£
i

Fig. 7. Following the links in the abstractive summaries

4.3 Content creation with extractive summaries

Our second implementation of a story-board generation out of the AMI-corpus
is based on the extractive summaries and the topic segmentation. The advan-

tage of this approach is that there are already automatic tools that produce
this kind of data. However, this implementation is more complex because the
extractive summaries are not linked in the corpus. Therefore, we cannot benefit
from existing corpus structures. Instead, we have to compute the relations of the
story-board elements to each other, e.g., which topic a sentence of an extractive
summary belongs to.

Figure 8 shows the strategy for filling the balloons and text-boxes in this case.
Every word in a meeting is assigned to a topic and stored in an appropriate data-
structure. The corpus contains a set of default-topics, which are used throughout
for annotation. We use these default-topics in the order in which they occur in
a meeting and map every word to the topic it belongs to (see the left part of
figure 8).

Every balloon is filled by one sentence of the extractive summary. Again, every
sentence of the summary is used for the content of the story-board but in this
case every extractive summary sentence fills one balloon. Remember that in the
previous section we used the sentences of the abstract summary for the text-
boxes, not the balloons. Since we have to build a mapping from every word to
a topic, we can in turn assign a topic to every sentence because topics do not
change within a sentence.

To fill the text-boxes with content we simply take the topic description as it ex-
ists for each topic of the AMI corpus. To augment the content of the text-boxes,
one could simply extend these topic descriptions manually by providing more
elaborated sentences.

[Extractive summary]

[Meeting topics] [Meeting words]

\ HashMap /

<WordID, TopiclD>

child1 ... childn

Dialog act layer

<WordID, TopiclD> children children

A "
<WordID, TopiclD> Word layer Word layer

CcOoMIC coMIC
BALLOON BALLOON

Fig. 8. Creating story-board content with extractive summaries

Dialog act layer

I/

0

4.4 Still-pictures extraction

The extraction of still pictures is a procedure running independently of the
content extraction step. There are two types of panels in SUVI: Portrait-panels
and Panorama-panels The first type of panel is a close-up of a single speaker. It
is chosen if SUVT identifies a dominant speaker for one panel (i.e., the speaker
who made most of the utterances in a panel). In the corpus, there is an individual
video stream available for each speaker from which we extract a time synchronous
still-picture. Depending on the dominant speaker of a panel, the appropriate
video stream is selected for still-picture extraction. The second type of panel is
used if no dominant speaker can be identified. We then choose the video stream
which shows the general view, e.g., the meeting room and all participants. If
one of the video files cannot be found, e.g., if a reduced version of the system is
running offline on a small mobile device, we implemented a simple fallback and
use previously stored default pictures for the missing stream.

5 Batch-run over the AMI-corpus

In order to prove the robustness of the two components of our system, we did
a batch-run over all available meetings in the AMI-meeting corpus. We did this
for the two strategies we described in the previous two sections (extractive and
abstractive summaries).

M2SUVTI generated at most six topics per page and used a maximum of eight
balloons per topic. For reasons of simplicity, we used default pictures for the
layout. The batch-run was done on an Intel Core2Duo processor running at 2.2
GHz with 2 GB of working memory.

Table 5 shows the results for both of our components and demonstrates that a
solution is possible for nearly every input as shown in the sixth column. There
were a few meetings, however, for which no layout was possible because of errors
in the corpus, e.g., dead links. Furthermore, an abstract summary is not available
for every meeting, which explains the difference of total meetings in the fifth
column. The average runtime in seconds of the constraint solver is shown in the
second column.

l Mode Havg. runtime (s)‘result‘no result‘total‘successful layouts in %‘
Extractive 48.8 120 3 123 97.6

Abstractive 86.1 86 12 98 87.8
Table 1. Batch-run results

6 Automatic end-to-end story-board generation

In order to show the applicability of our generic approach in an end-to-end
implementation for a completely different domain and in a different use case, we

tested the system on a selected part of the first AMIDA review meeting. Here is
a short description of this special approach:

In contrast to the data in the AMI-corpus, the review meeting data was com-
pletely processed by automatic tools from The University of Sheffield (ASR), The
University of Edinburgh (topic segmentation & labeling) and The IDIAP Re-
search Institute in Martigny (recordings). An ASR engine provided the raw data
and the necessary foundation for further processing. After that, the ASR output
was automatically converted into the required NXT-format and segmented into
topics.

Both components of our system, SUV1
and M2SUVI, proved to be very robust
under the new input data and in a com-
pletely new domain. Although the data
was previously unknown, after resolving
some minor formating issues it was pos-
sible to do a provisional story-board lay-
out of the review meeting. However, we
realized, that the balloons got too large
and covered the whole panel. A newly
invented “spurts”-layer linked far more
words per comic-balloon than the original
data, i.e. the links in the abstractive and
extractive summaries. We quickly limited
the content-size of the comic-balloons and
added “...” at the end of each comic-balloon
to indicate that there is more text avail-
able. Due to technical problems, there were
no video streams available. However, we
could benefit from our fallback strategy
here by simply using default pictures which
were taken during the meeting with a dig-
ital camera. Figure 9 shows the resulting Fig. 9. Story-board layout of the
story-board layout of the first AMIDA re- first AMIDA review meeting
view meeting.

7 Conclusion & future work

In this paper we described SUVI, an automatic layout tool for meeting sum-
maries. Due to the initial restrictions of the input for this tool, M2SUVI was
developed which made the complete AMI meeting corpus accessible for story-
board generation.

The generation of layouts is robust and works fairly well, even in a com-
pletely new domain as described in section 5 and 6. But too often the faces of
the speakers are superposed by the balloons. In the next version of SUVI, we
will make use of image processing techniques to detect faces and set dynamic

constraints in such a way, that the faces are kept free of balloons. The detection
of the face positions will also give us the possibility to optimize the positioning
of the balloon tails and adjust them to the mouth of the person. Actually, they
are statically set simply depending on the panel type. SUVI now uses a one
page layout by default. Depending on the number of how many topics/balloons
available, we will implement a multi page layout automatically.

With our project partner Philips we are currently implementing a server-
version of our system which takes the user input from a web page, generates the
story-board in the background and sends back the result as a Scalable Vector
Graphic (SVG) using a newly developed proprietary display component. The
http-client will run on an embedded platform making it necessary to replace the
proprietary ComicLife©-format. The final version will feature output formats in
jpeg, png, pdf and plain svg.

We are also in negotiation with industrial partners for commercial use of this
technology.

References

1. Frey, J.: “Constraint-basierte Generierung parametrisierbarer, multimodaler Comic-
Layouts fiir verlaufsorientierte Meeting-Zusammenfassungen”, Master’s thesis,
Saarbriicken, 2007

2. Lang, B.: “Parameterisierbares Layout inhaltsorientierter, multimodaler Zusam-
menfassungen von Meetings anhand der Zeitungsmetapher in einem Constraint-
basierten Ansatz”, Master’s thesis, Saarbriicken, 2007

3. Kleinbauer, T.; Becker, S.; Becker T.: “Indicative Abstractive Summaries of Meet-
ings”, Saarbriicken, 2007

4. Rendering software Comiclife®© by plasq, http://plasq.com/comiclife/

5. Carletta, J., Ashby, S., Bourban, S., Flynn, M., et al: The AMI Meeting Corpus
In: Proceedings of the Measuring Behavior 2005 symposium on “Annotating and
measuring Meeting Behaviour”, 2005

6. AMIDA: “Augmented Multiparty Interaction with Distance Access”, Deliverable
D5.2: Report on multimodal content abstraction. Technical report, Brno University
of Technology, DFKI, ICSI, IDIAP, TNO, University of Edinburgh, University of
Twente and University of Sheffield, 2007

7. Carletta, J., S. Evert, U. Heid und J. Kilgour: “The NITE XML Toolkit: data model
and query language” Language Resources and Evaluation Journal, 2006.

8. Apt, K. R.: “Principles of Constraint Programming”, Cambridge University Press,
2003.

