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Abstract

Despite the increasing economic impact of the online video market, search in commercial
video databases is still mostly based on user-generated meta-data. To complement this
manual labeling, recent research efforts have investigated the interpretation of the visual
content of a video to automatically annotate it. A key problem with such methods is the
costly acquisition of a manually annotated training set.

In this paper, we study whether content-based tagging can be learned from user-tagged
online video, a vast, public data source. We present an extensive benchmark using a
database of real-world videos from the video portal youtube.com. We show that a combina-
tion of several visual features improves performance over our baseline system by about 30%.

1 Introduction
Due to the rapid spread of the web and growth of its bandwidth, millions of users have discov-
ered online video as a source of information and entertainment. A market of significant eco-
nomic impact has evolved that is often seen as a serious competitor for traditional TV broadcast.
However, accessing the desired pieces of information in an efficient manner is a difficult prob-
lem due to the enormous quantity and diversity of video material published. Most commercial
systems organize video access and search via meta-data like the video title or user-generated
tags (e.g., youtube, myspace, clipfish) – an indexing method that requires manual work and is
time-consuming, incomplete, and subjective.

While commercial systems neglect another valuable source of information, namely the con-
tent of a video, research in content-based video retrieval strives to automatically annotate (or
‘tag’) videos. Such systems learn connections between low-level visual features and high-level
semantic concepts from a training set of annotated videos. Acquiring such a training set manu-
ally is costly and poses a key limitation to these content-based systems.
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Figure 1: Some sample keyframes extracted from a video with the tag ’sailing’. Tagging such
material is aggravated by the complexity of concepts (a,b), varying appearance (b,c), shots not
directly visually linked to sailing (d,e), and low production quality (f).

In this paper, we study a different kind of training set, namely videos downloaded from on-
line video portals (a similar idea has been published for images before, learning from Google
Image Search [3]). Online videos are publicly available and come in a quantity that is un-
matched by any dataset annotated for research purposes, providing a rich amount of tagged
video content for a large number of concepts.

On the backside, online video content is extraordinarily difficult to interpret automatically
due to several of its characteristics. First, its diversity is enormous: online video is produced
world-wide and under various conditions, ranging from private holiday snapshots to commercial
TV shows. Second, semantic concepts are often only linked indirectly to the actual visual
content. These phenomena are illustrated in Figure 1, which shows keyframes from online
videos tagged with the concept ‘sailing’. The visual appearance of frames varies due to several
reasons: first of all, the concept itself is so complex that it can be linked to multiple views,
like shots of the boat or ocean views (1(a), 1(b)). Second, the appearance varies greatly among
shots of the same kind (1(b), 1(c)). Third, there are shots not directly linked to sailing in a visual
sense (1(d),1(e)) and garbage frames that occur frequently in home video (1(e)).

In this paper, we study whether - despite these difficulties - automatic tagging can be learned
from online video. Our key contributions are: first, the description of an extensive, publicly
available database of real-world online videos associated with 22 user-defined tags. Second, a
benchmark of online video tagging that presents quantitative results for several combinations of
visual features and strategies of fusing evidence over the shots of a video.

2 Related Work
Though to our knowledge there exists no prior work on video tagging with the focus on online
material, we briefly discuss related work in content-based image and video retrieval that forms
the basis for our study.

Content-based image retrieval [16] provides a useful pool of techniques and is strongly
related to video annotation via the use of keyframes. Particularly, image annotation has been
dealt with by modelling latent visual concepts in images [4, 14] or joint occurrences of local
descriptors and tags [11]. Also, multiple instance learning methods have been used to detect
local features associated with a concept [21]. However, only few prototypes perform this task
online and at large scale, e.g. the (ALIPR) server [8].



When it comes to video content, annotation often follows a keyframe extraction for effi-
ciency reasons, leading to an image retrieval problem [11, 20]. However, some approaches
employ the video-specific concept of motion, for example in form of activity descriptors [19]
or spatio-temporal features [2]. Generally, significantly less work can be found for video. One
fundamental reason for this are copyright issues that cause a lack of large, publicly available
datasets and hence aggravate quantitative comparisons.

A remarkable exception is TRECVID1, an annually video retrieval contest with the goal of
creating a stock of best practice for video retrieval. The contest includes quantitative evaluations
on an extensive corpus of news video. In its ”high-level features” task, the automatic annotation
of shots is addressed. To boost standardization and comparability of results, groups share large
sets of manual annotations , low-level features, and baseline results [17].

3 Database
Our evaluation is done on a database of real-world online videos we downloaded from the video
portal youtube.com, and is therefore publicly available via the video URLs. These videos are
tagged and grouped into semantic categories (like sports or travel & places) by users during
upload. We selected 22 frequent tags and associate a canonic category with each of them,
which helps to remove ambiguities that may be present if using tags only: e.g., a search for
‘beach’ returns beach scenes as well as music videos by the Beach Boys. Categories offer a
straightforward way to avoid such problems in our analysis.

The youtube API was used to download 75 videos for each tag+category combination, ob-
taining a database of 1650 videos (total: 145 hrs.). The whole set was separated into a training
set (50 videos per tag) and a test set (25 videos per tag). You can find more details, including
the complete list of tags and the database itself (all URLs) at demo.iupr.org/videotagging.

3.1 Duplicate Removal
Duplicate videos uploaded multiple times by different users pose a problem for our evaluation.
We identify them by extracting a signature from each downloaded video. This signature consists
of the combined information of the change of color and the amount of motion of the bright and
dark centroids between adjacent frames of a video [6]. In contrast to the Y CbCr-converted
frames used in [6], we represent the change of color by the MPEG-7 Color Layout Descriptor
(CLD) [10], which proved to be more robust to color gradation. If the edit distance between the
signatures of two videos from the same category is below a certain threshold, one of them is
considered a duplicate and removed. Most of the duplicate videos could be eliminated using the
combined signatures. Videos that were modified by adding additional content to the beginning
or end of the video, however, could not be reliably identified as duplicate. Those near-duplicate
videos caused suspiciously good results in the tagging experiments, which we used to detect
and eliminate them manually.
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3.2 Keyframe Extraction
To cope with the large amount of 145 hrs. of video data, we first reduce each video to a set of
representative keyframes (though we enrich our representations with shot-level motion-based
descriptors as well). In practice, often the first frame or center frame of a shot is chosen, which
causes information loss in case of long shots containing considerable zooming and panning.
This is why unsupervised approaches have been suggested that provide multiple keyframes per
shot [5, 12]. Since for online video the structure varies strongly, we use a two-step approach
that delivers multiple keyframes per shot in an efficient way by following a divide-and-conquer
strategy: shot boundary detection – for which reliable standard techniques exist – is used to
divide keyframe extraction into shot-level subproblems that are solved separately.

shot boundary detection: shot boundaries are detected using an adaptive thresholding [9]
of differences of MPEG-7 color layout features [10].
intra-shot clustering: to determine the keyframes for a shot, we follow an unsupervised ap-
proach similar to [12]. We fit a Gaussian mixture model to the descriptors of all frames within a
shot using K-Means, and for each mixture component the frame nearest to the center is extracted
as a keyframe. The number of components is determined using the Bayesian Information crite-
rion (BIC), which balances the number of keyframes explaining the shot versus the fitting error.

The tradeoff of this simplification is the loss of inter-shot reasoning: for example, in a
dialog scene that alternates between two actors, the shot produces many similar keyframes.
An additional grouping step might overcome this problem, but we omit it here. The keyframe
extraction gives us a set of 75.000 frames for the whole database.

4 Tagging System
The purpose of our system is – given a video X – to return a score for each tag t that corresponds
to the posterior P (t|X). Figure 2 gives an overview of our setup: in a preprocessing stage, visual
features are extracted (see Section 4.1). These features can be global frame descriptors based
on color, texture, or motion, or based on local patches. For both classes, different statistical
models are used (Section 4.2).

Since a video may contain many shots, each of them with several keyframes, the evidence
gathered from all shots and keyframes must be fused to a global decision, a problem that we
tackle using direct voting [13]. Optionally, the results for different features can be combined in
a late fusion step.

4.1 Visual Features
In the feature extraction step, we scale videos to the same format (320×240) and extract several
visual features. The first category contains descriptors for the whole frame and are thus referred
to as global features:



Figure 2: An overview of our tagging system: during offline processing (dashed line) features
extracted from a training set are used to train tag models. When tagging a new video (solid line),
its features are classified, and evidence from all keyframes is combined using direct voting.
Results for local and global features can be combined in a late fusion.

color: RGB color histograms with 8× 8× 8 bins
texture: Tamura texture features [18]
motion: some semantic features can be characterized better by their motion pattern than by
color or texture. Here, we use a simple compressed domain feature of motion vectors extracted
by the MPEG-4 codec XViD2 to describe what motion occurs as well as where it occurs. For
this, the spatial domain is divided into 4 × 3 regular tiles, and for each tile a regular 7 × 7 his-
togram of all motion vectors in the associated shot is stored (clipped to [−20, 20]× [−20, 20]).
The resulting 588-dimensional descriptor is the same for all keyframes in a shot.

While these global features are frequently used in practice, modern recognition systems are
often based on collections of local image regions to make them more robust against partial oc-
clusion, deformations, and clutter. Many of these patch-based methods have been published
recently, among them the ‘bag-of-visual-words’ model [1, 3, 15, 17]. Here, visual features are
clustered according to their appearance, and histograms over the clusters indicate what ‘kinds’
of features appear with what frequency, an analogy to the ‘bag-of-words’ model from textual
information retrieval. This approach is referred to as local in the following:
visual words: a visual vocabulary is learned by extracting and clustering features of overlap-
ping 32 × 32 patches regularly sampled in steps of 16. To extract the features, patches are
transformed to YUV color space, and the discrete cosine transform (DCT) is applied to each
channel. From the resulting DCT coefficients, 36 low-frequency components are extracted in a
zigzag-pattern for the intensity, and 21 coefficients for each chroma component, obtaining a 78-
dimensional descriptor. K-Means clustering in Euclidean space is performed with 500 clusters,
five of which are illustrated by a few sample patches in Figure 3(a). Interestingly, it can be seen
that some of those visual words can be related to certain semantics, like ‘plants’ or ‘face parts’.
During recognition, patches are extracted and assigned to the nearest cluster. A histogram of
cluster frequencies is stored as a 500-dimensional feature.

2www.xvid.org
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Figure 3: Left: samples from our visual codebook: 6 patches belong to the same cluster (or
‘visual word’, respectively). Right: sample patches from 5 of the most discriminative visual
words for the tag ‘eiffeltower’ (patches sampled from eiffeltower images only).

4.2 Statistical Modelling
Given a new video X associated with features x1, .., xn each extracted from one of its keyframes,
our tagging relies on the estimation of the posterior P (t|x1, .., xn). This is done in two steps:
first, for each frame, a posterior P (t|xi) is estimated for each feature xi, and second, the single
estimates are fused to a global posterior P (t|X). For the first step, we use separate strategies
for global and local features.

Global Features - NN Matching: for each global feature xi, a nearest neighbor x′ is found
among all keyframes in the knowledge base (a kd-tree with Euclidean distance is used for fast
matching [13]), giving an estimate P (t|xi) ≈ δ(t, t(x′)).

Local Features - Maximum Entropy: For histograms over visual words, we adapt a dis-
criminative approach based on maximum-entropy that has successfully been applied to object
recognition before [1]. The posterior is modeled in a log-linear fashion:

P (t|xi) ∝ exp

(
αt +

C∑
c=1

λtcx
c
i

)
, (1)

where xc
i is the cth entry in the visual word histogram for frame xi. The parameters {αt, λtc}

are estimated from our training set using an iterative scaling algorithm [1].
Fusing Key Frames - Direct Voting: to tag the whole video, the evidence from all keyframes

must be fused to a global posterior P (t|x1, .., xn). For this purpose, we propose a simple direct
voting strategy:

P (t|X) =
1

n

n∑
1

P (t|xi) (2)

Direct voting can be seen as an equivalence of the sum rule in classifier combination. Statistical
motivations for the approach can be found in [7, 13]. Particularly, in [7] theoretical reasons
for the excellent robustness against errors in weak local estimates are described and validated
in experimental studies – a property that is important in our context, since many keyframes in
{x1, .., xn} may not be visually related to the true tag and thus give erroneous matches.

Late Fusion - Sum Rule: To combine posteriors obtained from local and global features,
we use a late fusion by applying the sum rule.



method MAP
(1) color+texture, EF 0.267
(2) motion 0.170
(3) col+tex+motion, EF 0.290
(4) (col+tex, EF) + mot, LF 0.274
(5) visual words 0.281
(6) (col+tex+mot, EF)

+ vis. words, LF
0.345

(7) (col+tex, EF) + mot
+ vis. words, LF

0.345

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

pr
ec

is
io

n

recall

basketball
beach

cats
concert

crash
dancing

desert
eiffeltower
explosion

golf
helicopter

hiking
interview

race
riot

sailing
secondlife

soccer
swimming
talkshow

tank
videoblog

(b)

Figure 4: Left: Experimental results in terms of Mean Average Precision (MAP). EF=early fu-
sion, LF=late fusion. Right: the recall-precision curves for our best system (7). The average
precision per concept varies between 0.840 (soccer) and 0.117 (beach)

5 Experiments
In our benchmark, we apply several combinations of features and fusion strategies to our test
set of 550 videos. We obtain a posterior (score) for each combination of test video and tag.
By sorting all test videos according to this score, we obtain a ranked list for each tag in which
relevant videos should come first. We measure quality in terms of the mean average precision
(MAP). Our results are subsumed in Figure 4(a) and outlined in the following.

(1) Baseline - Color and Texture: Our baseline system uses color histograms and Tamura
features in an early fusion (EF), i.e. NN matching is performed on concatenated feature vectors.
The nearest neighbors for some frames are illustrated in Figure 5.

(2) Motion: While the baseline gives good results for concepts with a fixed global compo-
sition of frames (e.g., soccer, basketball), it performs poorly when the action that takes place is
critical. Such action can be captured well using the motion descriptor as outlined in Section 4.1.
Though we obtain a worse overall result, the motion descriptor gives a strong improvement for
some concepts that come with typical motion patterns like ‘interview’ (40%) or ‘riot’ (44%).

(3)+(4) Fusing Baseline and Motion: We combine the baseline features and motion fea-
tures using early fusion (EF) or late fusion (LF). First improvements relative to the baseline can
be achieved (MAP=0.290 for early fusion, 0.274 for late fusion).

(5) Visual Words: We train a discriminative maximum entropy model on all visual word
histograms from the training set and use the posterior from Equation (1) as the score. Our results
give a slight improvement compared to the baseline (MAP=0.281).

To visualize which patches the model uses to discriminate between classes, we use the fact
that coefficients from the model are related to the discriminative power of a visual word: if
λtc � λt′c ∀t′ 6= t, the feature c is a strong discriminator for class t. Figure 3(b) illustrates 5



Figure 5: Some sample votes given by our baseline system (1). The upper row shows frames
from the test set, below each of them its nearest neighbor in the training set. The three left
columns show correct votes, erroneous ones are on the right.

of the 20 visual words that maximize the discriminative power

disct(c) = λtc −max
c′

λtc′ (3)

for ‘eiffeltower’, the tag with the strongest improvement (148%) relative to the baseline. These
patches indicate how the system learns the visual structure of the tower.

(6)+(7) Best System - All Features: finally, we integrate global features with visual words
using a late fusion. We obtain the best results with an MAP of 0.345 (an improvement of
about 30% relative to the baseline). The associated recall-precision curves for all concepts are
illustrated in Figure 4(b). It can be seen that the MAP varies strongly between concepts: the
best results are achieved for sports videos (soccer - MAP=0.83, basketball - 0.80, swimming -
0.77), which often come with a well-defined color layout of the screen. Rather difficult concepts
for our approach are associated ill-defined classes of actions (like ‘dancing’ - 0.21) or widely
varying appearance (like ‘beach’ - 0.10).

Figure 6 illustrates some of the results for the category ‘golf’ (MAP=0.50), with represen-
tative key frames from the top 5 videos of the ranked retrieval list (first row) and from the golf
videos with lowest posterior are plotted. While the top 5 show 4 correct samples (2 × golf, 2 ×
frisbee golf) and one false positive (6(c)), the 5 false negatives show only one typical golf video
(6(j)). The others - though tagged with ‘golf’ - turn out to be difficult special cases: an indoor
golf scene (6(f)), a VW Golf (6(g)), a hockey match (6(h)), and a comic (6(i)). It is obvious that
finding the correct tag from such content is very difficult using visual features only.

6 Discussion
We have proposed online videos as a source for training models for content-based video re-
trieval. Our experimental results on a publicly available database of online videos suggest that
such training is possible, though a difficult problem, and that the performance varies strongly
between concepts.
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Figure 6: Sample frames from the 5 videos with the highest score for the tag ‘golf’ (first row)
and from the 5 golf videos with lowest score (second row).

Another problem that should be mentioned is a certain redundancy of visual content in the
database whose influence is difficult to quantify. Though we remove duplicate videos, still
different levels of near-duplicates exist: first, popular scenes are reused and recomposed by
different users (e.g., the ‘best trick plays in soccer’). Second, series of videos often play at the
same location or share a similar production style. Our system makes use of such redundancy,
but quantifying its influence on tagging performance is difficult, and we have not tackled it yet.
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