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Abstract. This report describes the work done by the QA group of the
Language Technology Lab at DFKI, for the 2004 edition of the Cross-
Language Evaluation Forum (CLEF). Based on the experience we ob-
tained through our participation at QA@Clef-2003 with our initial cross-
lingual QA prototype system BiQue (cf. [1]), the focus of the system ex-
tension for this year’s task was a) on robust NL question interpretation
using advanced linguistic-based components, b) flexible interface strate-
gies to IR-search engines, and c) on strategies for off-line annotation of
the data collection, which support query-specific indexing and answer
selection.

The overall architecture of the extended system, as well as the results
obtained in the CLEF–2004 Monolingual German and Bilingual Ger-
man/English QA tracks will be presented and discussed throughout the
paper.

1 Introduction

The basic functionality of an open–domain cross–language question/answering
(QA) system is simple: given a Natural Language query in one language (say
German) find answers for that query in textual documents written in another
language (say English). In contrast to a standard cross-language IR system,
the NL queries are usually well-formed NL–query clauses (instead of a set of
keywords), and the identified answers should be the exact answer string (instead
of complete documents containing the answer). Thus, for a question like “Welches
Pseudonym nahm Norma Jean Baker an?” (Which pseudonym did Norma Jean
Baker use?) the answer should be “Marilyn Monroe” rather than an English
document containing this name. In contrast to QA@Clef-2003, this year the
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task was made further difficult by demanding that only one exact answer should
be returned instead of a ranked list of (say three) answer candidates.

Last year our group participated for the very first time at Clef. We learned
a lot and found several sources of potential improvements for our initial system.
Especially two aspects have drawn our attention.

Firstly, the use of a statistical based chunk-parser turned out to be a ma-
jor bottleneck for the complete NL question processor. In our Clef–2003 sys-
tem, we implemented a two-stage question process: first we performed a shallow
chunk analysis using a statistical based chunker (trained for German as well
as English) on which output we applied a manually written specialized question
grammar. The rules of this grammar represented direct relationships between rel-
evant chunks and their interpretation wrt. question and expected answer type.
However it turned out that the error rate of the first stage actually caused to
much noisy input for the second stage, so that in many cases we were not able
to determine the expected answer type correctly. This was further effected by
the low coverage of the manually specified question grammars, so that the whole
question processor actually performed quite poor. However, it is known that a
high number of errors in question answering can be attributed to errors in ques-
tion analysis (cf. [2]). Furthermore, since the Clef-2004 QA task required that
only one exact answer should be returned, we were convinced that it would be at
least a good strategy to prefer a more deeper linguistic–based question analysis
strategy.

Secondly, in the Clef-2003 system we applied a very simple strategy for deter-
mining relevant paragraphs which are then used as starting points for determin-
ing possible answer candidates, simply by directly using the SGML paragraph
tags from the original corpus. Furthermore, the IR-query language of the full–
text IR–engine MG (cf. [3]) actually turned out to be too inflexible so that
we could not take advantage of a preprocessing of the corpus wrt. different di-
mensions. Hence, we could only perform a very basic word/stem–level oriented
paragraph indexing.

Based on these experiments, we decided to extent the Clef–2003 system to
the following directions:

– development of a robust NL question interpretation using sophisticated deeper
linguistic-based strategies,

– development of adaptive interface strategies to IR-search engines, and
– development of strategies for off-line annotation of the data collection, which

support query-specific indexing and answer selection.

We now start with an overview of the whole Clef–2004 system, and high-
light some technical aspects. Finally, we present and discuss the results we have
obtained for the task.

2 System Overview

Figure 1 displays the architecture of our Clef–2004 QA–system. Basically, the
same system is used for the monolingual as well as the bilingual QA task with
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only very few additional task–specific parameterizations. The core architecture
consists of five major components:

1. the linguistic core engine
2. the multi-dimensional index of the document collection
3. the robust NL query processor
4. the information search component
5. the answer processor

The linguistic core engine consists of two major sub-components (see section 3
for details): a) LingPipe, which performs NE and sentence boundary recognition,
as well as NE co-reference resolution, and b) SMES, a robust wide-coverage
unification–based parser for German. This parser is used for both, German NL
question and document analysis.

For each corpus of the individual task (German and English), a multi–dimen-
sional index structure is computed off–line. This is done by first preprocessing the
whole corpus with the LingPipe component of the linguistic core engine, which
basically adds named entities, sentence boundary, NE–co-references to each doc-
ument in form of XML–tags. Additionally, abbreviations are determined by a
specialized component into the same XML–format. For each specific dimension

Fig. 1. The architecture of DFKI’s Clef–2004 QA-system
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Fig. 2. The architecture of the query analysis component

a separate index is computed which can be accessed via the IR server (we are
using the Jakarta Lucene full–text search engine, see also sec. 4.1).1

The major control flow for both QA tasks can now briefly be described as
follows:

Robust NL Question Analysis. The main purpose of the NL question analysis
in the context of a QA-system is to determine the expected answer type, the
set of relevant keywords, and the set of recognized NE–instances in order to
guide information search and answer processing. Consider, for example, the NL–
query result presented in figure 4, where the value of tag a-type represents the
expected answer type, s-ctr’s value represents the answer control strategy, and
the value of scope represents additional constraints for the search space (for
more details, see sec. 4.2).

NL Question Refinement. Refinement of the result of the NL–query covers the
translation of the NL–query and its expansion. The cross-language aspect of
the system has been approached by using machine translation engines for query
translation (along the line of the approach described in [1]). We have selected a
number of 8 translation services (7 online + 1 offline) in order to account for a
better lexical coverage for the translated queries. The results of translation have
been linguistically processed, annotated with named entities and merged into a
translation object consisting of named entity instances and keywords (open class
words which were not parts of named entities). The question analysis has yielded
a similar structure for the original question plus additional information about
expected answer type and scope. By using a dictionary-based alignment tech-
nique this additional information has been transferred to the translation object.
The same happened with the named entities of types PERSON, DATE (year
instances) and NUMBER, which should remain unchanged through translation.

1 cf. http://jakarta.apache.org/lucene/docs/index.html
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As for the remaining types of named entities (LOCATION, ORGANIZATION
and DATE without year instances), which might have different lexical represen-
tations in source and target language, the following heuristic applied: if the orig-
inal string and its translation were different (e.g., “Europäische Gemeinschaft”
vs. “European Union”) they were regarded as unreliable, added as keywords
and discarded from named entities. The distinction made between named enti-
ties and keywords along the question analysis process will be used later on in
constructing the IR-query and defining search strategies.

In contrast to our previous system, we wanted to implement and test question
expansion methods based on natural language generation (NLG), instead of using
WordNet (cf. [1]). The main reason for doing this is the fact, that the NL–query
analysis actually normalizes all words to their corresponding lemmas. On the
other side, the morphological component of our German parsing system SMES
(cf. section 3.2) is reversible, i.e., can also be used for the generation of word
forms. Of course, one could directly use the word forms of the input query (ac-
cessible via indices). However, generating all plausible word forms directly from
the input query actually would perform a controlled morpho-syntactic query
expansion. Thus, in the case of the monolingual German task, for all relevant
lemmas of the NL–query analysis (these are basically belonging to the open-class
words), we generate all word forms which are consistent with the feature descrip-
tion of the syntax analysis of the parsing result. This means that the parsing
output directly controls the generation input. For example, for the lemma geben
(to give) and the feature verb we are generating the word forms gaben, gab,
gegeben, gibt.2

Information Search. In order to perform the information search, the (possibly
refined) NL–query has to be mapped to a concrete IR-query. Most today’s in-
formation search engines come with powerful IR-query interfaces, which support
a flexible user-driven filtering of the index space. In order to take advantage of
this rich parameterization and to support the use of multiple IR-engines in the
future, we actually perform the mapping from a NL-query to a IR-query in two
steps (cf. also figure 3):

1. construction of a IR-query schema
2. construction of a IR-query

An IR-query schema is actually an under-specified representation of an IR-
query. It is constructed directly from the NL–query result. Although it contains
all relevant information from the NL–query, this information is under-specified,
because it still lacks the use of IR-specific syntax (e.g., the ’+’–prefix for nec-
essary terms) and a specification of logical connectives. The main task of the
IR–query construction component is to create a concrete IR–query from this

2 Note that our method also allows to specify additional constraints for the generation
process, e.g., that only word forms of a certain tempus should (not) be generated.
In this way, a more sensitive morpho-syntactic-based control of query expansion is
possible.
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Fig. 3. Example of query refinement and IR-Query construction

schematic description, which directly can be feed into a IR–engine (in our cur-
rent QA system, we are using the Jakarta Lucene text search engine. However,
it would also be possible to create, say a Google-specific expression from it using
a different script). Which mapping to perform is expressed in form of search
strategies which are activated on basis of concrete values of the question type
of NL–query. Furthermore, based on input from the answer validation compo-
nent (through feedback loops), the component might use different sorts of logical
connectives resulting in different IR–queries, e.g., in figure 3 two alternatives are
displayed: a strict IR–query (using only logical AND), and a relaxed IR–query
(using only OR).

Performing the IR–query construction process in the way just described al-
lows us to selectively make use of different indexing structures.

Answer Processing. The result of the information search is a set of N hits (cur-
rently N=10), where each hit is a pointer to a single sentence of an annotated
document. Each sentence is tagged with all NE–instances recognized by LingPipe
during the document preprocessing phase. Note that, because we do indexing
on a sentence level (and not on a paragraph level as done in our Clef–2003 sys-
tem), we actually can take advantage of cross–document sentence–level answer
redundancies.

Next, all NE–instances which are type compatible with the expected answer
type of the question are selected as possible answer candidate. All identified
exact answer candidates are stored in a global list together with its frequency
counts (determined on basis of the selected N–sentences). During that step a
similarity function is applied on the NE–instances in order to identify variants
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of the same name. Note that this means that the quality of the answer extraction
step currently depends directly on the quality of the used NE–recognition system.

By default, we do the information search with a strict IR–query. If in this case,
no sentence can be retrieved or no answer can be extracted, we perform a new
information search using a relaxed IR–query and re-call the answer processing
component.

3 Linguistic Core Engine

Our linguistic core engines consists of two major components which we describe
briefly in the next two subsections.

3.1 LingPipe

LingPipe, which is a software package from Alias–i, consists of several language
processing modules: a statistical named entity recognizer, a heuristic sentence
splitter, and a heuristic within-document co-reference resolution system.3

LingPipe comes with a English language model. The types of NE covered by
LingPipe are locations, persons and organizations. We have re–trained LingPipe
so as to cover more named entities types: DATE for English, and both DATE
and NUMBER for German. We extended the co-reference resolution algorithm to
count for German pronouns as well. A large Gazetteer of named entity instances
has been used for both languages and for English a PERSON Gazetteer with
gender attributes has been integrated for a better co-reference resolution.

3.2 SMES

SMES is a robust wide-coverage unification-based system for the parsing of Ger-
man texts (cf. [4, 5]).4 It produces a partial analysis of natural language texts by
combining shallow processing techniques (i.e., finite state regular expression rec-
ognizers) with generic linguistic resources (e.g., subcategorisation, morphology,
online compound analysis). In contrast to the common approach of deep gram-
matical processing, where the goal is to find all possible readings of a syntactic
expression, we provide a complete but underspecified representation, by only
computing a general coarse-grained syntactic structure which can be thought of
as domain independent. This rough syntactic analysis can be then made more
precise by taking into account domain-specific knowledge. Our parser recognizes
basic syntactic units and grammatical relations (e.g., subject/object) robustly
by using relatively underspecified feature structures, by postponing attachment
decisions and by introducing a small number of heuristics.

Originally, SMES was developed as an Information Extraction core system,
however we now extended SMES substantially for its use as a core-engine in

3 LingPipe is available at http://www.alias-i.com/lingpipe/
4 SMES is available at http://www.dfki.de/̃ neumann/pd-smes/pd-smes.html.
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textual question answering systems. Major extensions of SMES concern the de-
velopment of the robust interpretation of NL questions (see sec. 4) and the de-
velopment of a distributed representation for the dependency structures, which
we will describe now in more detail.

Distributed representation In the original SMES system, the analysis of a
sentence is represented in form of a possibly recursive dependency tree where
each node and edge is decorated with rich feature information. During the devel-
opment of our Clef–2004 system it turned out that the nested parse trees (which
can be very huge for very long sentences) are unsuited as a generic interface,
because they do not support a flexible and efficient access to relevant linguis-
tic information. Furthermore, a nested representation cannot easily be enriched
with additional linguistic structure, e.g., additional grammatical functions or
deeper attachment, scopus etc. The same is true for a selective, local integration
of domain–specific information (e.g., to perform a sort of concept–spotting on
basis of domain-independent syntactic normalization of relevant text fragments).

For that reason, we re–represent dependency trees in form of a distributed
representation, adapting the approach of [6]. A distributed representation pro-
vides the robustness of a bag–of–object approach with the ability to use higher
level relational information where this can provide a more accurate analysis.
Thus distributed representations are more flexible wrt. the integration of shal-
low and deep linguistic analysis, and the integrating domain knowledge. In our
distributed representation, we explicitly separate the representation of linguistic
entities like words/chunks/named entities (the ”bag–of–objects” or BaseObjects)
from their structural relationship like head/modifier/topology/grammatical func-
tions (the ”bag–of–links” or LinkObjects). Both layers are connected through
indices which allow a simple bidirectional traversal between the different ob-
ject types. Linguistic and application specific extension can then be described
as operations (typing, re-organization of attachment) applied on LinkObjects.
Actually, this is how the strategies of the semantic NL–query interpretation are
implemented for determining the expected answer type and question scope (cf.
sec. 4.2). It is also basis for the specification of a flexible similarity function
applied on two distributed dependency trees.

4 Some More Details

4.1 Multi-layered Document Annotation

The current annotation performed on the document collection consists in sen-
tence boundary identification, named entities annotation and co-reference res-
olution of named entities and personal pronouns. A heuristic syntax–based al-
gorithm for identifying abbreviations and their possible extensions enriches the
annotation with an NE–similar format, e.g., <enamex type=”person”>Bill
Clinton</enamex> and <enamex type=”organization” abbrev=
”uno”> United Nations Organisation</enamex>.
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<IOOBJ msg=’quest’ s-ctr=’C-DESCRIPTION’ q-weight=’1.0’>

<A-TYPE>NUMBER</A-TYPE>

<SCOPE>analphabet</SCOPE>

<BRELS>

<BREL rel=’GOV’ level=’0’>

<ARG1 pos=’V’>geb</ARG1>

<ARG2 pos=’N’>analphabet</ARG2>

</BREL>

<BREL rel=’GOV’ level=’0’>

<ARG1 pos=’V’>geb</ARG1>

<ARG2 pos=’N’>es</ARG2>

</BREL>

<BREL rel=’GOV’ level=’0’>

<ARG1 pos=’V’>geb</ARG1>

<ARG2 pos=’P’>auf</ARG2>

</BREL>

<BREL rel=’GOV’ level=’1’>

<ARG1 pos=’P’>auf</ARG1>

<ARG2 pos=’N’>welt</ARG2>

</BREL>

<BREL rel=’GOV’ level=’0’>

<ARG1 pos=’N’>analphabet</ARG1>

<ARG2 pos=’WP’>wieviel</ARG2>

</BREL>

</BRELS>

<PRELS>

<PREL rel=’GOV’ level=’1’>

<ARG1 pos=’N’>welt</ARG1>

<ARG2 pos=’QUANT’>d-det</ARG2>

</PREL>

</PRELS>

<KWS>

<KW type=’UNIQUE’>

<TK pos=’V’>geb</TK>

</KW>

<KW type=’UNIQUE’>

<TK pos=’N’>analphabet</TK>

</KW>

<KW type=’UNIQUE’>

<TK pos=’N’>welt</TK>

</KW>

</KWS>

<NEL/>

<NETS/>

</IOOBJ>

Fig. 4. The result of the robust NL question interpretation for the example Wie
viele Analphabeten gibt es auf der Welt? (How many illiterates are there on the

world?)
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Throughout the document processing part of the system we have insisted
on a systematic analysis of named entities and a reduction of the amount of
information necessary to answer a question. Based on experiments and results
with the question set of the previous competition, we have confined the in-
formation amount to sentence level and added named entity and abbreviation
types, along words, as basic units of information in the indexing process. By
doing this, we could query the IR component not only by keywords extracted
from the questions, but also by NE types corresponding to their expected an-
swer types. An example would make this clear: for the question Where did John
Lennon die? beside creating an IR–query containing the keywords: {+‘‘John
Lennon’’, +die}, we could supply also the expected answer type LOCATION
querying an additional field neTypes: {+text:‘‘John Lennon’’, +text:die
+neTypes:LOCATION}. This will not only narrow the amount of data being an-
alyzed for answer extraction, but will also guarantee existence of an answer
candidate.

4.2 Robust NL Question Analysis

In context of a QA system or information search in general, we interpret the
result of a NL question analysis as declarative description of search strategy and
control information. Consider, for example, the NL question result presented in
figure 3, where the value of tag a-type represents the expected answer type,
s-ctr the answer control strategy, and scope additional constraints for the
search space. Parts of the information can already be determined on simple lo-
cal lexico-syntactic criteria (e.g., for the Wh-phrase where we known that the
expected answer type is location), however in most cases we have to consider
larger syntactic units in combination with information extracted from external
knowledge sources. For example for a definition question like What is a battery?,
we have to combine syntactic and type information from the verb and the rel-
evant NP (e.g., consider definite/indefinite NPs together with certain auxiliary
verb forms) in order to distinguish it from a description question like What is
the name of the German Chancellor?

In our system, we are doing this by following a two-step parsing schema,
where in a first step a full syntactic analysis is performed (cf. sec. 3.2), and
in a second step a question–specific semantic analysis. During the second step,
the values for the question tags a-type, scope and s-ctr are determined on
the basis of syntactic constraints applied on relevant NP and VP phrases, and
by taking into account information from two small knowledge bases, see also
figure 2. They basically perform a mapping from linguistic entities to values
of the questions tags, e.g., trigger phrases like name of, type of, abbreviation of
or lexical elements to expected answer types, like town, person, president. For
German, we perform a sort of fuzzy match to the knowledge bases taking into
account on–line compound analysis and string–similarity tests. For example,
assuming the lexical mapping Stadt=⇒LOCATION for the lexeme town, then
automatically we will also map the nominal compounds Hauptstadt (capital),
Großstadt (large city) to the a-type LOCATION.
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5 Results and Discussion

We have submitted two runs. One for the monolingual German task, and one
for the bilingual German/English task. The results are as follows:

Track #Answ #T #F #Inexact #Unsup. Overall Acc Fact. Acc. Def. Acc. NIL prec.

DE-DE 197 50 143 1 3 25.3% 28.25% 0 13.6%
DE-EN 200 47 151 0 2 23.5% 23.8% 20% 10.79%

Compared to our results obtained at QA@Clef2003 this is a good improve-
ment because the tasks were more difficult and because we could use nearly the
same system for both, the bilingual track as well as the monolingual track. We
will now discuss the results for the two individual tasks, comparing them where
possible.

In both cases, we only considered answers which directly where recognized
as NE instances, i.e., for all questions which would refer to more general noun
phrases or to NE types and instances LingPipe did not recognize, we did not
identify any answer candidates. Note that although in both tasks we were able to
properly analyze all definition questions as such, in our current system we only
determine possible answer candidates for abbreviation based questions (by the
way: not such questions were found in the German test set, which explains, why
we did not recognize any definition question). The fact, that we did not answer
definition question (modulo abbreviation) correlates with our restrictions to only
consider NE instances as answer candidates.

As previously mentioned, both the monolingual and bilingual tasks have
shared the same QA-framework, which was presented above. Nevertheless, there
were task specific system configurations, resulting in different retrieval and an-
swer extraction methods, which will shortly be mentioned in the following lines.

Monolingual Task. For the German monolingual task we were able to have the
system recognize named entity instances of type NUMBER, as result of training
LingPipe on a German corpus with a larger coverage of named entity types than
its English counterpart. Even though the indexing method was similar for both
tasks, the monolingual task did not make any use of the named entity type field
(neType) during information search.

Bilingual Task. No questions with a MEASURE expected answer type were
considered, because the bilingual settings were not able to identify named entity
instances of type NUMBER. The system used a similarity function, which com-
pared to the monolingual task, resembles a co–reference algorithm by identifying
answers mentioning the same NE instance in the answer candidate set (e.g., “Bill
Clinton” and “Clinton” will count as two references to the same person).
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