
Combining Case-Based and Similarity-Based
Product Recommendation

Armin Stahl

German Research Center for Artificial Intelligence (DFKI) GmbH
Research Group Image Understanding and Pattern Recognition (IUPR)

Technical University of Kaiserslautern
Erwin-Schrödinger-Str. 57, 67663 Kaiserslautern, Germany

Armin.Stahl@dfki.de

Abstract. Product recommender systems are a popular application and
research field of CBR for several years now. However, almost all CBR-
based recommender systems are not case-based in the original view of
CBR, but just perform a similarity-based retrieval of product descrip-
tions. Here, a predefined similarity measure is used as heuristics for esti-
mating the customers’ product preferences. In this paper we propose an
extension of these systems, which enables case-based learning of customer
preferences and which also allows to incorporate collaborative recommen-
dation techniques. Further, we show how this approach can be combined
with existing approaches for learning the similarity measure directly. The
presented results of a first experimental evaluation demonstrate the fea-
sibility of our novel approach in an exemplary test domain.

1 Introduction

With the increasing success of e-Commerce web-sites, the development of intelli-
gent recommender systems has become a popular field of research. Today, many
e-Commerce sites are already deploying recommender systems to support their
customers during the selection of a product that best matches their requirements
and preferences. Depending on the type of offered products, the desire for such
support can be explained by different issues:

– When being confronted with huge product databases, the search for a suited
product can become very time consuming.

– When purchasing complex products (e.g. technical products like PCs, travels
[?], insurance products [?]) customers do often not possess the expertise to
select the optimal product with respect to their requirements.

– Some products cannot be described sufficiently by explicit and objective
properties (e.g. books, music [?], videos [?]) but are selected on the basis of
subtile aspects like the personal taste. Without recommendation a customer
cannot estimate the personal value of such a product until purchasing it.

Since the requirements on the actual recommendation process are varying
between different business scenarios, many different recommendation techniques

have been development during the last years (for an overview see [?,?]). In prin-
ciple, two major approaches can be distinguished: content-based recommendation
and collaborative filtering (CF).

Content-based recommendation can deal with the first two issues, i.e. find-
ing suitable products in large databases or advising customers when purchasing
complex products. Therefore, the customer has to define his requirements on
the searched product, e.g. by filling out a predefined query form. This informa-
tion is then compared with the descriptions of the available products in order
to identify a set of potential product candidates. If the comparison is based on
exact match (e.g. by performing a simple SQL query), this is called filter-based
recommendation (FBR). An alternative to FBR, which often leads to unsatis-
factory results, is similarity-based recommendation (SBR). Here, the comparison
between the query and the product descriptions is based on a specific similarity
measure which also allows to rank retrieved products. As Case-Based Reasoning
(CBR) provides powerful techniques for realising similarity-based retrieval it has
become a popular technique for building SBR systems [?].

Collaborative filtering [?], on the other hand, is typically be used to deal
with the third issue, i.e. to provide recommendations for products that cannot
be described sufficiently by explicit properties. The basic idea of CF is to collect
user ratings about seen or bought products and to use rating correlations between
different users and products in order to recommend products. Hence, CF relies on
a vast amount of user feedback before producing satisfactory recommendations.

In recent years several hybrid recommendation techniques which incorporate
content-based and collaborative approaches have been developed [?], and some
of them apply also CBR techniques [?,?,?,?].

In principle, a recommender system must possess knowledge about the cus-
tomers’ requirements and preferences and their relationship to the offered prod-
ucts. Generally, the following types of user needs can be distinguished [?]:

– hard requirements vs. preferences
– explicit vs. implicit preferences, i.e. is the preference explicitly expressed in

the query or not
– general vs. individual preferences, i.e. is it a general preference of almost all

customers or is it customer specific
– short-term vs. long-term preferences, i.e. is the preference only valid for the

actual recommendation process or durable

While FBR can only treat the hard, explicit, individual and short-term pref-
erences encoded in the query, SBR allows a much wider consideration of customer
preferences. Here, similarity-measures (which may be customer specific) can be
used to model almost all kind of preferences. Only implicit subtile preferences,
that are difficult to express formally, can be treated exclusively by CF techniques.

The most challenging task when building a recommender system is the ac-
quisition of knowledge about the different kinds of preferences. While CF strictly
relies on user feedback, SBR is applicable without any feedback by using a pre-
defined similarity measure as heuristics. However, the quality of this heuristics
influences the recommendation quality dramatically.

In this paper we propose a novel approach for learning customer preferences
in content-based recommender systems. The approach combines SBR with the
original idea of CBR, i.e. the reuse of collected experience knowledge. There-
fore, it incorporates knowledge about successful recommendations of the past
into the similarity-based product retrieval. We show that an additional optimi-
sation of the underlying similarity measure yields in further improvements of the
recommendation quality.

The advantage of our approach is its easy integration into state-of-the-art
SBR systems. At the beginning the system can be applied with a standard
similarity measure without relying on any user feedback. If feedback becomes
available during usage it will enable the system to learn its users’ preferences
automatically over time leading to improved recommendation results. Moreover,
our approach also provides the possibility to consider more subtile product prop-
erties and to include collaborative aspects into the recommendation process.

Section ?? starts with a short review of the functionality of SBR systems
and existing approaches towards learning customer preferences. Section ?? then
describes our novel approach which combines case-based learning with exist-
ing techniques for learning similarity measures. The results of an experimental
evaluation presented in Section ?? demonstrate the feasibility of our approach.
After discussing related work in Section ??, we conclude with a summary and
an outlook on future work.

2 Similarity-Based Product Recommendation Systems

Similarity-based recommendation systems have become a very popular CBR
research area and numerous successful commercial applications are in use today.
Surprisingly, on a closer look, most of these systems are not at all CBR systems
in the traditional view of CBR since the used “cases” do not represent problem-
solution pairs of the past but are typically just product descriptions.

2.1 Utility-Oriented Matching

The basic functionality of a SBR system is illustrated in Figure ??. Given a
customer query which describes the desired product properties, a CBR system
applies a predefined similarity measure for comparing the query with the de-
scriptions of all available products which are stored in a product database (PB).
Finally, a ranked set of the s most similar products (s is typically is set to 10)
is presented as the result set (RS) to the customer1.

If we look at this scenario, it becomes obvious that the system does not com-
pare two problem descriptions like assumed by the traditional idea of CBR. In-
stead, it compares a problem—the query—directly with potential solutions—the
products. This works well for product recommendation because here problems
and solutions can be described by using the same vocabulary. However, it also

1 In this paper we do not consider adaptation.

Query

Desired
Product

Properties

Product-ID

Case

Product
Properties

Product-ID

Case

Product
Properties

Product-ID

Product

Product
Properties

Product-ID1

Product
Properties

Product-ID2

Product
Properties

Product-IDS

Product
Properties

…
Similarity
Measure

Utility-Oriented Matching

Retrieval

Result Set CBR System

Customer

de
fin

es

analyses

Decreasing Similarity

P
ro

du
ct

D
at

ab
as

e

Fig. 1. Product Recommendation by Utility-Oriented Matching

restricts the features that can be used during the recommendation process to
the information contained in existing product descriptions.

Traditional cases consisting of problem-solution pairs are not used at all in
this scenario. Some authors have characterised this approach as utility-oriented
matching because the similarity measure is directly used to approximate the
utility of known solutions—here product descriptions—for a given problem [?].

In principle, the utility of a product description pi with respect to a given
query q can be characterised as the conditional probability that the product will
be accepted by the customer—we denote this event as ωi—given q, i.e. we may
define a utility function u as follows by applying Bayes rule:

u(q, p) = P (ωi|q) =
P (q|ωi) · P (ωi)

P (q)
(1)

In a SBR system, a predefined similarity measure sim is used to approximate
this unknown utility function u. Since it does not possess any other knowledge
about the customers’ preferences, the recommendation quality of such a system
depends completely on the accuracy of this approximation.

In the machine learning point of view, the SBR task can be characterised
as a n-class classification problem, where n represents the number of available
products. Each product description pi represents a prototype of class ωi and
can be characterised as a point2 in a high dimensional feature space where each
feature corresponds to a product property. In order to recommend the optimal
product for a given query q, the query has to be classified as belonging to one of
the classes ωi. This leads to a huge number of decision boundaries between all
classes with their corresponding prototypes pi (see Figure ??a)). In our example,
q would be classified as ω1, because it lays in the corresponding Voronoi cell of
ω1 (marked grey), i.e. p1 is considered to be the optimal product. In order to
recommend a set of products, the utility functions u(q, pi) for all products pi,
i.e. the posterior probabilities P (ωi|q), have to be estimated (see Figure ??b)).
2 We do not consider generalised cases.

)|(qP iω
1ω

2ω

3ω

4ω
5ω

1p 2pq

2p 3p

q
1p

1f

2f

a) b)

1ω

4p

5p

decision boundary
between and1ω 2ω

Fig. 2. Similarity-Based Product Recommendation as Classification

For a given set of product descriptions pi, in SBR the decision boundaries are
completely determined by sim. If sim is conform to the Euclidean Distance, for
example, in the 2D case the decision boundaries can be visualized by a simple
Voronoi diagramm with respect to the points pi as shown in Figure ??a).

2.2 Dealing with Customer Preferences

However, because of the complexity of customer preferences, in practice standard
similarity measures such as the Euclidean Distance will result in a poor approx-
imation of u. In principle, u will be determined by different kinds of preferences
with different locality in the problem space:

1. the different importance of general product properties, e.g. “the price is
usually much more important than the colour”

2. preferences concerning different values of product properties
(a) independently from q and other properties, e.g. “black cars are generally

preferred over white cars”
(b) depending on q but independently from other properties, e.g. “if a black

car is desired, a dark blue car will likely be preferred over a yellow car”
(c) depending on other properties, e.g. “black BMWs are mostly preferred

over red BMWs”
3. product specific preferences that are independent from q (in the probabilistic

view this is the prior probability P (ωi) of class ωi in formula (1)), e.g. “the
silver BMW 320i is a very popular car and is generally preferred over many
other similar cars”

With common similarity measures supported by CBR tools [?], influence 1
can be modeled with global feature weights and influences 2a) and 2b) can be
modeled with local similarity measures. However, in particular the definition of

accurate local similarity measures is a very time consuming task. The considera-
tion of influences 2c) and 3) would require more sophisticated measures requiring
a modeling effort that is usually not tolerable in practice. But the more serious
problem of defining an accurate similarity measure is the a-priori completely
missing or only partially available knowledge about the customers’ preferences.

In our previous work we have proposed to apply a specific machine learn-
ing approach which allows automatically learning of feature weights and local
similarity measures based on user feedback [?,?,?]. We have shown that this ap-
proach also allows the incorporation of partially known background knowledge
into the learning process [?]. However, in particular the learning of local similar-
ity measures is generally susceptible to overfitting if not enough user feedback
is available. Moreover, the approach does not provide a solution for the consid-
eration of all above enumerated kinds of preferences.

3 Case-Based Learning of Customer Preferences

In this section we present an alternative approach for learning customer prefer-
ences which avoids some of the problems of the previously described approaches.

QA

Query
Desired
Product

Properties

Case

Product
Properties

Case

Product
Properties

Product

Product
Properties

Product-ID3

Product
Properties

Product-ID1

Product
Properties

Product-IDS

Product
Properties

…

Similarity
Measure

Utility-Oriented Matching

Voting.

Result Set

CBR
System

Decreasing Rating

Case

Product
Properties

Case

Product
Properties

Case
Satisfied

Past
Query

Case-Based Reasoning

P
ro

du
ct

D
at

ab
as

e

C
as

e
B

as
e

Case1 Case2 Product3 Product4 Casek…

Retrieval Result

Product-IDProduct-IDProduct-ID

Product-IDProduct-IDProduct-ID

QB

QA
QB

R
et

rie
va

l.

Decreasing Similarity

P.-ID1 P.-ID3 P.-ID3 P.-ID5 P.-ID3

Fig. 3. Case-Based Learning of Customer Preferences

The basic idea of this approach is illustrated in Figure ??. At the beginning of
its life cycle, the extended recommender system will behave like a standard SBR
system, i.e. it will perform utiltiy-oriented matching on the given PB. However,
any time a customer has selected a product that is acceptable for him (e.g. if s/he
orders the product), his query (optionally together with additional information,
see Section ??) will be stored in the case base CB together with the product-
ID of the selected product. These records now represent actual cases in the

traditional view of CBR; the combination of a problem description—the query—
and a corresponding solution—the accepted product. And more important, such
cases contain implicit knowledge about the customers’ preferences.

During following recommendation sessions, this knowledge can be used to
estimate u more accurately as it is possible with a predefined similarity measure
sim alone. Therefore, the current query q is not only matched against PB,
but also against CB by using sim. The corresponding merged retrieval result
RR := (r1, . . . , rk) where ri ∈ PB ∪ CB with sim(q, ri) ≥ sim(q, rj) for all
i < j is then used to perform a k-NN classification [?] of q.

3.1 Voting Strategy

Because in the recommendation scenario one is not only interested in the most
probable class, but in the s most probable classes, the definition of a fixed k is
not suited for our approach. If RR contains only ri that correspond to t < s
different classes, the system will not be able to recommend s different products.
Hence, k has to be determined dynamically after each retrieval process. It will
be set to the smallest possible value k, so that RR includes exactly s different
classes, respectively products.

Now RR can be used to generate the required result set RS consisting of s
different product proposals. The ranking of these products within RS will be
determined by some voting strategy. Different voting strategies are commonly
used in k-NN classification, e.g. majority voting, weighted voting [?] or advanced
and adaptive approaches [?,?]. In our experiments (see Section ??) product px is
ranked over product py (written as px � py) according to the following weighted
majority voting rule, where all rωx

i correspond to the same class ωx:

px � py ⇔
∑

rωx
i ∈RR

sim(q, rωx
i) >

∑
r

ωy
i ∈RR

sim(q, rωy

i) (2)

Such a simple voting strategy may lead to overfitting problems as long as
only view cases have been collected because the corresponding products will then
have a much higher probability to be recommended compared with still unbought
products. More adaptive strategies which take the cases’ class distribution into
account might outperform the proposed strategy.

Finally, the actual product descriptions have to be retrieved from the product
database in order to generate the final result set to be presented to the customer.
This is necessary because the retrieval result might contain only cases which do
not contain the product description itself but only the product-ID.

3.2 Learning Additional Case Indexes

Up to now, we have assumed that queries consist of the same attributes that
are used in the original product descriptions (denoted as QA in Figure ??). As
already described, this is a precondition for applying utility-oriented matching.
However, by learning cases of successful recommendation sessions, this is no

longer strictly necessary. One may enable the customer to ask also for additional
product properties that are not contained at all in the original product descrip-
tions (part QB of the query). Typical examples of such additional query items
are more subtile (e.g. “I want a very sporty car”) or functional requirements
(e.g. “I want to use my PC mainly for gaming”). In principle, a fixed set of such
additional features may be considered in the query interface or the interface
may provide the option to enter some free text to be processed by textual CBR
techniques.

These additional desires of the customer cannot improve the recommenda-
tions if the case base is still empty. However, the more cases that contain such
information are stored in the case base, the higher will be the influence of this
information on the recommendation results. In principle, the queries of the cus-
tomers are then used to implicitly index the products automatically by using
additional features which would be to expensive to be done manually by domain
experts. At some point, this statisctial information could also be extracted auto-
matically from the case base in order to extend the product descriptions stored
in the product database. Another possibility is the incorporation of collaborative
features (e.g. user profiles) [?] in part QB of the query.

3.3 Acquisition of Training Data

As typical for a supervised learning approach, the acquisition of accurate training
data is crucial. In our approach, we assume that the customer states some query
(this query might also be the result of a sales dialog [?]) and in the case that he
accepts one of the proposed products (e.g. because s/he orders it), this data is
used to create a new training example, i.e. a new case. To control the learning
process, one may choose one of the CBL algorithms [?]. For example, when
applying the CBL2 algorithm, one would store a new case only if the ordered
product was not recommended as the optimal product.

However, in general it cannot be guaranteed, that the resulting case repre-
sents an optimal query-product pair. Maybe there are other products in PB that
the customer has not seen, but that s/he would definitely prefer. This means,
we will only get relative utility feedback [?] about the utility of the products
included in the result set3. If the system proposes s different products p1, . . . , ps

and the customer orders p3 we only get evidence, that it holds u(q, p3) ≥ u(q, pi)
for all i ≤ s, but we do not obtain any information about the absolute value of
u(q, p3). However, this information would be necessary in order to ensure that
the learned case alone represents accurate knowledge about u.

This situation is less problematic if the retrieval set contains the optimal case
with high probability, also if it is not ranked correctly. Hence, the quality of the
predefined similarity measure which determines the initial result sets is crucial
in order to restrict the noise in the training data. However, learning of extremely
noisy training examples is generally unlikely because then the customer would
not have ordered the product.

3 Here we assume that the customer analyses each product contained in the result set.

To guarantee a minimal quality of the used similarity measure it is possible
to apply machine learning, too. In [?,?,?] we have presented an algorithm for
learning similarity measures which can handle the kind of relative feedback that
we obtain in the recommendation scenario. Hence, this feedback can also be used
to optimise the similarity measure in parallel or a-priori to learning new cases
in order to reduce the noise in the training data.

4 Experimental Evaluation

In order to evaluate our novel approach we have performed some first experi-
ments in a simulated product recommendation scenario.

4.1 Test Domain

As test scenario we have chosen a used cars domain consisting of 100 descriptions
of different used cars which we have extracted from a real world online used cars
market. Each car is described by 4 numeric and 4 symbolic attributes, such as
price, power, color, year of construction, etc. For a more detailed description of
the used test domain see [?].

Since we were not able to perform an experiment with real world customers,
we have simulated imaginable customer preferences with a manually defined
similarity measure simU consisting of specific feature weights and specific local
similarity measures for each attribute. Of course, such a model is not sufficient
for simulating the actual behaviour of real world customers. On the one hand,
it does not simulate the inconsistencies between the individual preferences of
different customers that would occur in the real world. On the other hand, it
does also not model all kinds of preferences discussed in Section ?? (2c and
3 cannot be modeled with such a kind of similarity measure). However, it is
sufficient for a first prove of concept of our approach.

4.2 Experiments

In order to evaluate the capability to learn the simulated customer preferences
in the described test domain, we have performed several experiments where
we have applied the proposed case-based learning approach and/or our previous
algorithm for learning feature weights [?]. In principle, each experiment consisted
of the following steps:

1. create empty case base CB, empty feedback set FB, and initialize standard
similarity measure sim with uniform weights

2. select a set of training queries Qtrain := (q1, . . . , q10000)
3. for each qi ∈ Qtrain do

(a) generate result set RSi := (p1, . . . , p10) consisting of 10 product descrip-
tions pj by following the procedure described in Section ?? and by using
qi, sim, CB and the static product database PB

(b) determine preferred product ppi := arg maxpj∈RSi
simU (qi, pj)

(c) generate feedback FBi := (ppi, (p̄1, . . . , p̄9)) where p̄l ∈ RSi \ ppi

(d) store feedback, i.e FB := FB ∪ FBi

(e) optional: learn feature weights from FB and update sim accordingly
(f) create a new case ci from qi and the product-ID of ppi

(g) optional: insert ci into CB by applying CBL1 or CBL2
(h) if i ∈ {5, 10, 25, 50, 100, 250, 500, 1000, 2500, 5000, 10000} then evaluate

the recommendation accuracy on query test set Qtest using simU

By different combinations of the optional learning steps 3(e) and 3(g) we
have generated the following five experiments:

SIM: Exclusively learning of feature weights by using the relative utility feed-
back FB which only expresses that the ppi are more useful than all other pj

contained in the respective result sets RSi.
CBL1/2: Exclusively applying case-based learning algorithms CBL1 (each ci

is stored) or CBL2 (ci is stored only if ppi 6= p1 holds) (cf. [?]).
SIM-CBL1/2: A-priori learning of feature weights using the feedback of the

first 5/10/25/50 queries and activation of CBL1/2 starting from query 51.

Each experiment was repeated with 5 different, a-priori randomly generated
training query sets. For the evaluation of the achieved recommendation accuracy
a static set of 250 randomly generated test queries Qtest was used to compute 4
different quality measures:

mpp-in-x: The average percentage of recommendation sessions, where the the-
oretically most preferred product mpp = arg maxpi∈PB simU (q, pi) was con-
tained in the first x ∈ {1, 3, 10} recommended products.

avg-mpp: The average position of mpp in the result sets.

4.3 Results

Figure ?? summarizes the results of the experiments SIM and CBL1/2. The
left chart shows the achieved improvements concerning the mpp-in-x measures.
For the exclusive optimisation of sim one observes a rapid ascent of all learning
curves where about 10 training queries are sufficient to achieve the maximal
improvements, e.g. for the mpp-in-10 measure an increase from 52% to 81%.

In contrast, the learning curves of the CBL experiments show much slower
improvements of the recommendation quality. However, after 1000-2500 training
queries case-based learning starts to outperform similarity measure learning and
achieves significantly better results after 10000 queries, e.g. for the mpp-in-1
measure over 40% (compared to about 29%). This is not surprising since the
case-based learning approach is able to learn the preferences encoded in the
local similarity measures of simU which cannot be modeled with feature weights.
However, surprisingly the differences between the CBL1 and CBL2 are very

0

10

20

30

40

50

60

70

80

90

100

0 5 10 25 50 100 250 500 1000 2500 5000 10000
#Training Queries

%

mpp-in-10 (SIM) mpp-in-3 (SIM) mpp-in-1 (SIM)
mpp-in-10 (CBL1+oFB) mpp-in-3 (CBL1+oFB) mpp-in-1 (CBL1+oFB)
mpp-in-10 (CBL1) mpp-in-3 (CBL1) mpp-in-1 (CBL1)
mpp-in-10 (CBL2) mpp-in-3 (CBL2) mpp-in-1 (CBL2)

0

2

4

6

8

10

12

14

16

18

20

0 5 10 25 50 10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

#Training Queries

A
ve

ra
ge

 R
an

k
of

 m
pp

avg-mpp (SIM) avg-mpp (CBL1+oFB)
avg-mpp (CBL1) avg-mpp (CBL2)

Fig. 4. Results of Experiments SIM and CBL1/2

small, even though the average number of stored cases is significantly lower in
the CBL2 experiment (6032 compared to 10000 in CBL1).

In order to be able to evaluate the impact of noisy feedback, we have per-
formed an additional CBL1 experiment with optimal feedback (CBL1+oFB)
by using mpp instead of pp in step 3(b). While the CBL1+oFB learning curve
shows continuous recommendation improvements from the beginning, in the re-
alistic experiments CBL1/2 the improvements achieved with less then 50 training
queries are quite small or even negative. This can be explained with overfitting
which will be amplified by the noisy training data in CBL1/2 and becomes more
obvious in the avg-mpp measure (right chart of Figure ??).

Figure ?? shows the results of the experiments SIM-CBL1/2. Here, the first
504 queries were used to exclusively learn the similarity measure in order to
improve the feedback quality for the subsequent case-based learning process.

The achieved results clearly show the advantage of the combination of both
learning techniques. On the one hand, a-priori optimisation of sim ensures much
faster performance gains compared with applying case-based learning alone. Now
only 250 training queries are sufficient to outperform the results of SIM. This also
leads to increased robustness against overfitting, since the negative impact of a
too small case base is compensated by the preliminary improvements achieved by
optimising sim. However, the avg-mpp curves clearly show that the overfitting
effect is still present (see peak at 100 training queries) as long as the case base
contains less than 50 cases5. Although overfitting is more prominent in SIM-
CBL2, in general the differences between SIM-CBL1 and SIM-CBL2 are almost
not recognisable. This is all the more surprising because the average number of
learned cases is further reduced (4930) compared to experiment CBL2.

4 according to the results of SIM even 25 queries would be sufficient
5 Note, that the first 50 queries were not used for learning cases.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 25 50 100 250 500 1000 2500 5000 10000
#Training Queries

%

mpp-in-10 (CBL1) mpp-in-3 (CBL1) mpp-in-1 (CBL1)
mpp-in-10 (SIM-CBL2) mpp-in-3 (SIM-CBL2) mpp-in-1 (SIM-CBL2)
mpp-in-10 (SIM-CBL1) mpp-in-3 (SIM-CBL1) mpp-in-1 (SIM-CBL1)

0

2

4

6

8

10

12

14

16

18

20

0 5 10 25 50 10
0

25
0

50
0

10
00

25
00

50
00

10
00

0

#Training Queries

A
ve

ra
ge

 R
an

k
of

 m
pp

avg-mpp (CBL1)
avg-mpp (SIM-CBL2)
avg-mpp (SIM-CBL1)

Fig. 5. Results of Experiments SIM-CBL1/2

On the other hand, the finally achieved recommendation accuracy is signifi-
cantly higher compared with the results that can be achieved with each learning
technique alone. This becomes particularly obvious in the avg-mpp quality mea-
sure. While each learning technique alone was able to decrease the average rank
of mpp from about 16 to 6, the combination of both approaches finally achieves
an average rank smaller 3. This would allow to decrease the size of the returned
result sets significantly, e.g. if displayed on mobile devices [?].

5 Related Work

The work that is most related to the approach presented in this paper are the
results of the DIETORECS project [?,?]. In this project, an advanced travel
recommendation system which combines case-based and CF-based techniques
has been developed. This system also uses the combination of a raw product
database and a case base containing so-called session-cases. These cases describe
recommendation sessions of the past, containing stated queries, selected travel
components, and also collaborative features.

The major difference compared to our work is the kind of use of the two
databases. In the DieToRec system, on the one hand, the product database is
used for an initial filter-based retrieval which requires conversational techniques
in order to obtain useful result sets. On the other hand, the case base is used
only to determine the ranking of the previously selected cases by using collabora-
tive techniques. Moreover, the system does not optimize the similarity measure
required to retrieve session-cases.

An early algorithm which integrates case-based learning with optimisation
of the required similarity measure is the CBL4 algorithm [?]. However, this
algorithm is designed for simple classification tasks and requires absolute utility

feedback [?] about the correctness of the solution proposed by the CBR system.
Hence, it is not applicable in the product recommendation scenario.

Other work which deals with learning of user preferences is described in
[?,?,?]. However, none of these approaches applies a combination of case-based
and similarity measure learning as proposed in this paper.

6 Conclusion and Future Work

In this paper we have presented a novel approach for learning customer prefer-
ences in content-based recommender systems. This approach extends the func-
tionality of existing similarity-based recommender systems by applying case-
based learning in combination with similarity measure learning. On the one
hand, optimising the similarity measure directly improves the accuracy of the
underlying k-NN classifier [?]. On the other hand, it also improves the quality
of the absolute utility feedback required by the case-based learner.

Although in this paper we have focused on product recommendation, the
approach is not restricted to this application scenario. It is also suited to learn
other types of user preferences, e.g. like occurring in knowledge management
domains where users are interested in getting advice about available knowledge
resources (e.g., documents, web sites, pictures) with respect to their individual
information needs [?].

The advantage of our approach is its broad applicability and its compatibility
with already successfully applied SBR systems. Moreover it allows an automat-
ical extension of the set of features used to characterise products or information
ressources and the incorporation of collaborative techniques. The results of the
presented experimental evaluation show the principal ability of our approach to
learn customer preferences from easy to acquire customer feedback.

For future work we are planning to perform a more realistic evaluation by
using a more sophisticated model of the customers’ preferences including all
kinds of preferences discussed in Section ?? and also nondeterministic behavior.
In such a scenario the learning task is generally more challenging, however, here
the case-based approach should also outperform solely learning of the similarity
measure more clearly due to its less restricted hypotheses space. In such an
extended evaluation it would also be interesting to investigate the impact of
learning additional product features.

We also plan to further improve our approach. On the one hand, advanced
voting strategies which incorporate statistical information about the learned
cases might allow to model the prior probabilities P (ωi) explicitly in order to
improve the recommendation accuracy. Moreover, this might also help to reduce
the risk of overfitting for small case bases. Generally, we plan to investigate
the potential of the generation and incorporation of statistical models into the
recommendation process with the increasing number of collected cases. On the
other hand, smarter learning policies than CBL2 (e.g. such as CBL3 [?]) can
help to reduce the size of the case base while maintaining or even improving
the recommendation accuracy. This is important in order to minimise retrieval

times. Another interesting issue would be the application of our advanced simi-
larity measure learning algorithm which allows an optimisation of local similarity
measures [?,?,?].

Last but not least, we want to investigate whether our approach is also suited
to be used in domains where products can customized [?,?].

Acknowledgements

This work was partially funded by the German Federal Ministry of Education
and Research (BMBF) under the IPeT (01 IW D03) project and by the fed-
eral state Rhineland-Palatinate under the project ADIB (Adaptive Provision of
Information).

