
APPROXIMATE SEPARABLE 3D ANISOTROPIC GAUSS FILTER

Oliver Wirjadi

Fraunhofer ITWM
Gottlieb-Daimler-Strasse

67663 Kaiserslautern, Germany
wirjadi@itwm.fraunhofer.de

Thomas Breuel

University of Kaiserslautern
Department of Computer Science

Erwin-Schrödinger-Strasse
67663 Kaiserslautern, Germany

ABSTRACT

Anisotropic Gaussian filters are useful for adaptive smooth-
ing and feature extraction. In our application, micro - to-
mographic images of fibers were smoothed by anisotropic
Gaussians. In this case, this is more natural than using their
isotropic counterparts. But filtering in large 3D data is very
time consuming. We extend the work of Geusebroek et al.
on fast Gauss filtering to three dimensions [1, 2]. We pro-
pose an approximate separable filtering scheme which con-
sists of three 1D convolutions. Initial experiments suggest
that this filter can outperform an FFT based implementation
when the kernel size is small compared to the size of the 3D
images.

1. INTRODUCTION

Image smoothing is usually performed using isotropic, i.e.
rotationally invariant, filters. Anisotropic filtering has, for
example, been applied to medical imaging [3] and line draw-
ings [2]. In our case, the task is to smooth micro - tomo-
graphic images of fibrous materials in order to pre-process
these 3D datasets.

We follow the approach in [1], who derived an exact
separable anisotropic Gauss filter in two dimensions. Their
result shows that a 2D Gaussian, oriented at an arbitrary
angle θ, may be constructed by convolving two one dimen-
sional Gaussians: The first one along the x-axis, the second
one along a line t who’s direction is dependent on the vari-
ances and direction of the kernel. Other authors have also
proposed approximations to separable filters in 2D [4, 5].

In the following, we will first derive an approximation
to a separable anisotropic Gaussian in three dimensions, cf.
Sec. 2, which is analyzed in Sec. 3. Section 4 describes our
preliminary image-domain implementation. Performance
measurements and comparison to an FFT based convolution
are given in Sec. 5.

2. DERIVATION

Our goal is to perform noise smoothing on fibrous struc-
tures, for which prolate ellipsoids are a reasonable model.
We propose to use a Gaussian smoothing kernel with one
major and two minor directions, thus defining its covariance
matrix Σ as

Σ =





σ2

M 0 0
0 σ2

m 0
0 0 σ2

m



 . (1)

This defines a Gaussian that is elongated along the x-
axis and has equal extent in the two remaining orthogonal
directions. As a consequence of the equal variance in y- and
z-direction, we can orient this kernel arbitrarily in 3D Eu-
clidean space by using just two rotations, ϕy and ϕz , about
the y and z axis, respectively. This yields the following co-
ordinate transformation.





u
v
w



 = Rz(ϕz)Ry(ϕy)





x
y
z



 = (2)





cosϕycosϕz sinϕz −sinϕycosϕz

−cosϕysinϕz cosϕz sinϕysinϕz

sinϕy 0 cosϕy









x
y
z





Combining (1) and (2), we can write the kernel g as

g(x, y, z;σ2

m, σ2

M , ϕy, ϕz) = Nu,v,w(0,Σ), (3)

where N denotes the density function of the normal dis-
tribution with mean and covariance parameters. For our
derivation, we need the following two results.

Lemma 1 (Separable Filters [2]) A convolution filter h is
separable, i.e. can be constructed from a sequence of convo-
lutions in lower dimensions, if and only if its Fourier trans-
form factorizes:

h(x, y, z) = hx(x) ∗ hy(y) ∗ hz(z) ⇔
Hωx

(ωx)Hωy
(ωy)Hωz

(ωz) = H(ωx, ωy, ωz),
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where H denotes the Fourier transform of h.

Lemma 2 (Fourier Transform of Gaussian [6]) The Fou-
rier transform of a Gaussian is proportional to a Gaussian
function,

F(N(a,A)) ∝ N(jA−1a,A−1).

Next, as in [2], we will use Lemma 2 to transform g and
rearrange terms in the Fourier domain such that the term
factorizes. From Lemma 1 we will then get a separable
Gaussian. Taking the Fourier transform of (3) yields

F(Nu,v,w(0,Σ)) = Nωu,ωv,ωw
(0,Σ−1)

= exp

(

−1

2
(ωu, ωv, ωw)Σ(ωu, ωv, ωw)T

)

= exp

(

−1

2
(σ2

Mω2

u + σ2

mω2

v + σ2

mω2

w)

)

(4)

The Gaussian in (4) factorizes in the u, v and w direc-
tions, but we would like to obtain a separation along the
original coordinate system directions. By expanding (4) and
grouping terms we get the following.

F(Nu,v,w(0,Σ)) =

exp

(

−1

2
a11ω

2

x − 1

2
a22ω

2

y − 1

2
a33ω

2

z

)

× exp (−a12ωxωy − a13ωxωz − a23ωyωz) , (5)

where

a11 = σ2

Mcos2ϕycos2ϕz + σ2

mcos2ϕysin2ϕz +

σ2

msin2ϕy

a22 = σ2

M sin2ϕz + σ2

mcos2ϕz

a33 = σ2

M sin2ϕycos2ϕz + σ2

msin2ϕysin2ϕz +

σ2

mcos2ϕy

a12 = (σ2

M − σ2

m)cosϕycosϕzsinϕz

a13 = (σ2

m − σ2

M )cosϕysinϕycos2ϕz

a23 = (σ2

m − σ2

M )sinϕycosϕzsinϕz (6)

All cross terms vanish from (5) when σ2

m = σ2

M , im-
plying that the function is separable along the original co-
ordinate axes in the isotropic case. Our goal is to rear-
range (5) in such a way that we get a filter that factorizes
into terms representing Gaussian kernels along lines in 3D
space. Quadratic expansion yields two Gaussians in x and z
direction, plus a remaining term, which we approximate by
a 1D Gaussian.

F(Nu,v,w(0,Σ)) =

exp

(

−1

2
a11ω

2

x − 1

2
a22ω

2

y − 1

2
a33ω

2

z

)

× exp (−a12ωxωy − a13ωxωz − a23ωyωz)

× exp

(

a2

12

a22

ω2

x − a2

12

a22

ω2

x +
a2

23

a22

ω2

z − a2

23

a22

ω2

z

)

= exp

(

−1

2
(a11 −

a2

12

a22

)ω2

x

)

× exp

(

−1

2
(a33 −

a2

23

a22

)ω2

z

)

× exp

(

−1

2
(
a2

12

a22

ω2

x + a22ω
2

y +
a2

23

a22

ω2

z)

)

× exp

(

−1

2
(2a12ωxωy + 2a13ωxωz + 2a23ωyωz)

)

≈ exp

(

−1

2
(a11 −

a2

12

a22

)ω2

x

)

× exp

(

−1

2
(a33 −

a2

23

a22

)ω2

z

)

× exp

(

−a22

2
(ωy +

a12

a22

ωx +
a23

a22

ωz)
2

)

=: F̃(N) (7)

Eq. (7) represents two convolutions along the x and z
axes, with their support determined by the variables’ coef-
ficients. The third exponential represents convolution with
a Gaussian along a line l that is not aligned with the xyz
coordinate axes. The parametric form of that line is given
by x = t [1,−a22/(a12 + a23), 1]

T , t ∈ R. An analysis of
this approximation will be given in the following section.

3. ANALYSIS

Next, we give an expression for the relative error introduced
by the approximation made above.

log(F̃(N)) − log(F(N)) = ωxωz(a13 −
a12a23

a22

) (8)

The error term in (8) shows that the above derived sep-
arable filter differs from the true anisotropic 3D Gaussian
by an exponential in the xz plane which is convolved with
the true function. When substituting the coefficients a12,
a23 and a13 into (8) we see three cases where log(F̃(N))−
log(F(N)) = 0: (1) σ2

m = σ2

M ; (2) ϕy = kπ/2, k ∈ N,
independent of the rotation about the z axis; and (3) ϕz =
π/2 + kπ, k ∈ N, independent of the rotation about the y
axis. We analyzed the error power, i.e. |F(N) − F̃(N)|2,
depending on the filter parameters and show results in Fig.
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Fig. 1: Maximum error power depending on rotation angles
(upper plot) and variances (lower plot).

1. The maximum error in (ωx, ωy, ωz) is plotted. For the
rotation error plot, parameters σ2

m = 5 and σ2

M = 10 were
fixed. For the variance error plot, parameters ϕy = π/4 and
ϕz = 3π/4 were set. A range about π/2 wide in ϕz di-
rection with very low error, as well as the tendency for the
error to decrease with increasing variance parameters can be
seen.

For efficient implementation of this separable filter, the
support of the 1D Gaussians should not be too large. To
analyze this we once again use Lemma 2 to transform (7)
back to image space.

g̃(x, y, z;σ2

M , σ2

m, ϕy, ϕz) = F−1(F̃(N))

∝ exp







−1

2

x2

a11 − a2

12

a22







∗ exp







−1

2

z2

a33 − a2

23

a22







∗ exp

{

−1

2

(y + a12

a22

x + a23

a22

z)2

a22

}

(9)

The standard deviations of the 1D Gaussians are thus
given by the square roots of the denominators in (9). Sim-
ilar to [2] we can find expressions for the standard devia-
tions in the special case σM = 2σm, ϕy = ϕz = π/4:
σx = σz =

√

11/8σm and σl =
√

a22 =
√

3σm. This
shows that in this selected case the standard deviations of
the 1D Gaussians of the proposed approximate filter grow
only linearly with the selected σm. The covariance matrix
of g̃ becomes diagonal for ϕz = 0, thus the peaks in Fig. 1.

From a computational perspective, the advantage of sep-
arable filters is the following: A non-separable 3D con-
volution requires one multiplication and one addition for
each voxel within the window. Suppose the mask size is

M × M × M , then we need O(M3) multiplications and
additions. In the separable case, we need to convolve along
lines only. This means that we need 3M additions and mul-
tiplications for the first line and equivalently for the two re-
maining lines. This leads to only O(M) multiplications and
additions per voxel for the separable case.

4. IMPLEMENTATION

Eq. (9) was implemented in C++. For good performance, it
is important that the locality of the image buffers in memory
matches the convolution directions in (9). The 1D convolu-
tions are performed using sliding windows. For the line t,
the third part of the filter, we use Bresenham’s line draw-
ing algorithm to get a line along which 1D convolutions are
performed. Line extraction is only necessary once since all
subsequent lines can be obtained by incrementing the coor-
dinates of that initial line. In all three dimensions, we use
reflective edge treatment. At the time of writing, the im-
plementation was not fully optimized, yet, with much room
for improvement in data structures and image voxel access,
which is most time consuming.

The kernel support is set to three standard deviations
in each direction. Parallelization of the algorithm was not
considered, but would be possible: The image may be di-
vided into a number of sections and the line convolutions
may then be calculated for each section separately. Termi-
nation of each stage (x, y and l) is required before proceed-
ing to the next phase. For the results presented in the next
section, parallelization is not relevant since the FFT is also
parallelizable and improvements should cancel one another
so that the relative results remain valid. Geusebroek et al.
also implemented a recursive IIR filter [7] which we did not
consider for this work.

5. RESULTS

We compared runtimes of our filter with the runtimes of an
FFT based convolution. For that, we used the fftw library in
single precision mode [8]. Runtimes of the non-separable
convolution were so far higher than those of either the sep-
arable or FFT based method that we did not include them in
the plot below.

Fig. 2 shows the runtimes of our method and the FFT
based convolution for a range of image and kernel sizes. In
the figure, mask sizes 25×13×13 and 13×7×7 correspond
to filter parameters 2σ2

m = σ2

M = 4 and 2σ2

m = σ2

M =
2, i.e. truncation of the Gaussian at 3 standard deviations.
Plotted are 10% trimmed mean values from 50 trial runs
each. The runtimes of the FFT vary significantly because of
more efficient FFT computation being possible for certain
image sizes. For the FFT runtimes, we measured forward
and inverse transform of the image plus multiplication in
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Fig. 2: Runtimes on an Intel Xeon 2.8 GHz processor: FFT
and our separable filter with two mask sizes for im-
age sizes 503, 553, . . ., 4503 voxels. Orientation:
ϕy = π

3
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3
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the Fourier domain, only, because the Fourier transform of
the kernel can be pre-computed.

As we mentioned in the previous section, our implemen-
tation is not fully optimized yet. Nevertheless, Fig. 2 shows
that the separable convolution scheme has the potential to
outperform the FFT implementation when filter size is small
compared to the number of voxels.

For the example application in Fig. 3, we manually se-
lected variance and orientation parameters to demonstrate
fiber smoothing. Local orientation estimation should be
used in the future to automatically select kernel orientations.
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