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Abstract
A comprehensive approach to product development involves evaluating all aspects of a product’s lifecycle,
from the initial design phase to its end-of-life. Design for Excellence assessment software integrated into a
Computer-Aided Design (CAD) environment helps to identify potential issues early, and ultimately avoid costly
mistakes during the development of new products. However, this software is predominantly bound to strict
rule-based reasoning, which does not account for subtle design constraints and provides no solutions to detected
problems. The research project XDP-Opt addresses these problems by developing an Interactive Design Decision
Support System. It utilizes a combination of federated foundation models and Case-Based Reasoning to discover
problematic design features and suggest solutions for these based on historical CAD data. This paper gives a
literature overview on the problem the project is concerned with and shows the core concept and the components
of the AI core of the proposed support system.
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1. Introduction

Global megatrends are reshaping manufacturing and, consequently, the process of designing and en-
gineering new products, commonly referred to as New Product Development (NPD). These trends
encompass societal, environmental, technological, and political challenges [1]. Since NPD is a highly
experience-driven activity, companies are particularly vulnerable to knowledge loss within the work-
force. Therefore, demographic change, especially in developed regions, poses a major challenge for
manufacturing businesses [2]. Product designers must take the entire product lifecycle into account,
relying on expertise in production capabilities, customer needs, and prior designs. Strong design skills
are typically acquired through years of experience. To prevent knowledge drain, companies must
capture, model, and transfer this expertise to future designers, either through structured training or
real-time support systems [3]. The sustainability transformation is further disrupting NPD by altering
product requirements, production processes, and resource usage. At the same time, rapid technological
developments demand shorter improvement and validation cycles. As a result, product designers must
be supported in optimizing their design and engineering workflows.

Design for Excellence (DfX) assessments integrated into development environments can specifically
support inexperienced product designers by helping them identify design flaws early and accelerate
design iterations [4]. Current DfX software primarily relies on rule-based validation methods. While
these rules are effective at identifying certain design constraints, they often fall short in capturing
more nuanced limitations or complex factors arising from real-world manufacturing and assembly
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processes. Moreover, such tools typically lack the capability to suggest viable design modifications,
leaving engineers to address issues manually, even in cases where existing solutions could be adapted.

This paper introduces the research project Experience-Based Design Process Optimization for In-
dustrial Manufacturing (XDP-Opt), which addresses the aforementioned challenges by developing an
Interactive Design Decision Support System (IDDSS) to support product designers in adhering to Design
for Manufacturing (DfM) principles. The system validates designs within the Computer-Aided Design
(CAD) environment using learned manufacturability assessments and suggests mitigation strategies for
problematic design features by identifying similarities to previously resolved design issues. These are
inferred from historical CAD data. The paper outlines the project’s starting point based on existing
literature and presents the conceptual foundation of the IDDSS, with a focus on its core logic. It also
discusses the technological foundations necessary for the implementation of such a system. The guiding
research question is: How can a conceptual framework for an interactive design decision support system
be developed to enhance manufacturability validation and facilitate knowledge reuse in CAD-based
product development processes? This work introduces the system’s design, considers its potential
benefits, and sets out its underlying principles, while postponing detailed empirical evaluation and
methodological studies to future work.

The structure of the paper is as follows: Section 2 reviews foundations for the projects initial point;
Section 3 presents the conceptual design of the IDDSS; Section 4 examines the suitability of federated
foundation models and Case-Based Reasoning (CBR) as the system’s core technologies; Section 5
discusses potential impact and validation approaches; and Section 6 concludes the paper.

2. Foundations

In contrast to traditional knowledge-driven rule-based frameworks, the integration of data-driven
Artificial Intelligence (AI) and machine learning into product design and manufacturability assessment
offers greater flexibility and adaptability. Accordingly, this section reviews not only the current state
of DfX and manufacturability validation (Section 2.1), but also explores the application of foundation
models in product design reasoning (Section 2.2) and AI-driven decision support in product development
(Section 2.3). Finally, Section 2.4 highlights unresolved challenges and identifies opportunities for future
research.

2.1. Design for Excellence and Manufacturability Validation

DfX is an integrated approach for NPD that emphasizes the consideration the impact of design decisions
in all following product lifecycle phases [5]. The goal is to drive an integrated design approach in
which design adaptations are conducted as early as possible during the development phase of the
product lifecycle. This is motivated by the steadily increasing cost of changes during NPD [6]. Popular
dimensions of DfX are manufacturability, assembly, inspection, disassembly, cost and many more [5].

DfM focuses on ensuring that a product can be manufactured efficiently and economically, while
maintaining quality standards. Traditional DfM methods rely on rule-based design guidelines that
help engineers assess manufacturability constraints early in the design phase [7]. Predictive man-
ufacturability assessment is the flip side of DfM by simulating and evaluating the product design’s
manufacturability based on predefined heuristics or process-specific constraints. These methods have
been widely adopted in industries such as aerospace, automotive, and consumer electronics [4].

More and more recent work also includes the utilization of machine learning as surrogate models for
extensive process simulations to estimate manufacturability [8]. These models offer the capability to
substitute time- and cost-intensive simulations whenever a deterministic and precise solution is not
required. Also, they can infer subtle manufacturability constraints from historical data wherever they
cannot simply be formulated as rules [4].



2.2. Foundation Models for Product Design Data

Foundation models have revolutionized various domains, like marketing, software development or
customer service, by enabling deep learning systems to generalize across diverse tasks [9]. While their
success is well documented in natural language processing and computer vision, their application to
product design data remains an emerging field [10]. This encompasses CAD models, tolerances, material
properties, and manufacturing constraints.

The authors in [11] performed an exploratory analysis of the potential applications of foundation
models in CAD workflows by focusing on purely unimodal text-based and outputs. They identified
potential for the generation of CAD files from text, design space exploration in variant generation,
assessing manufacturability options, manufacturability design validation and correction, generating
instructions for manual assembly as well as machine code and multi-objective design evaluation.

Some of these have already been explored in other works [12, 13, 14]. Other publications also
explored the capabilities of foundation models in natural language processing for querying and question
answering on CAD models [10, 15] or model autocompletion [16].

The authors in [11] also identified several risks that come with the use of these models for CAD
workflows, such as job displacements, intellectual property conflicts, reliability and accountability
issues, data privacy and more.

2.3. AI in Supporting Design Decisions in Product Design

AI has emerged as a transformative tool in product design, particularly in supporting decision-making
throughout the design process. By leveraging advanced computational techniques, AI enhances various
stages of product development—improving efficiency, fostering creativity, and promoting sustainability.
A growing body of research has investigated the integration of AI into product design and development.
AI-driven approaches have been successfully applied in areas such as generative design [17] and
recycling-oriented product development [18], leading to more effective and innovative design outcomes.
The literature highlights several methodologies, including multi-agent systems [19], model-based design
[20], and probabilistic inference [21], as means to support and optimize design processes. Furthermore,
applications of big data analytics [22], design automation [23], and intelligent tutoring systems [24]
have been explored in both product development and design education contexts.

A particularly relevant AI approach for supporting design decisions is the use of Decision Support
Systems (DSS). Ming et al. underscore the increasing significance of AI-based DSSs in contemporary
product design, highlighting their potential to tackle complex challenges, foster innovation, and enhance
decision-making efficiency [25]. Research in this domain focuses on developing DSSs that aid designers
in making informed decisions and generating creative solutions. Commonly employed techniques
include clustering [26], neural networks [26], fuzzy set theory [27], and dynamic programming [28].

Despite notable advancements, current approaches to AI-based decision support systems often
overlook the integration of experiential knowledge, which refers to insights gained from practical,
hands-on experience. This omission is particularly evident in the early stages of design, where decisions
are typically intuitive and highly context-dependent. In both academic research and tool development,
predominant strategies emphasize formal methods, abstract models, and data-intensive techniques.
However, these approaches are seldom adopted in industrial practice due to their limited applicability,
high data demands, and misalignment with the way designers typically work, as they rely heavily on
experience, intuition, and tacit knowledge [29]. CBR has been proposed as a promising approach to
address this gap, referring to a problem-solving paradigm that reuses past cases or experiences to find
solutions for new problems [30]. In product and architectural design, CBR leverages prior cases to
support decision-making in new, context-specific situations. For example, in architecture, CBR has
been successfully applied to tackle novel design problems based on experiential knowledge, and these
methods can be adapted to product design [31]. Other studies explore how CBR can be applied in
structural design by conceptualizing the process as the recall and adaptation of past design cases to meet
constraints in new contexts [32]. In the field of new product development, research has investigated



how past experience can enable and support decision-making in the early stages. In this context, a
case represents a product development situation, including contextual factors, decisions made, and
outcomes. Past cases serve as a knowledge base, allowing designers to address similar challenges more
efficiently. These cases are typically represented in an attribute-based structure with key-value pairs,
which facilitates systematic retrieval and adaptation [29].

2.4. Research Gaps

Although recent years have seen significant progress in supporting product designers, several issues
remain unresolved. For instance, the use of foundation models in design verification has so far received
insufficient attention in research. DFM assessments are often limited to the data available within
individual companies, highlighting the need for mechanisms to share experience and thus enable more
generalized assessments. Moreover, recent findings indicate that experience-based support systems are
more suitable for real-world design environments. A major challenge in developing experience-based
decision support systems is the representation and structuring of DfM knowledge in a reusable case
base, which is essential for effective experience transfer. Closely related is the retrieval of relevant
design cases within CAD environments, including technical drawings, where efficient mechanisms
for searching complex geometries and design features are still underdeveloped. Another critical issue
is the cold start problem, as many systems require extensive historical data to provide meaningful
recommendations and currently lack strategies to operate effectively under data-sparse conditions. In
addition, IDDSS must provide explainable recommendations that allow product designers to understand
and trust the reasoning behind the system’s suggestions. Despite these needs, practical frameworks
for systematically capturing and utilizing experiential knowledge within organizations remain limited
[29].

3. XDP-Opt Concept and Architecture

The challenges, outlined in Chapter 2.4, are addressed by the research project XDP-Opt, which proposes a
support system for NPD. It is based on an iterative design loop, as depicted in Fig.1, which is derived from
the V-model for system development [33]. It also aligns with the workflow of established engineering
change management practices, as commonly implemented in product lifecycle management systems
[34].

The primary goal in XDP-Opt is to strengthen the early stages of the product development process
within existing industrial manufacturing environments through a hybrid IDDSS. This support system
consists of two components. A Design Validation Model reviews the current state of the design project
and detects problematic design decisions, which represent violations of best practices. A Design
Recommendation System then suggests solutions to these problems.

The IDDSS integrates experiential knowledge from product designers and historical data from
the iterative design loop. While the product designer, as the primary user, interacts with the CAD
environment, the IDDSS imports the current state of a design project (consisting of CAD models,
technical drawings, material allocations, etc.) from the CAD system. Firstly, these artifacts from the
design process are assessed by the Design Validation Model, that represents design constraints. If
violations against these constraints are detected, this component generates problem descriptions that
are submitted in the form of standardized Problem Report (PR)s to a product lifecycle management
system. These describe the violation itself, its reference location on the part, and rate the severity of the
violation.

The Design Recommendation System imports these PRs and suggests possible solutions to the user.
These solutions are based on solutions to similar problems from the past, and hereby leverage expert
knowledge and experience. The Design Recommendation System exports the solutions in the form of
standardized Engineering Change Request (ECR)s linked to the corresponding PRs. An ECR contains
mainly a description of a proposed solution to its related PR specifically adapted to the concerned part.
The ECRs are then implemented by the user in the CAD system. Important to note here is that the
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Figure 1: Iterative design cycle and the design phases that will be supported by the system.

Figure 2: Components and processing sequence within the XDP-Opt concept. The process represents the
sequence in engineering change management [34].

system makes the PRs and ECRs as suggestions, and the user needs to accept or decline the generated
suggestions. Fig. 2 shows the total sequence and the components as parts of the IDDSS. The whole
validation and change process sequence can be triggered by the user at so-called decision points. These
represent either freely chosen points triggered by the user during the creative design phase (e.g., for
reassurance, inspiration, etc.) or mandatory points during the NPD process (e.g., in a phase-gate process).
The components are explained in more detail in the following.

Product Designer: The product designer specifies a drafted product architecture into an initial
design, which is verified in the following to ensure manufacturability among other requirements.
Problematic or suboptimal design decisions and features are identified, and individual solutions are



defined and incorporated into the product design. This initiates the design review phase in the next
iteration. Fig. 1 illustrates the proposed system. It would support this iterative design approach during
the review phase to detect suboptimal design decisions and the solution finding phase to adapt successful
solutions from experience.
Design Validation Model: The task of the Design Validation Model is to identify issues with the

adherence to best practices by processing the current state of the design project. These best practices are
often times soft constrains to design that represent preferences of the company, for example regarding
preferred tools. Thus, the model must be flexibly adaptable to new individual preferences and also
notice subtle problems arising from the interaction of different problematic decisions.
Design Recommendation System: The recommender system consists of two main modules:

the AI-based Product Design Space Exploration (AI-PDSE) and the Experience-Based System. The
Experience-Based System module processes PR and proposes multiple solution options in the form
of ECR, based on solutions to similar issues encountered in the past, while also leveraging associated
information such as CAD files, technical drawings, and product requirements. Users can either accept
or reject these proposals, and their feedback is used to refine and improve future recommendations.
To address the cold start problem, when no prior knowledge about solutions is available, the AI-PDSE
module is used. It derives the product design space from the domain model and generates new potential
solutions for the identified problems. This component dynamically adapts to the design environment,
offering possible actions and recommendations. It highlights the implications of design decisions and
suggests innovative options beyond those found in historical experience.

4. Suitable Core Technologies

The implementation of the XDP-Opt architecture requires the use of advanced AI technologies tailored
to the needs of design validation and recommendation. Given the complexity of modern design
processes and the sensitive nature of industrial design data, it is essential to apply methods that support
multimodal data processing, knowledge reuse, and privacy-preserving collaboration. To address these
challenges, the system incorporates three key technological approaches: foundation models, Federated
Learning (FL), and CBR. Each of these technologies contributes in a specific way to the functionality
and performance of XDP-Opt. This section introduces these selected technologies, outlining their roles
within the system and discussing their respective strengths, limitations, and relevance in the context of
NPD.

4.1. Design Validation Model

For the realization of the concept, a suitable logic must be found to power the individual components.
Similar to comparable related works, we decided to use a foundation model for the Design Validation
Model. It offers the necessary flexibility and multimodal processing capabilities to ingest a complex
design project. Fine-tuning it to the specialist task of DfM validation on CAD data, promises to be a
highly data-intensive task. However, the availability of this data, is one of the main drawbacks of this
approach, as product-related CAD data and manufacturing know-how belong to the most sensitive
intellectual property for a manufacturing company. One privacy-preserving way to utilize a larger
amount of data is FL.

Unlike centralized methods, FL allows multiple clients, such as mobile devices or organizations, to
collaborate in model training without sharing raw data [35]. Instead, model parameters or gradients
are shared during between the clients, who independently train on their own subset of the total data.

The increasing interest in FL for applications in fields such as healthcare, finance, and IoT, where
data privacy is crucial, [35] shows that it is a considerable solution for the Design Validation Model.
Hegiste et al. even discuss FL for very sensitive data from industrial optical product quality inspection
in manufacturing [36].

In the case of XDP-Opt, the utilized data consists on the one hand of artifacts from the design process,
such as the product geometry, material information or other dimensioning information. On the other
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Figure 3: Training the DfM expert model in a cross-silo FL setup.

hand, manufacturing experts deliver problem descriptions, that have been traced back to problematic
design specifications. This information is concatenated on the company level (in e.g. product lifecycle
management systems) and used to fine-tune a Design Validation Model locally. These local models can
be merged with other models to a global model with better generalization capabilities. This global model
is then again distributed among all participants of this FL network. Fig. 3 illustrates the utilization of FL
for the Design Validation Model and shows the affected data.

In the scope of the project, the data is sourced from the product development (variants of a model
truck) at the industrial testbed of SmartFactoryKL and generated at scale in experiments involving
students of the mechanical engineering department of the University of Kaiserslautern-Landau (RPTU).
The focus lies primarily here on 2D CAD data as it carries all information necessary for production and
is the usual form of technical documentation submitted by product designers to manufacturing. Thus,
the project attempts to fine-tune a Vision Language Model for the task of analyzing these 2D technical
drawings. The so sourced data will suffice for a proof-of-concept of the local-finetuning. It can be
artificially split into different clients to validate the up-scaling correlation of the model performance and
the utilization of complementary data using FL. The implementation of the federated model fine-tuning
will be conducted using the FL-framework Flower [37].

Nonetheless, applications in FL face several challenges, such as communication overhead [38] and
heterogeneity [39]. Notably, the model updates might still carry recoverable information about the
original training data [40].

4.2. Design Recommendation System

One promising approach to leveraging experiential knowledge in recommender systems is CBR, as
already mentioned in the previous chapter. Such systems support design decisions by reusing knowl-
edge stored in structured cases, making them particularly suitable to bridge the gap between formal
AI methods and the intuitive practices of designers. At their core lies a repository of previous cases
whose solutions are adapted to address new problems [30]. This paradigm encompasses both system
development and a wide range of practical applications, underscoring its versatility and cross-domain
relevance [41]. The reasoning process, as described by Aamodt and Plaza [42], follows four main steps:
retrieve, reuse, revise, and retain. The system first identifies the most relevant past cases based on



a similarity metric, applies their solutions to the current problem, modifies them if necessary, and
finally stores the validated solution for future use. Unlike traditional rule-based systems, this approach
addresses problems by referencing specific past experiences rather than relying on a comprehensive
set of formal rules. This makes it particularly well-suited for domains without clear computational
or mathematical models. In NPD, where design decisions are often complex, uncertain, and poorly
structured, experiential reasoning provides a practical alternative to classic knowledge-based methods
[29]. Systems based on this principle have been applied in numerous fields, including help desks,
customer service, e-commerce recommender systems, medical diagnosis, image processing, law, tech-
nical troubleshooting, design, planning, computer games, and music [30]. However, few studies have
addressed the reuse of design and management decision-making experience in the context of NPD [29],
and although literature exists on the application of CBR in product design, the focus has not been on
Design for Manufacturing (DfM) knowledge. In particular, there is a need for retrieval of CAD models
and technical drawings without the necessity of extensive prior classification. Nevertheless, the context
of industrial manufacturing imposes unique requirements. Early design stages frequently lack sufficient
historical knowledge, making a purely experience-driven approach insufficient. To overcome this
limitation, the XDP-Opt framework integrates an AI-based Product Design Space Exploration (AI-PDSE)
module capable of generating novel design solutions beyond the existing case base. Potential techniques
for this include AI planning [43], constraint-based reasoning [44], and generative AI [45]. In complex
and uncertain domains where tacit knowledge and subjective reasoning are central, the usability of
AI-driven tools depends not only on the quality of their solutions but also on the transparency of their
reasoning. A key advantage of experiential reasoning lies in its analogy-based nature, which enables
clear explanations of how solutions are derived. This transparency makes the approach particularly
suitable for supporting explainable AI in design contexts, where trust and comprehensibility are essen-
tial. The XDP-Opt project aims to build on this strength by embedding analogy-driven reasoning into
its framework to provide interpretable, user-centered decision support. Unlike many high-performing
AI systems that operate as opaque black boxes [46], this approach inherently clarifies which features
influenced similarity assessments, why particular solutions were retrieved, and how prior experience
informs new recommendations. Unlike traditional applications of CBR in domains such as architecture,
where cases often consist of static geometric designs or architectural patterns, the adaptation of CBR in
XDP-Opt addresses the dynamic and highly iterative nature of CAD-based product development in
industrial manufacturing. The cases in our approach integrate multimodal data—including parametric
CAD models, material properties, and manufacturability constraints—rather than purely visual or
textual information.

5. Discussion

The concept describes a novel approach to DfM analysis that is integrable into modern CAD-based
design workflows. The proposed IDDSS possesses several advantages over traditional rule-based DfM
systems. Firstly, the system can adapt to complex design constraints and historical manufacturing data,
allowing more nuanced manufacturability assessments. There the need for more flexibility is already
underscored in [4]. This also enables the IDDSS to be flexible enough to incorporate other DfX aspects,
from later lifecycle stages, like disassembly, remanufacturing or inspection in accordance to [5]. In
extension to this, the use of FL allows for cross-company utilization of manufacturability data while
preserving data privacy, which could lead to a more generalized and robust assessment model. The
integration of CBR enables the reuse of past design solutions, therefore capturing the knowledge and
learnings from past mistakes. Thus, the approach can contribute to reducing the design iteration time
and improving decision-making.

Nonetheless, the concept also bears a few challenges with it. High-quality, diverse datasets, need to
be collected to fine-tune a foundation model and feeding the CBR system. This requires feature-based
design data formats that concentrate the essential information into a compact form. It also requires the
creation of a new information model to capture the solution of design problems during iteration. This



may pose a challenge when filling the case base for the CBR system. It needs to be engaging for the user
to give a good description of a new case after solving a problem, so the case base is steadily growing.
Furthermore, to enable an effective and efficient retrieval of relevant design cases, advanced semantic
similarity methods must be implemented. In addition, the AI-PDSE component must be able to propose
novel product design solutions that go beyond retrieval. Using generative models conditioned on the
design constraints and goals specified by the user, the system can suggest alternative solutions that
comply with technical, regulatory, and user-defined requirements. This requires a tight integration of
knowledge representation. In addition, data from production and NPD are among the most sensitive
types of data in a manufacturing company. As a result, companies might be hesitant to share even the
model weights during federated learning. Thus, risks of data leakage through model inversion must be
precisely characterized and weighted against the potential gains of a collaboration.

6. Conclusion

This paper introduced the core concept of the XDP-Opt project, which addresses manufacturability
validation challenges in CAD-based NPD through an IDDSS. The proposed system integrates a fine-
tuned foundation model to detect design flaws, a CBR system for adaptive solution recommendations
with understandable explanations of how decisions are made, and a FL approach for collaborative
model training while preserving data privacy. To validate the concept, a prototype will be tested in
the industrial truck manufacturing test environment at SmartFactoryKL. The project aims to advance
foundation models for product design data, explore cross-company collaboration via FL, and evaluate
CBR’s ability to adapt past solutions to new design challenges. XDP-Opt aims to demonstrate the
potential of data-driven and experience-based DfM over traditional rule-based approaches.
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