
The Lookahead Limitation:
Why Multi-Operand Addition is Hard for LLMs

Tanja Baeumel1,2,3 Josef van Genabith1,2 Simon Ostermann1,2,3

1German Research Center for AI (DFKI)
2 Saarland University

3Center for European Research in Trusted AI (CERTAIN)
tanja.baeumel@dfki.de

Abstract

Autoregressive large language models (LLMs)
exhibit impressive performance across various
tasks but struggle with simple arithmetic, such
as additions of two or more operands. We show
that this struggle arises from LLMs’ use of a
simple one-digit lookahead heuristic, which
forms an upper bound for LLM performance
and works fairly well (but not perfect) for two-
operand addition but fails in multi-operand
cases, where the carry-over logic is more com-
plex. Our probing experiments and digit-wise
accuracy evaluation show that the evaluated
LLMs fail precisely where a one-digit looka-
head is insufficient to account for cascading
carries. We further validate our findings via a
targeted circuit intervention, revealing a spe-
cialized pathway responsible for direct carry
detection from the next digit position. We an-
alyze the impact of tokenization strategies on
arithmetic performance and show that all in-
vestigated models, regardless of tokenization
and size, are inherently limited in the addition
of multiple operands due to their reliance on a
one-digit lookahead heuristic. Our findings re-
veal fundamental limitations that prevent LLMs
from generalizing to more complex numerical
reasoning.

1 Introduction

Large language models (LLMs) demonstrate re-
markable performance across a wide range of tasks
(Bai et al., 2023; Team et al., 2024; Guo et al.,
2025), yet struggle with simple arithmetic tasks,
such as the addition of multiple or large numbers
- sometimes even after finetuning (McLeish et al.,
2024; Shen et al., 2023; Zhou et al., 2023, 2024a).

The difficulty LLMs face in arithmetic tasks
stems from the mismatch between the left-to-right
nature of autoregressive language modeling and
the right-to-left structure of standard arithmetic al-
gorithms. Conventional addition methods process
numbers digit by digit from right to left, propagat-

Figure 1: An addition of two three-digit operands.
LLMs rely on a one-digit lookahead when performing
addition. If a relevant carry emerges at a later stage in
prediction, they fail to account for it, leading to errors
in earlier generated result digits.

ing carries, while LLMs generate numbers sequen-
tially from left to right without explicit intermediate
calculations. This raises the question: What strat-
egy do LLMs use to handle this misalignment in
addition?

In this work, we show that pretrained LLMs rely
on a simple heuristic that enables high accuracy in
two-operand addition (e.g., 147 + 291 = 438) but
produces systematic and predictable error patterns
error patterns. This heuristic attempts to bridge
the gap between the left-to-right generation and the
resulting need to ’look ahead’ to account for carries
from less significant digits. Rather than performing
an full lookahead to anticipate cascading carries,
LLMs rely on a single-digit lookahead heuris-
tic to estimate carries. We demonstrate that this
lookahead depth is limited to one digit across all
pretrained models investigated. While this strategy
works reasonably well for two-operand addition, it
deteriorates substantially with multiple operands
where cascading carries are more frequent, due to
relevant digit combinatorics (henceforth general-
ized as multi-operand addition for any number of
operands > 2).

Figure 1 illustrates a characteristic failure of this
heuristic: because the model can only look one
digit ahead, it bases its prediction on the middle
digits (e.g., 4 + 5 = 9), incorrectly infers that no
carry will occur, and consequently predicts the first



result digit as 3, failing to propagate the carry from
the units position.

To test whether the heuristic accurately describes
the strategy used by LLMs to solve addition from
left to right, we present results from four state-of-
the-art LLMs with different tokenization strategies
(single digit and multiple digit) for numerical out-
puts. Using carefully curated datasets, digit-wise
accuracy metrics, and probing techniques, we show
that errors emerge precisely in cases where a one-
digit lookahead is insufficient to handle cascading
carries.

Finally, we identify a circuit that contributes in-
formation about direct carries from the next digit
position to the current generation step, and causally
verify its role through targeted interventions, con-
firming the presence of single-digit lookahead.

Our findings show that all investigated LLMs
are constrained by a limited lookahead heuristic,
independent of tokenization strategy and model
size, revealing a fundamental algorithmic limitation
in their arithmetic reasoning.

Our contributions are as follows:

• Evaluation of Addition Capabilities: We
show that LLMs fail on multi-operand addi-
tion (Section 2) and then systematically evalu-
ate the capabilities of LLMs on two-operand
addition tasks via probing (Section 3).

• Heuristic Discovery: Inspired by results of
the evaluation, we formalize left-to-right addi-
tion in LLMs for multi-operand addition with
a simple heuristic that uses a lookahead of one
for left-to-right addition (H1, Section 4).

• Empirical Validation: We demonstrate that
H1 is fragile in multi-operand addition and
explain the performance decline as a function
of the increasing number of operands in large
comprehensive addition experiments. We find
that model performance aligns precisely with
the predicted limitations of H1 (Sections 5
and 6). We find that H1 holds independently
of tokenization strategies (Section 7).

• Carry Circuit Discovery and Causal Verifi-
cation: We identify a circuit that contributes
information about direct carries from the next
digit position to the current generation step
and confirm its causal role through targeted
interventions, thereby providing mechanistic
evidence for single-digit lookahead.

2 LLMs Struggle with Multi-Operand
Addition

We now define the data and models used in this
work and demonstrate that LLMs fail on multi-
operand addition via prediction accuracy.

2.1 Models and Data
Models. We compare Mistral-7B (Jiang et al.,
2023), Gemma-2-2B and Gemma-2-9B (Team
et al., 2024) and Meta-Llama-3-8B (Grattafiori
et al., 2024; AI@Meta, 2024) as they employ dif-
ferent tokenization strategies for numerical outputs:
While Mistral and Gemma-2 exclusively employ a
single-digit tokenization strategy for their numeric
input and generated output (e.g., input = [’1’, ’4’,
’7’, ’+’, ’2’, ’5’, ’5’, ’=’], output = [’4’, ’0’, ’2’]),
Llama-3 employs a multi-digit numeric tokeniza-
tion strategy (e.g., input = [’ 147’, ’ +’, ’ 255’, ’
=’], output = [’ 402’]), typically favoring numeric
tokens of length 3.

Data. For all experiments in this paper, we com-
pile a range of datasets containing simple arith-
metic task prompts of the form 147 + 255 = .
We create a dataset for each addition task rang-
ing from 2-operand to 11-operand addition, where
each operand is a triple-digit number between 100
and 899. Each of the 10 datasets contains 5,000
unique arithmetic problems, both in a zero-shot and
one-shot setting. In the zero-shot setting, an exam-
ple for a 2-operand addition prompt is “147 + 255
= ”. An example for a 4-operand addition prompt is
“251 + 613 + 392 + 137 = ”. Our one-shot prompt
template follows the scheme q1 r1; q2 , e.g. “359
+ 276 = 635; 147 + 255 = ”, where q1 is a sample
query from the same dataset and r1 is the correct
result of the addition task in q1. q2 is the query
containing the addition task to be solved.

In the remainder of the paper, we use sn (with
n ≥ 0) to denote the result digit generated at digit
position 10n. For example, in “147 + 255 =”, with
expected output 402, s2 = 4, s1 = 0, and s0 = 2.

2.2 LLM Accuracy on Addition Tasks
Figure 2 illustrates the significant decline in perfor-
mance of Mistral-7B, Gemma-2-2B, Gemma-2-9B
and Llama-3-8B in multi-operand addition as the
number of operands increases. This drastic de-
crease highlights the inability of these models to
generalize effectively to addition tasks involving
a higher number of operands, despite their strong
overall capabilities.



Figure 2: Accuracy of Mistral, Gemma-2 variants and
Llama-3 on multi-operand addition of triple-digit num-
bers, in a zero- and one-shot setting.

3 Probing LLMs on Digits in
Two-Operand Addition Tasks

Solving arithmetic tasks presents a fundamental
challenge for LLMs, as they generate text from
left to right, while addition requires a right-to-left
process due to carry propagation from the least sig-
nificant to the most significant digit. For instance,
predicting the first result digit s2 = 4 in “147 +
255 = ” requires the model to anticipate that a carry
originating from s0 cascades through s1 to s2. Ro-
bust left-to-right addition thus requires a lookahead
spanning all result digits, raising the question: Do
LLMs internally represent future result digits when
predicting s2 - and if so, how far can they “look
into the future”?

To answer this question, we probe whether mod-
els accurately encode future result digits s1 or s0
while generating s2. Building on Levy and Geva
(2024), who show that, irrespective of a model’s nu-
meric tokenization strategy, LLMs internally repre-
sent numbers digit-by-digit in base 10, we analyze
digit-wise probing accuracy on the two-operand
addition dataset described in Section 2.1.

3.1 Methodology and Experiments

Data. We split the two-operand addition dataset
(see Section 2.1) into train (n=4500) and test
(n=500) for the probing experiments. The two-
operand addition dataset is designed such that cor-
rect results for the addition tasks are triple-digit
numbers between 200 and 999. We use the zero-
shot prompt setting for the probing experiment.

Probing Setup. Our goal is to determine which
result digits are available at the prediction step of
s2. We thus train probes to predict the result digits
s2, s1, and s0 from hidden states of the model

Figure 3: Probing accuracy of individual result digits
as predicted by the hidden states of Mistral, Gemma-2-
9B and Llama-3. For two-operand, zero-shot addition
prompts.

during the prediction step of s2.
Specifically, we train one-layer linear probes to

predict individual digit values of the results from
the hidden state of the last token at each model
layer. Probes are trained on the train split of the
two-operand addition dataset and evaluated on the
test split. We train separate probes to predict indi-
vidual result digits s2, s1, and s0, for all models at
all layers.1

3.2 Results

The probing accuracy of individual result digits is
shown in Figure 3. Gemma-2 and Mistral with their
digit-wise tokenization internally represent only s2
with high accuracy. In contrast, there is a high
probing accuracy across all result digits in Llama-
3. This is due to the fact that Llama-3 tokenizes
numbers into 3-digit numeric tokens: It is forced
by its tokenization to generate all result digits (s2,
s1, and s0) in one step as a single token.

The single-digit tokenization models Mistral and
Gemma-2 exhibit a low probing accuracy on s0
(< 0.24) in all layers. Recall that s0 is probed from
the models’ hidden states while they autoregres-
sively generate s2. We interpret the lack of internal
representation of s0 as evidence that these models
disregard the potential influence of s0 (including
any cascading carry) when generating s2.

In line with this, Gemma-2 and Mistral show
notably higher probing accuracy on s1 compared to
s0, when probing from the models’ hidden states as
they generate s2. We thus conjecture that the single-
digit-token models seem to recognize the potential

1We choose a low temperature of 0.1 during model infer-
ence to ensure deterministic and consistent outputs, reducing
randomness in token generation and improving the reliability
of numerical calculations.



influence of the carry resulting from the sum of the
101 operand digits. Simply put, generating the digit
at 102 might employ a lookahead of one digit to the
101 intermediate result. Based on this observation,
we formulate a hypothesis for a heuristic used by
LLMs:

H1: LLMs employ a look ahead of one digit to
generate the current digit of an addition task.

H1 would explain why LLMs cannot effectively
represent each necessary digit of the result dur-
ing generation, making it difficult to anticipate
later carry values correctly. We first formalize H1,
which explains the patterns observed in Figure 3,
in the next Section, and then verify the fit of H1
with empirical addition outcomes generated by the
models in Sections 5, 6, and 7.

4 The Carry Heuristic of LLMs

Since LLMs generate numbers from left to right,
they must anticipate whether a carry from later
digits (with lower bases further on in the result)
will impact the current digit they are generating. In
this section, we evaluate the maximum accuracy
LLMs can achieve in addition tasks, assuming they
rely on H1, given the limited lookahead of one
digit.

4.1 Formalization of Left-to-Right Addition
We first formalize a recursive algorithm for solving
addition of k operands – where each operand is a
base 10 integer – in a left-to-right manner.
We define:

• k: Number of operands.
• n1, n2, . . . , nk: Operands, each represented

as digit sequences in base 10, with 0 ≤
i < d, where d is the number of digits in the
operands: nj = [nj,d−1, . . . , nj,0], nj,i ∈
{0, . . . , 9}

• S: The result of the addition. S =
[sd, sd−1, . . . s0], where sd = cd, i.e., the final
carry.

We recursively define the calculation of individual
result digits:

• Total Sum at Digit Position i:

ti =
k∑

j=1

nj,i

Ti = ti + ci

where ti is the digit sum at the current position,
ci the carry from the previous digit position,
and k the number of operands. Base case:
c0 = 0, no carry at the least significant digit.

• Result Digit at Position i:

si = Ti mod 10

• Carry to the Next Digit Position:

ci+1 =

⌊
Ti

10

⌋

A worked example is provided in Appendix A.

4.2 A Naive Heuristic for Solving Addition
Left-to-Right

Due to the recursive nature of left-to-right addition,
a lookahead of i− 1 digits is needed to determine
any result digit si. There is however a simple, non-
recursive heuristic for the estimation of si with only
a one-digit lookahead, to the digit sum of the next
position, i.e. only considering ti−1.

We define cmin and cmax to be the minimal and
maximal possible value for a carry, where trivially
for all cases, cmin = 0, and

cmax(k) =

⌊∑k
j=1 9

10

⌋

in base 10 and for k operands. We then define the
carry heuristic chi as follows:

chi ∈ {
⌊
ti−1 + cmin

10

⌋
,

⌊
ti−1 + cmax

10

⌋
}

Where chi is chosen uniformly at random. We then
accordingly define the predicted total sum at digit
position i

T h
i = ti + chi

and the predicted result digit

shi = T h
i mod 10

Examples. We show two examples of two-
operand addition, one in which H1 is successful,
and one in which it fails. For k = 2, i.e., in two-
operand addition:

cmax(2) =

⌊∑2
j=1 9

10

⌋
= 1



Figure 4: Two-operand addition in which H1 is success-
ful.

147 + 293. See Figure 4. We need T h
2 and thus

ch2 to generate the first result digit sh2 .

ch2 ∈ {
⌊
4 + 9 + cmin

10

⌋
,

⌊
4 + 9 + cmax

10

⌋
}

= {
⌊
13

10

⌋
,

⌊
14

10

⌋
} = {1, 1}

therefore ch2 = 1, T h
2 = 4, and sh2 = 4. H1 suc-

ceeds in predicting the first digit s2 for 147 + 293.

147 + 255. See Figure 5.

ch2 ∈ {
⌊
4 + 5 + cmin

10

⌋
,

⌊
4 + 5 + cmax

10

⌋
}

= {
⌊
9

10

⌋
,

⌊
10

10

⌋
} = {0, 1}

therefore ch2 is chosen uniformly at random be-
tween 0 and 1. The heuristic fails in predicting
the first digit s2 for 147 + 255 with a 50% chance.

5 H1 Predicts Difficulties of LLMs in
Two-Operand Addition

In this section we show that single-digit token
LLMs struggle exactly in those cases in which the
heuristic H1 is insufficient.

5.1 Predicted Accuracy
For two-operand addition, there are 19 possible
values for each ti (ranging from 0 to 18, because
this is the range of sums between two digits). In 18
out of these 19 cases, H1 reliably determines the
correct carry value. Only if ti = 9, H1 must ran-
domly choose between two possible carry values,
thus failing with a 50% chance. This results in an
overall predicted accuracy of

18× 1.0 + 1× 0.5

19
= 0.974

Figure 5: Two-operand addition in which H1 fails.

for the first result digit s2 in two-operand addition:
H1 achieves 97.4% accuracy in correctly predicting
the first result digit s2. This corresponds to the high
accuracies that Gemma-2 and Mistral reach in gen-
erating s2 during zero-shot and one-shot inference
(Gemma-2-2B: 0-shot: 92.20%, 1-shot: 94.60%;
Gemma-2-9B: 0-shot: 98.80%, 1-shot: 99.20%;
Mistral: 0-shot: 94.00%, 1-shot: 96.20%).

5.2 Finegrained Analysis

We further investigate whether it is true that espe-
cially cases with ti = 9 are challenging for LLMs.

Data. To this end, we evaluate prediction accu-
racy across five distinct newly introduced datasets,
each containing 100 queries with distinct carry sce-
narios. The datasets follow the zero-shot template
described in Section 2.1 and are designed to ex-
haustively capture all cases of carries affecting s2
in two-operand addition of triple-digit numbers.

• Dataset 1 (DS1): No carry. The addition
does not produce any carry (e.g., 231+124 =
355).2.

• Dataset 2 (DS2): Carry in position 100, no
cascading. A carry is generated in the 100

(s0) digit but does not cascade to the 102 (s2)
digit (e.g., 236 + 125 = 361).

• Dataset 3 (DS3): Cascading carry from 100

to 102. A carry originates in the 100 (s0) digit
and cascades to the 102 (s2) digit (e.g., 246 +
155 = 401).

• Dataset 4 (DS4): Direct carry in position
101. A carry is generated in the 101 (s1) digit
and directly affects the 102 (s2) digit (e.g.,
252 + 163 = 415).

• Dataset 5 (DS5): No carry, but position 101

digits sum to 9. There is no carry in any digit,
2We employ the additional constraint that the sum of the

101 operand digits ̸= 9, i.e., (s1 ̸= 9)



Figure 6: Per-digit generation accuracy of Mistral and
Gemma-2 variants on datasets DS1-DS5.

but the sum of the 101 operand digits is 9, i.e.,
(s1 = 9) (e.g., 256 + 142 = 398).

DS1 to DS5 can be neatly categorized according to
whether the heuristic can accurately predict s2:

• DS1 and 2: t1 =
∑2

j=1 nj,1 < 9 → ch2 = 0

• DS4: t1 =
∑2

j=1 nj,i > 9 → ch2 = 1

• DS3 and 5: t1 =
∑2

j=1 nj,1 = 9 → ch2 =?

Results. Figure 6 shows that LLMs struggle with
DS3 and DS5, which are precisely the cases where
H1 predicts issues3. As H1 suggests, predicting
the first result digit s2 at position 102 is particu-
larly error-prone in these scenarios 4. The difficult
datasets are the ones where a lookahead of one digit
position does not suffice to determine the value of
the carry needed to generate s2. Simply put: Over-
all, addition results tend do be predicted correctly
by LLMs, if and only if a lookahead of one digit
is sufficient to determine the value of the carry bit
affecting s2. Prediction is often incorrect if a looka-
head of two or more digits is needed to determine
the value of the carry bit affecting s2.

In cases where a lookahead of one digit is
enough to accurately determine the value of s2
(DS1, DS2, DS4), the models succeed. However,
when a lookahead of one digit is insufficient to de-
termine the value of s2 (DS3 and DS5), the model

3Gemma-2-9B performs better on DS3 than expected,
which suggests that the model tends to generate the carry
bit when unsure.

4Qualitative analysis shows why digits s1 in DS3, and s1
and s0 in DS5, are also often wrong. In DS3 (e.g., 246 +
155 = 401), an early s2 error (e.g., generating 3) leads the
model to minimize the numerical difference to the correct
result, producing 391 instead of 301. In DS5 (e.g., 256 +
142 = 398), an initial error in s2 (e.g.,generating 4) prompts
the model to round the next hundred, giving 400 and causing
errors in both s1 and s0.

struggles with predicting s2 correctly. Table 1 in
Appendix B provides the generation accuracy of s2
for Gemma-2 and Mistral, in addition to the plot.

6 H1 Predicts the Deterioration of
Accuracy in Multi-Operand Addition

As shown in the last section, H1 is a good approxi-
mator for LLM behaviour on two-operand addition:
In the majority of cases, a lookahead of one digit
is sufficient to accurately determine the value of
the carry bit affecting s2. With a look-ahead of one
digit, H1 predicts a failure of the generation of s2,
if and only if the value of s1 does not suffice to de-
termine the value of the carry bit. In two-operand
addition in base 10, this is the case if and only if
t1 = 9. We now show that H1 can also account for
model performance on multi-operand addition.

6.1 Multi-Operand Performance Predicted by
H1

The possible value of a carry increases with increas-
ing numbers of operands. For instance in 4-operand
addition (k = 4) the maximal value of a carry is 3:

cmax(4) =

⌊∑4
j=1 9

10

⌋
= 3

Therefore the carry heuristic chi is unreliable in 4-
operand addition whenever ti−1 =

∑k
j=1 nj,i−1 ∈

{7, 8, 9, 17, 18, 19, 27, 28, 29}.
Put simply, because the value of the carry can

be larger for more operands, the proportion of
values of s1 for which the heuristic is insufficient
(with its lookahead of one) increases with an
increasing number of operands.

Consider an example in which the heuristic fails
in 4-operand addition for clarification (see Figure
10 in Appendix C):
186 + 261 + 198 + 256.

t1 = 8 + 6 + 9 + 5 = 28

ch2 ∈ {
⌊
cmin + 28

10

⌋
,⌊

cmax + 28

10

⌋
}

with cmax = 3

ch2 ∈ {
⌊
28

10

⌋
,

⌊
31

10

⌋
} = {2, 3}

therefore ch2 is chosen uniformly at random be-
tween 2 and 3. The heuristic thus fails in solving
186 + 261 + 198 + 256 with a chance of 50%.



Figure 7: Accuracy of first generated result digit sd
in zero-shot multi-operand addition for Mistral and
Gemma-2 variants, compared to the expected accuracy
based on H1.

For 4-operand addition, there are 37 possible
sums for the second digits (ranging from 0 to 36).
In 28 out of these 37 cases, the heuristic reliably
determines the correct carry bit. However, when
t1 ∈ {7, 8, 9, 17, 18, 19, 27, 28, 29}, the heuristic
must randomly choose between two possible carry
values, leading to a 50% chance of selecting the
correct one. This results in an overall accuracy of:

28× 1.0 + 9× 0.5

37
= 0.878

Thus, the heuristic only achieves 88% accuracy
in correctly predicting the first result digit s2 in 4-
operand addition, compared to the 97% accuracy in
two-operand addition. In Appendix E, we provide
exact values for s2 accuracy as predicted by H1,
for addition tasks between 2 and 11 operands.

6.2 Empricial Evidence on Multi-Operand
Addition

Intuitively, according to H1, Mistral and Gemma-
2 with their one-digit tokenization should fail
at multi-operand addition at a certain rate: The
amount of instances in which a lookahead of one
digit is sufficient to accurately predict si gets
smaller and smaller because the carry bit value
can get larger and larger for multiple operands.
We test if H1 holds in predicting the first gener-
ated digit sd in Mistral and Gemma-2 for multiple
operands. We evaluate prediction accuracy on the
multi-operand datasets described in Section 2.1.
H1 should provide an upper bound for the perfor-
mance of LLMs5 for predicting the first result digit
sd. Figure 7 shows that H1 is indeed a very pre-
cise upper bound for the accuracy of the zero-shot6

generation of the first result digit sd by Mistral and
5Autoregressive LLMs with single-digit tokenization of

numbers.
6Results for the one-shot setting are in Appendix D.

Gemma-2. We take this as further evidence that
these LLMs make use of H1. Models may exhibit
additional difficulties beyond the one-digit looka-
head limitation, explaining their underperformance
on calculations with many operands (8-10). We
suspect this discrepancy may be related to limited
training exposure to these many-operand addition
tasks, but further investigation is needed to confirm
this.

7 Multi-Digit Tokenization Models
Employ the Same Heuristic

While Levy and Geva (2024) demonstrate that all
LLMs, regardless of the tokenization strategy, in-
ternally represent numbers as individual digits, it
remained unclear whether models with multi-digit
tokenization also rely on a one-digit lookahead
when generating addition results. In this section,
we show that perhaps surprisingly multi-digit tok-
enization models, such as Llama-3, also employ a
lookahead of one digit when predicting carry bits.
To show this, we design 3 controlled datasets that
force the multi-digit tokenization model Llama-3
to generate results across multiple tokens. To in-
vestigate the effect of model size, we also include
results on the 70B version of LLama-3.

Experimental Setup. To examine whether
Llama-3 employs a one-digit lookahead, we use
six-digit numbers in two-operand addition (e.g.,
“231234 + 124514 = ”), where each operand is tok-
enized into two three-digit tokens by the model’s
tokenizer, such as: [“ 231”,“ 234”, “ +”, “ 124”,
“ 514”, “ =”] and the result is generated as two
triple-digit tokens as well, in this example [“ 355”, “
748”]. The first generated triple-digit token s5s4s3
corresponds to digit base positions 105, 104, and
103. If Llama-3 did employ H1 it would look ahead
to digit position 102, but ignore digit positions 101

and 100, as they fall outside the lookahead window.

Carry Scenarios. We evaluate model behavior in
three datasets with six-digit operands (ranging from
100,000 to 899,999) and results between 200,000
and 999,999. We use a zero-shot prompt template.
Each dataset consist of 100 samples:

• DS6: No carry. The addition does not pro-
duce any carry and no digits sum to 9. (e.g.,
111, 234 + 111, 514 = 222, 748).

• DS7: Direct carry in position 102. A carry is
generated at 102 and directly affects 103 (e.g.,
111, 721 + 111, 435 = 223, 156).



Figure 8: Per-digit generation accuracy of Llama on
datasets DS6-DS8.

• DS8: Cascading carry from 101 to 103. A
carry originates at 101, cascades to 102 and
then affects 103 (e.g., 111, 382 + 111, 634 =
223, 016).

Expected Outcomes. If Llama-3 employs H1,
we expect that DS6 should be easy, as no carry
propagation is required. DS7 should also be easy,
since the carry affecting 103 is within the one-digit
lookahead window. DS8 in contrast should be chal-
lenging, as the carry originates from 101, from
beyond the model’s lookahead range. We expect a
lower accuracy in generating 103, the result digit
that is affected by the potentially inaccurate carry.

Results. Figure 8 shows that Llama-3 exhibits the
expected pattern predicted by H1. The sharp drop
in accuracy in dataset DS8 on digit 103 provides
evidence that Llama-3, regardless of its multi-digit
tokenization strategy, relies on the same one-digit
lookahead for solving addition left to right. Results
for LLama-3-70-B are given in Appendix F and
show the exactly same behaviour, which indicates
that H1 is employed irrespective of model size.

8 Direct Carry Circuit

Building on H1, which posits that LLMs rely on
a single-digit lookahead to anticipate carries, we
investigate the mechanistic implementation of this
heuristic in Gemma-2-9B. Following Baeumel et al.
(2025), who demonstrate that LLMs use modular,
digit-specific circuits to generate result digits in-
dependently, we find that these models contain a
circuit for the next digit—the one not yet generated.
This circuit acts as a one-digit lookahead, signaling
whether a direct carry is required.

Baeumel et al. (2025) identify a clear hundreds
(s2) circuit in Gemma-2-9B responsible for generat-
ing the s2 digit (i.e., the ’hundreds’ digit, Figure 9)
and also report a less dominant tens (s1) circuit in
intermediate MLP layers. In contrast, no dedicated

units (s0) circuit exists. We test whether the pres-
ence of the s1 circuit, together with the absence of
an s0 circuit, implements the one-digit lookahead
heuristic (H1): the s1 circuit may signal whether
the next digit generates a carry that directly affects
the current generation.

8.1 Carry Intervention
We reuse the digit-position-specific neurons re-
leased by Baeumel et al. (2025) to test whether
the tens (s1) circuit implements the single-digit
lookahead, functioning as a direct carry circuit.

Data and Method. We create 200 intervention
data samples to intervene on the tens-digit circuit
of a no-carry base prompt (347 + 231 = 578) with
a source prompt that causes a carry from tens to
hundreds (347+482 = 829). We compare whether
after the intervention the model indeed outputs a
carry adjusted hundreds digit (i.e., 6 = b+1) in-
stead of the base hundreds digit (i.e., 5 = b). We
intervene on the tens circuit of Gemma 2 9B (layers
28-31) intervention data. This setup allows us to
determine whether carry information is localized
within the tens circuit or processed elsewhere in
the model.

The results match our expectation7: the probabil-
ity of b decreases by 49.6 percentage points, while
the probability of b+1 increases by 48.8 percentage
points. This demonstrates that the tens circuit in-
deed transmits carry information to influence the
current generation step.

We thus establish that the tens circuit functions
mechanistically as a direct carry circuit, implement-
ing the one-digit lookahead.

9 Related Work

Recent work has benchmarked the arithmetic capa-
bilities of LLMs using text-based evaluations and
handcrafted tests (Yuan et al., 2023; Lightman et al.,
2023; Frieder et al., 2023; Zhuang et al., 2023). Nu-
merous studies consistently show that LLMs strug-
gle with arithmetic tasks (Nogueira et al., 2021;
Qian et al., 2022; Dziri et al., 2023; Yu et al., 2024).

Zhou et al. (2023) and Zhou et al. (2024a) ex-
amine transformers’ ability to learn algorithmic
procedures and find challenges in length general-
ization (Anil et al., 2022). Similarly, Xiao and Liu
(2024) propose a theoretical explanation for LLMs’
difficulties with length generalization in arithmetic.

7We choose the following optimal thresholds for neuron
circuit membership t∗ = 0.5



(a) Hundreds (b) Tens (c) Unit

Figure 9: Circuit Size: Number of MLP neurons per layer in digit position circuits (threshold for Fisher Score
t∗ = 0.5. Dimensionality of MLP updates in Gemma 2 9B is 3584.

Gambardella et al. (2024) find that LLMs can re-
liably predict the first digit in multiplication but
struggle with subsequent digits.

The focus of research has recently shifted from
mere benchmarking of LLMs to trying to under-
stand why LLMs struggle with arithmetic reason-
ing. Using circuit analysis, Stolfo et al. (2023)
and Hanna et al. (2023) explore internal processing
in arithmetic tasks, while Nikankin et al. (2024)
reveal that LLMs use a variety of heuristics man-
aged by circuits. In contrast, Baeumel et al. (2025),
Quirke and Barez (2023) and Deng et al. (2024)
show that models process arithmetic with struc-
tured and algorithmic approaches rather than sim-
ple memorization, through pattern recognition or
digit-wise, position-specific streams. Kantamneni
and Tegmark (2025) showed that LLMs represent
numbers as generalized helixes and perform ad-
dition using a “Clock” algorithm (Nanda et al.,
2023). Levy and Geva (2024) demonstrate that
numbers are represented digit-by-digit, extending
Gould et al. (2023), who find that LLMs encode nu-
meric values modulo 10. Zhu et al. (2025) suggest
that numbers are encoded linearly, while Marjieh
et al. (2025) indicate that number representations
blend string-like and numerical forms.

Another line of research explores how tokeniza-
tion influences arithmetic capabilities. Garreth Lee
and Wolf (2024) show that single-digit tokenization
outperforms other methods in simple arithmetic
tasks. Singh and Strouse (2024) highlight that right-
to-left (R2L) tokenization—where tokens are right-
aligned—improves arithmetic performance. Zhou
et al. (2024b) investigate the influence of the choice
of numeral system on arithmetic capabilities. No-
tably, they finetune LLMs on addition tasks, which
differs from our work in that such LLMs are more
specialized and not evaluated off-the-shelf.

In a similar spirit, a strand of work investigates
arithmetic skils of LLMs after finetuning or adapt-

ing them. The role of embeddings and positional
encodings is emphasized by McLeish et al. (2024),
who demonstrate that suitable embeddings enable
transformers to learn arithmetic, and by Shen et al.
(2023), who show that positional encoding im-
proves arithmetic performance. Zhang-Li et al.
(2024) show that reversing the order of calcula-
tions and forcing an LLM to work right-to-left im-
proves arithmetic performance. Chen et al. (2024)
investigate underlying computation mechanisms in
multi-operand addition, similar to our work, but
train models on arithmetics; and they restrict them-
selves to two-digit operands.

10 Conclusion

Based on the evaluation of several state-of-the art
models from different families, our study indicates
that pretrained LLMs, regardless of their numeric
tokenization strategy and model size, rely on a sim-
ple one-digit lookahead heuristic for anticipating
carries when performing addition tasks. While this
strategy is fairly effective for two-operand addi-
tions, it fails for multi-operand additions due to
the increasingly unpredictable value of cascading
carry bits. Through probing experiments and tar-
geted evaluations of digit-wise result accuracy, we
demonstrate that model accuracy deteriorates pre-
cisely at the rate the heuristic predicts. Mechanistic
analyses further reveal that this heuristic is imple-
mented via specialized digit-position circuits, with
dedicated pathways transmitting carry information
to influence subsequent predictions.

Our findings reveal a core limitation in current
LLMs: Their difficulty generalizing to complex
arithmetic tasks. This work deepens understanding
of their reasoning limits and points to increased
lookahead as a promising way to improve perfor-
mance on such tasks.



Limitations

Our work highlights limited lookahead as a key
challenge for LLMs when adding multiple num-
bers. However, it remains unclear whether this lim-
itation extends to other arithmetic operations, such
as subtraction. Additionally, we cannot determine
whether the limited lookahead is a heuristic explic-
itly learned for arithmetic tasks, or if it could also
affect general language generation tasks as thus
hinder performance of other tasks that require long-
range dependencies. Future work should explore
the depth of lookahead in tasks beyond arithmetic.

While the lookahead heuristic offers a straight-
forward explanation for the upper performance
limit of LLMs on addition, it does not fully ac-
count for why LLMs still somewhat underperform
relative to the heuristic in addition tasks with many
operands (e.g., adding 8–11 numbers). We suspect
this discrepancy may be related to limited training
exposure to these many-operand addition tasks, but
further investigation is needed to confirm this.

Finally, we do not tackle methods to overcome
the shallow lookahead. Future work should inves-
tigate whether targeted training on tasks requiring
deeper lookahead can encourage models to deepen
their lookahead.

Acknowledgements

We thank Patrick Schramowski for his helpful feed-
back on the paper draft. This work has been sup-
ported by the German Ministry of Education and
Research (BMBF) as part of the project TRAILS
(01IW24005).

References

AI@Meta. 2024. Llama 3 model card.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor
Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam
Neyshabur. 2022. Exploring length generalization in
large language models. Preprint, arXiv:2207.04901.

Tanja Baeumel, Daniil Gurgurov, Yusser al Ghussin,
Josef van Genabith, and Simon Ostermann. 2025.
Modular arithmetic: Language models solve math
digit by digit. Preprint, arXiv:2508.02513.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, et al. 2023. Qwen technical report. arXiv
preprint arXiv:2309.16609.

Junhao Chen, Shengding Hu, Zhiyuan Liu, and
Maosong Sun. 2024. States hidden in hidden states:
Llms emerge discrete state representations implicitly.
Preprint, arXiv:2407.11421.

Chunyuan Deng, Zhiqi Li, Roy Xie, Ruidi Chang,
and Hanjie Chen. 2024. Language models are
symbolic learners in arithmetic. arXiv preprint
arXiv:2410.15580.

Nouha Dziri, Ximing Lu, Melanie Sclar, Xiang Lorraine
Li, Liwei Jiang, Bill Yuchen Lin, Peter West, Chan-
dra Bhagavatula, Ronan Le Bras, Jena D. Hwang,
Soumya Sanyal, Sean Welleck, Xiang Ren, Allyson
Ettinger, Zaid Harchaoui, and Yejin Choi. 2023.
Faith and fate: Limits of transformers on compo-
sitionality. Preprint, arXiv:2305.18654.

Simon Frieder, Luca Pinchetti, , Ryan-Rhys Griffiths,
Tommaso Salvatori, Thomas Lukasiewicz, Philipp
Petersen, and Julius Berner. 2023. Mathematical
capabilities of chatgpt. In Advances in Neural Infor-
mation Processing Systems, volume 36, pages 27699–
27744. Curran Associates, Inc.

Andrew Gambardella, Yusuke Iwasawa, and Yutaka
Matsuo. 2024. Language models do hard arith-
metic tasks easily and hardly do easy arithmetic tasks.
arXiv preprint arXiv:2406.02356.

Leandro von Werra Garreth Lee, Guilherme Penedo and
Thomas Wolf. 2024. From digits to decisions: How
tokenization impacts arithmetic in llms.

Rhys Gould, Euan Ong, George Ogden, and Arthur
Conmy. 2023. Successor heads: Recurring, inter-
pretable attention heads in the wild. arXiv preprint
arXiv:2312.09230.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri,
Abhinav Pandey, Abhishek Kadian, et al. 2024. The
llama 3 herd of models. Preprint, arXiv:2407.21783.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song,
Ruoyu Zhang, Runxin Xu, Qihao Zhu, Shirong Ma,
Peiyi Wang, Xiao Bi, et al. 2025. Deepseek-r1: In-
centivizing reasoning capability in llms via reinforce-
ment learning. arXiv preprint arXiv:2501.12948.

Michael Hanna, Ollie Liu, and Alexandre Variengien.
2023. How does gpt-2 compute greater-than?: In-
terpreting mathematical abilities in a pre-trained lan-
guage model. Preprint, arXiv:2305.00586.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Men-
sch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guil-
laume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao,
Thibaut Lavril, Thomas Wang, Timothée Lacroix,
and William El Sayed. 2023. Mistral 7B. arXiv
preprint. ArXiv:2310.06825 [cs].

Subhash Kantamneni and Max Tegmark. 2025. Lan-
guage models use trigonometry to do addition.
Preprint, arXiv:2502.00873.

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://arxiv.org/abs/2207.04901
https://arxiv.org/abs/2207.04901
https://arxiv.org/abs/2508.02513
https://arxiv.org/abs/2508.02513
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2407.11421
https://arxiv.org/abs/2305.18654
https://arxiv.org/abs/2305.18654
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58168e8a92994655d6da3939e7cc0918-Paper-Datasets_and_Benchmarks.pdf
https://huggingface.co/spaces/huggingface/number-tokenization-blog
https://huggingface.co/spaces/huggingface/number-tokenization-blog
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2305.00586
https://doi.org/10.48550/arXiv.2310.06825
https://arxiv.org/abs/2502.00873
https://arxiv.org/abs/2502.00873


Amit Arnold Levy and Mor Geva. 2024. Language
models encode numbers using digit representations
in base 10. arXiv preprint arXiv:2410.11781.

Hunter Lightman, Vineet Kosaraju, Yura Burda, Harri
Edwards, Bowen Baker, Teddy Lee, Jan Leike,
John Schulman, Ilya Sutskever, and Karl Cobbe.
2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.

Raja Marjieh, Veniamin Veselovsky, Thomas L Griffiths,
and Ilia Sucholutsky. 2025. What is a number, that a
large language model may know it? arXiv preprint
arXiv:2502.01540.

Sean Michael McLeish, Arpit Bansal, Alex Stein,
Neel Jain, John Kirchenbauer, Brian R. Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, Jonas Geiping,
Avi Schwarzschild, and Tom Goldstein. 2024. Trans-
formers can do arithmetic with the right embeddings.
In ICML 2024 Workshop on LLMs and Cognition.

Neel Nanda, Lawrence Chan, Tom Lieberum, Jess
Smith, and Jacob Steinhardt. 2023. Progress mea-
sures for grokking via mechanistic interpretability.
arXiv preprint. ArXiv:2301.05217 [cs].

Yaniv Nikankin, Anja Reusch, Aaron Mueller, and
Yonatan Belinkov. 2024. Arithmetic without algo-
rithms: Language models solve math with a bag of
heuristics. arXiv preprint arXiv:2410.21272.

Rodrigo Nogueira, Zhiying Jiang, and Jimmy Lin. 2021.
Investigating the limitations of transformers with sim-
ple arithmetic tasks. Preprint, arXiv:2102.13019.

Jing Qian, Hong Wang, Zekun Li, Shiyang Li, and
Xifeng Yan. 2022. Limitations of language mod-
els in arithmetic and symbolic induction. Preprint,
arXiv:2208.05051.

Philip Quirke and Fazl Barez. 2023. Understand-
ing addition in transformers. arXiv preprint
arXiv:2310.13121.

Ruoqi Shen, Sébastien Bubeck, Ronen Eldan, Yin Tat
Lee, Yuanzhi Li, and Yi Zhang. 2023. Posi-
tional description matters for transformers arithmetic.
Preprint, arXiv:2311.14737.

Aaditya K Singh and DJ Strouse. 2024. Tokenization
counts: the impact of tokenization on arithmetic in
frontier llms. arXiv preprint arXiv:2402.14903.

Alessandro Stolfo, Yonatan Belinkov, and Mrinmaya
Sachan. 2023. A Mechanistic Interpretation of
Arithmetic Reasoning in Language Models us-
ing Causal Mediation Analysis. arXiv preprint.
ArXiv:2305.15054 [cs].

Gemma Team, Thomas Mesnard, Cassidy Hardin,
Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay
Kale, Juliette Love, Pouya Tafti, Léonard Hussenot,
Pier Giuseppe Sessa, Aakanksha Chowdhery, Adam

Roberts, Aditya Barua, Alex Botev, Alex Castro-
Ros, Ambrose Slone, Amélie Héliou, Andrea Tac-
chetti, Anna Bulanova, Antonia Paterson, Beth
Tsai, Bobak Shahriari, Charline Le Lan, Christo-
pher A. Choquette-Choo, Clément Crepy, Daniel Cer,
Daphne Ippolito, David Reid, Elena Buchatskaya,
Eric Ni, Eric Noland, Geng Yan, George Tucker,
George-Christian Muraru, Grigory Rozhdestvenskiy,
Henryk Michalewski, Ian Tenney, Ivan Grishchenko,
Jacob Austin, James Keeling, Jane Labanowski,
Jean-Baptiste Lespiau, Jeff Stanway, Jenny Bren-
nan, Jeremy Chen, Johan Ferret, Justin Chiu, Justin
Mao-Jones, Katherine Lee, Kathy Yu, Katie Milli-
can, Lars Lowe Sjoesund, Lisa Lee, Lucas Dixon,
Machel Reid, Maciej Mikuła, Mateo Wirth, Michael
Sharman, Nikolai Chinaev, Nithum Thain, Olivier
Bachem, Oscar Chang, Oscar Wahltinez, Paige Bai-
ley, Paul Michel, Petko Yotov, Rahma Chaabouni,
Ramona Comanescu, Reena Jana, Rohan Anil, Ross
McIlroy, Ruibo Liu, Ryan Mullins, Samuel L Smith,
Sebastian Borgeaud, Sertan Girgin, Sholto Douglas,
Shree Pandya, Siamak Shakeri, Soham De, Ted Kli-
menko, Tom Hennigan, Vlad Feinberg, Wojciech
Stokowiec, Yu hui Chen, Zafarali Ahmed, Zhitao
Gong, Tris Warkentin, Ludovic Peran, Minh Giang,
Clément Farabet, Oriol Vinyals, Jeff Dean, Koray
Kavukcuoglu, Demis Hassabis, Zoubin Ghahramani,
Douglas Eck, Joelle Barral, Fernando Pereira, Eli
Collins, Armand Joulin, Noah Fiedel, Evan Senter,
Alek Andreev, and Kathleen Kenealy. 2024. Gemma:
Open models based on gemini research and technol-
ogy. Preprint, arXiv:2403.08295.

Changnan Xiao and Bing Liu. 2024. A theory for
length generalization in learning to reason. Preprint,
arXiv:2404.00560.

Longhui Yu, Weisen Jiang, Han Shi, Jincheng Yu,
Zhengying Liu, Yu Zhang, James T. Kwok, Zhen-
guo Li, Adrian Weller, and Weiyang Liu. 2024.
Metamath: Bootstrap your own mathematical
questions for large language models. Preprint,
arXiv:2309.12284.

Zheng Yuan, Hongyi Yuan, Chuanqi Tan, Wei Wang,
and Songfang Huang. 2023. How well do large lan-
guage models perform in arithmetic tasks? arXiv
preprint arXiv:2304.02015.

Daniel Zhang-Li, Nianyi Lin, Jifan Yu, Zheyuan Zhang,
Zijun Yao, Xiaokang Zhang, Lei Hou, Jing Zhang,
and Juanzi Li. 2024. Reverse That Number! De-
coding Order Matters in Arithmetic Learning. arXiv
preprint. ArXiv:2403.05845 [cs].

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin,
Omid Saremi, Josh Susskind, Samy Bengio, and Pree-
tum Nakkiran. 2023. What algorithms can transform-
ers learn? a study in length generalization. Preprint,
arXiv:2310.16028.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang,
Rishabh Agarwal, and Denny Zhou. 2024a. Trans-
formers can achieve length generalization but not
robustly. Preprint, arXiv:2402.09371.

https://openreview.net/forum?id=KD9pZCuOVz
https://openreview.net/forum?id=KD9pZCuOVz
https://doi.org/10.48550/arXiv.2301.05217
https://doi.org/10.48550/arXiv.2301.05217
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2102.13019
https://arxiv.org/abs/2208.05051
https://arxiv.org/abs/2208.05051
https://arxiv.org/abs/2311.14737
https://arxiv.org/abs/2311.14737
http://arxiv.org/abs/2305.15054
http://arxiv.org/abs/2305.15054
http://arxiv.org/abs/2305.15054
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2403.08295
https://arxiv.org/abs/2404.00560
https://arxiv.org/abs/2404.00560
https://arxiv.org/abs/2309.12284
https://arxiv.org/abs/2309.12284
https://doi.org/10.48550/arXiv.2403.05845
https://doi.org/10.48550/arXiv.2403.05845
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2310.16028
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371
https://arxiv.org/abs/2402.09371


Zhejian Zhou, JIayu Wang, Dahua Lin, and Kai Chen.
2024b. Scaling behavior for large language mod-
els regarding numeral systems: An example using
pythia. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2024, pages 3806–3820,
Miami, Florida, USA. Association for Computational
Linguistics.

Fangwei Zhu, Damai Dai, and Zhifang Sui. 2025. Lan-
guage models encode the value of numbers linearly.
In Proceedings of the 31st International Conference
on Computational Linguistics, pages 693–709, Abu
Dhabi, UAE. Association for Computational Linguis-
tics.

Yan Zhuang, Qi Liu, Yuting Ning, Weizhe Huang, Rui
Lv, Zhenya Huang, Guanhao Zhao, Zheng Zhang,
Qingyang Mao, Shijin Wang, et al. 2023. Ef-
ficiently measuring the cognitive ability of llms:
An adaptive testing perspective. arXiv preprint
arXiv:2306.10512.

A Example Addition According to
Formalization

We show a concrete example for two-operand ad-
dition according to the formalization defined in
Section 4. For 147 + 255, we have:

k = 2, d = 3, n1 = [1, 4, 7], n2 = [2, 5, 5].
We then compute:

T2 = c2 + 1 + 2

T1 = c1 + 4 + 5

T0 = c0 + 7 + 5 = 0 + 7 + 5 = 12

s0 = 12 mod 10 = 2, c1 =

⌊
12

10

⌋
= 1

T1 = 1 + 4 + 5 = 10

s1 = 10 mod 10 = 0, c2 =

⌊
10

10

⌋
= 1

T2 = 1 + 1 + 2 = 4

s2 = 4 mod 10 = 4, c3 =

⌊
4

10

⌋
= 0

S = [0, 4, 0, 2]

The result of the addition is 402.

B Generation Accuracies for 2-Operand,
3-Digit Addition

We show the generation accuracy of the full re-
sult S and the digit-wise accuracy of s2, compared
across the different carry bit datasets, as referenced
in Section 4. Table 1 shows that Gemma-2 and Mis-
tral struggle with the generation of the correct result
digit s2, exactly in the datasets that H1 predicts to

be difficult. DS3 and DS5 contain addition tasks
in which a lookahead of one digit is insufficient ot
determine the value of s2.

DS1 DS2 DS3 DS4 DS5

ch2 = ... 0 0 ? 1 ?

S
Mistral 0.99 1.00 0.77 1.00 0.71

Gemma-2-9B 1.00 0.99 0.94 1.00 0.80
Gemma-2-2B 0.96 0.93 0.68 0.92 0.74

Llama-3 0.99 1.00 1.00 1.00 1.00

s2
Mistral 1.00 1.00 0.77 1.00 0.71

Gemma-2-9B 1.00 0.99 0.94 1.00 0.80
Gemma-2-2B 0.98 0.96 0.68 0.99 0.75

Llama-3 0.99 1.00 1.00 1.00 1.00

Table 1: Generation accuracy of the full result S and the
digit-wise accuracy of s2, compared across the different
carry bit datasets.

C Example: H1 Failure on 4-Operand
Addition

Below is an example in which the heuristic H1 fails
in 4-operand addition, visualized in Figure 10:
186 + 261 + 198 + 256.

t1 = 8 + 6 + 9 + 5 = 28

ch2 ∈ {
⌊
cmin + 28

10

⌋
,⌊

cmax + 28

10

⌋
}

with cmax = 3

ch2 ∈ {
⌊
28

10

⌋
,

⌊
31

10

⌋
} = {2, 3}

therefore ch2 is chosen uniformly at random be-
tween 2 and 3. The heuristic thus fails in solving
186 + 261 + 198 + 256 with a chance of 50%.

Figure 10: 4-operand addition in which H1 fails.

https://doi.org/10.18653/v1/2024.findings-emnlp.218
https://doi.org/10.18653/v1/2024.findings-emnlp.218
https://doi.org/10.18653/v1/2024.findings-emnlp.218
https://aclanthology.org/2025.coling-main.47/
https://aclanthology.org/2025.coling-main.47/


Nr. Operands k cmax(k) Values of ti in which H1 fails Expected acc. on sd

2 1 1 fail:= 9 18×1.0+1×0.5
19 = 0.974

3 2 4 fails:= 8, 9, 18, 19 24×1.0+4×0.5
28 = 0.928

4 3 9 fails:= 7, 8, 9, 17, 18, 19, 27, 28, 29 28×1.0+9×0.5
37 = 0.878

5 4 16 fails:= 6, 7, 8, 9, 16, ..., 39 30×1.0+16×0.5
46 = 0.826

6 5 25 fails:= 5, 6, 7, 8, 9, 15, ..., 49 30×1.0+25×0.5
55 = 0.773

7 6 36 fails:= 4, 5, 6, ..., 59 28×1.0+36×0.5
64 = 0.719

8 7 49 fails:= 3, 4, 5, ..., 69 24×1.0+49×0.5
73 = 0.664

9 8 64 fails:= 2, 3, 4, ..., 79 18×1.0+64×0.5
82 = 0.610

10 9 81 fails:= 1, 2, 3, ..., 89 10×1.0+81×0.5
91 = 0.555

11 9 89 fails:= 1, 2, 3, ..., 99 10×1.0+90×0.5
100 = 0.540

Table 2: Predicted accuracy on the first result digit sd in the addition of multiple numbers according to H1.

D Zero-shot Generation Accuracy

We test if H1 holds up in predicting the generation
accuracy on sd of Mistral and Gemma for multiple
operands. Figure 11 shows that H1 provides an
upper bound for the generation accuracy of sd in a
one-shot setting for Mistral and Gemma-2 on sd.

Figure 11: Accuracy of first generated result digit sd in
one-shot multi-operand addition tasks for Mistral and
Gemma-2 variants, compared to the expected accuracy
on sd based on H1.

E Accuracy Prediction of Heuristic

Table 2 contains, for addition tasks with different
numbers of operands k, the maximum value of
the carry cmax(k). Based on cmax it list those
values of ti in which H1 is insufficient to accurately
predict s2.

F Results on DS6-8 for larger models

Table 3 shows that Llama-3-70B also employs H1.

Data Set 105 104 103 102 101 100

DS6 0.70 0.77 0.79 0.76 0.77 0.79

DS7 0.66 0.73 0.67 0.72 0.78 0.76

DS8 0.65 0.72 0.48 0.63 0.69 0.74

Table 3: Results for LLama-3-70B on Data Sets 6-8.
The expected lowest accuracy of the model for 103 on
DS8 is bold printed.


	Introduction
	LLMs Struggle with Multi-Operand Addition
	Models and Data
	LLM Accuracy on Addition Tasks

	Probing LLMs on Digits in Two-Operand Addition Tasks
	Methodology and Experiments
	Results

	The Carry Heuristic of LLMs
	Formalization of Left-to-Right Addition
	A Naive Heuristic for Solving Addition Left-to-Right

	H1 Predicts Difficulties of LLMs in Two-Operand Addition
	Predicted Accuracy
	Finegrained Analysis

	H1 Predicts the Deterioration of Accuracy in Multi-Operand Addition
	Multi-Operand Performance Predicted by H1
	Empricial Evidence on Multi-Operand Addition

	Multi-Digit Tokenization Models Employ the Same Heuristic
	Direct Carry Circuit
	Carry Intervention

	Related Work
	Conclusion
	Example Addition According to Formalization
	Generation Accuracies for 2-Operand, 3-Digit Addition
	Example: H1 Failure on 4-Operand Addition
	Zero-shot Generation Accuracy
	Accuracy Prediction of Heuristic
	Results on DS6-8 for larger models

