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ABSTRACT This paper presents a general architecture for iterative, hybrid neuro-symbolic anomaly
detection and complex fault diagnosis, in which symbolic knowledge-based methods and neural machine
learning methods reinforce each other. For evaluation, we introduce a neuro-symbolic diagnosis benchmark
that systematically assesses the architecture using randomized, parametrized synthetic problem instances
with ground truth solutions. These are derived from an abstract formalization of the general problem of
diagnosing systems composed of causally interconnected components based on sensor signal evaluation.
It results in a domain-agnostic diagnostic framework, where synthetic instances capture a multitude of
practical domains, enabling robust, empirically grounded conclusions. Explainability and interpretability
emerge naturally through the specific neural-symbolic interplay. The architecture serves as a transferable
blueprint for diagnosing systems across domains involving causal structure and sensory assessment.

INDEX TERMS Neuro-symbolic Al, knowledge representation, anomaly detection, fault diagnosis,

explainable Al, interpretability.

I. INTRODUCTION

The automated diagnosis of complex systems, e.g., technical
machinery, is a challenging task. From its inception, it has
been a prominent area of research [1], [2], [3], for instance,
using ontology-based approaches [4], [5], [6], [7], [8], [9],
[10], often complemented by learning methods [11], [12],
[13], [14], [15], [16]. To successfully implement either
approach, adequate knowledge or data is required. However,
the interconnection between the systems, e.g., for handling
different types of information in respective abstractions, is not
inherently provided. Furthermore, knowledge acquisition is
often costly, while purely data-driven techniques require large
amounts of data of sufficient quality. We study knowledge-
and machine-learning-based fault diagnosis, combining both
paradigms. The approach involves an iterative diagnosis
cycle in which preliminary hypotheses are refined using both
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knowledge-based and data-driven methods. Explainability
and interpretability are crucial for diagnosis and emerge
naturally through the specific neural-symbolic interplay.
In order to be able to interpret and judge the results
of anomaly detection, methods of eXplainable Artificial
Intelligence (XAI) [17], [18], [19] are employed so that
not only accurate predictions are obtained but, moreover,
predictions that are comprehensible for humans. Accordingly,
the objective is not to replace human experts, but rather to
support them. Specifically, the aim is to provide a general
diagnosis framework that may be instantiated in various
domains, e.g., in the one from [20]. This paper is an adapted
and significantly expanded version of our previous work [20].
In particular, we provide a domain-agnostic generalization,
extension, and, most importantly, systematic evaluation of
our approach presented in [20]. The evaluation goes way
beyond a particular domain and provides a formal specifica-
tion and analysis of general variable properties of conceivable
diagnostic domains involving causal structure and sensory
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assessment. The effectiveness and feasibility of the approach
in a real-world scenario has been demonstrated in [20]. This
paper complements it with a thorough theoretical analysis
and quantitative evaluation. A neuro-symbolic approach to
the problem of automated or semi-automated diagnosis has
a major advantage: Compared to previous methods relying
solely on knowledge-based or data-based techniques, the
neuro-symbolic architecture is designed in such a way that
both paradigms are mutually beneficial. Thus, it is motivated
by the previous lack of interpretability and exploitation of
available domain knowledge in data-driven methods, and
the extensive manual effort and shortcomings with respect
to sensor signal evaluation in expert systems. Our core
contributions are summarized as follows:

1) Generalization and extension of the neuro-symbolic
diagnosis architecture presented in [20], featur-
ing explainability, interpretability, and knowledge
discovery.

2) Abstract formalization and analysis of the general
problem of diagnosing systems with causally intercon-
nected components based on sensor signal evaluation.

3) Neuro-symbolic diagnosis benchmark featuring a sys-
tematic evaluation of the architecture using random-
ized, parametrized synthetic problem instances and
corresponding ground truth solutions generated based
on the established formalism.

The subsequent sections of the paper are organized as
follows: Section II discusses related work. After that,
Section III presents the method and architecture, before
further elaborating the symbolic knowledge representation
in Section IV. Subsequently, Section V describes the
ANN-based signal classification and Section VI the actual
diagnostic process. Section VII not only provides a sys-
tematic evaluation, but also a thorough formalization of the
underlying theoretic family of diagnosis problems, as well
as reflections on relationships between certain aspects of the
problem structure. Finally, Section VIII concludes with a
summary and promising directions for future research.

Il. RELATED WORK

In the following, we discuss related work on (1) knowledge-
based, (2) neural network-based, and (3) neuro-symbolic
methods, as well as important distinctive features of our
proposed approach and architecture.

Knowledge-Based Methods. There have been various
attempts at knowledge-based diagnosis, primarily from the
field of expert systems [4], [5], [9], [21], [22], [23].
Furthermore, the diagnosis of complex systems that gen-
erate large amounts of data, for instance, in industrial
contexts [9], [24], [25], benefits from structured data capture
in an ontology [26], e.g., via on-board sensors. This can
reduce the need for extensive manual data preparation by
experts, which is the focus of the latter work, while not
providing a diagnostic method. In contrast, [27] defines an
automotive ontology to capture the dependencies between
different vehicle components and subsystems, emphasizing
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the modeling of fault propagation between components. This
is used to substitute missing signals in monitored sensor
recordings, while a diagnostic directed acyclic graph guides
the stepwise, online fault diagnosis process. Yet, the work
does not explain in detail how the sensor recordings are
evaluated. In general, knowledge-based methods are not only
relevant for technical systems [28], [29], [30], [31], but
also for biological systems [32], [33], [34] or approaches
in the medical domain [2], [35], [36]. Particularly for such
high-risk domains, explainable approaches supported by
large amounts of available data in conjunction with existing
domain knowledge are crucial. This is the focus of the present
work, in which we introduce such a comprehensive approach
along with an in-depth, domain-agnostic evaluation.

Neural Network-Based Methods. Convolutional Neural
Networks (CNNs) have shown to be highly effective in both
image and time series classification [37], [38]. Anomaly
detection [39], [40], [41], which can be seen as a binary
classification task, has also been effectively addressed in
practical applications using CNNs, among other neural
architectures [42], [43], [44]. For instance, [45] applies a
CNN to detect magnetic anomalies. Additionally, CNNs
offer the advantage of explainability, e.g., through Class
Activation Mapping (CAM) techniques [46], [47], providing
explanatory insights into the temporal / spatial segments that
are important for the network’s prediction. Anomalies in the
context of this paper refer to specific, known fault cases.
Therefore, it is a matter of recognizing specific faults and not
simply deviations from the norm. It is thus binary in the sense
that either a specific fault is detected or the signal is classified
as regular. Also, the uncertainty allows further conclusions on
whether an anomaly is known (high confidence) or unknown
(high uncertainty). Moreover, anomalies in this work can
generally be divided into three categories in accordance with
the definition in [48]: subsequence anomaly in univariate
time series, contextual anomaly in univariate time series and
contextual anomaly in multivariate time series. Our proposed
approach can be considered explainable with regard to those
anomalies, supporting a range of explanation methods.

Neuro-Symbolic Approaches. Recently, hybrid or neuro-
symbolic approaches for fault diagnosis have emerged — fea-
turing the reasoning capabilities of symbolic knowledge [49],
[50], [51]. These allow the integration of domain-specific
information and relationships while simultaneously utilizing
the pattern recognition capabilities of, e.g., CNNs. [51]
proposes such a hybrid model, using a CNN-based archi-
tecture for fault classification of sensor recordings. The
classification result is forwarded to a knowledge graph
(KG) [52], [53], which retrieves further details such as
fault location, maintenance method, etc., based on historical
data. [54] uses CNNs to classify different types of faults in
power grids based on voltage waveforms. They combine it
with Answer Set Programming [55], a logic-based module
that is used to make a final prediction in case of uncertainty of
the CNN. Symbolic rules encode the domain knowledge used
to infer the class. In both hybrid approaches, the primary task
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is CNN-based classification, while the symbolic component
assists by providing additional knowledge; however, without
including any form of explainability. [56] proposes a method
for knowledge-informed fault diagnosis in the area of bearing
fault detection, utilizing interpretable signal processing with
statistical and logical operators. Yet, the authors do not
provide a general method combining ontologies with deep
learning as proposed in this paper.

Discussion. In our previous work [20], we proposed a
neuro-symbolic procedure that combines KG-based diag-
nosis with CNN-based anomaly detection, similar to [51],
but with the main distinction that the primary task is an
iterative diagnosis process guided by KG-based symbolic
reasoning, while CNN-based anomaly detection is used as
an assisting subroutine. Hence, according to the taxonomy
in [57] that categorizes neuro-symbolic systems based on the
integration of the neural and symbolic components, the model
belongs to the Symbolic[Neuro] category. The KG initiates
the anomaly classification networks as needed and uses the
classification result to guide the subsequent diagnostic step.
Explainability and interpretability are core features of the
proposed procedure. To illustrate, XAl methods are used
to generate visual explanations for classifications, always
embedded in the overall diagnostic process. Ultimately,
a comprehensive explanation is constructed by providing
all of these diagnostic artifacts as an explanatory report.
To the best of the authors’ knowledge, this was the first fault
diagnosis system in the Symbolic[Neuro] category.

This paper generalizes the approach presented in [20] and
provides a framework for multimodal, human-in-the-loop
anomaly detection and complex fault diagnosis. We consider
the general problem of diagnosing systems composed of
causally interconnected components, each associated with
some form of sensory input. Additionally, it formalizes the
abstract problem and systematically evaluates the framework
using synthetic instances to identify limitations and gain
insights implicitly covering many practical domains, e. g., the
one in [20]. We consider the integration of machine learning
and XAl into knowledge-supported fault diagnosis systems.
Consequently, we present a novel, generalized, domain-
agnostic, neuro-symbolic diagnosis system whose concrete
instantiation in a practically relevant real-world context,
specifically the automotive domain, has previously been
demonstrated. Furthermore, we thoroughly evaluate it based
on a systematic analysis and formalization of the general
underlying diagnosis problem to allow an understanding of
its potential application areas as well as its limitations.

lIl. METHOD AND ARCHITECTURE

The overall notion is to have a knowledge graph (KG) that
guides the diagnostic process, coupled with neural networks
that enable the interpretation of sensor signals suggested
by the KG for investigation. Accordingly, the aim is to
extract meaning from multimodal data that is unmanageable
for humans and to recognize complex patterns. The general
architecture of an according hybrid neuro-symbolic diagnosis
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framework is shown in Fig. 1. The diagnostic reasoning, i. e.,
the meaningful connection of the neural and symbolic parts,
is represented by the diagnostic circuit, which is initialized
with a domain-specific fault context. Based on the state, the
KG is queried for expert knowledge required for diagnosis,
e. g., aspects to measure based on the provided context. All
these requests are managed by the knowledge graph query
tool, which translates them into SPARQL queries to the KG
and processes the responses.
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FIGURE 1. Neuro-symbolic architecture [20].
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The typical case is that the KG suggests a component or,
generally, a measurable property of the diagnosed system
to be captured by some sensor. This sensor signal is the
input to the neural side of the framework, which performs
binary classification (anomaly detection) and, if applicable,
heatmap generation to provide a visual explanation of
the prediction. If one or more anomalies are detected in
this way, the problem is isolated by performing a root
cause analysis (RCA), which, in turn, relies heavily on the
KG - containing causal relations between components of
the diagnosed system. Whenever an anomaly is detected, all
other components of the system whose malfunction could
affect the correct functioning of the currently considered
component are recursively investigated. Eventually, this leads
to a fault path that starts at the probable root cause of the
problem and cascades to other components of the system.
As indicated by this example, diagnosis is expected to take
place at the abstraction level of the components of the
diagnosed system. According to Fig. 1, there are two types
of knowledge modeled in the KG: (1) the expert knowledge
structurally acquired via a knowledge acquisition component;
(2) diagnostic knowledge, for which every relevant piece
of diagnostic data (sensor recordings, predictions, heatmaps,
etc.) is entered into the KG during the diagnostic process for
exploitation in knowledge discovery. The semantic facts for
both types of knowledge are created by an ontology instance
generator.

In summary, the knowledge-based part of the framework
establishes an initial hypothesis that is iteratively refined
throughout the diagnostic process using artificial neural
networks (ANNSs). It starts with a component suggested by
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FIGURE 2. Abstract ontology for capturing diagnostics knowledge (generalizing

the KG based on a fault context, but not necessarily the
root cause of the problem. Therefore, it proceeds with fault
isolation (RCA). Once the problem is isolated, the result is a
multi-element fault path starting at the probable root cause.

IV. SYMBOLIC KNOWLEDGE REPRESENTATION

To capture and structure diagnosis-relevant knowledge,
an ontology! was defined (cf. Fig. 2, generalizing and
significantly extending the ontology from [20]), on the
basis of which a KG emerges by populating it with large
amounts of instance data. Essentially, there are three levels
of abstraction: The raw definition of the ontology, entity-
agnostic expert knowledge (cf. Sec. IV-A), and entity-specific
diagnostic knowledge automatically acquired as part of the
diagnostic process (recorded sensor data, explanations, etc.,
cf. Sec. IV-B). However, as illustrated in Fig. 1, the two types
of knowledge are not isolated from each other, but connected
by meaningful links (e. g., connecting classification instances
to the diagnostic associations that led to them) to learn from
previous diagnostic runs.

All three levels combined constitute the KG. The acqui-
sition of expert knowledge is accomplished via a web
interface (collaborative knowledge acquisition component)
through which the knowledge is entered, stored in the
Resource Description Framework (RDF) format, and hosted
on an Apache Jena Fuseki’> server. In addition, libraries
have been developed that render this knowledge retrievable
in the diagnostic process via predefined SPARQL queries
(KG query tool, cf. Sec. IV-E), as well as making the
KG expandable and editable in general (onfology instance
generator, cf. Sec. IV-C, IV-D). To establish a connection to
the KG hosted by the Fuseki server, i. e., to perform queries

1 https://github.com/tbohne/nesy_diag_ontology/releases/tag/v0.0.3
2https:// /jena.apache.org/documentation/fuseki2/
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as well as KG extension via HTTP requests, a connection
controller has been implemented. It sends HTTP requests
containing the respective encoded SPARQL queries to the
/sparql endpoint of the KG server. Furthermore, it sends
HTTP requests with the serialized semantic facts (RDF
triples) to be entered into the KG to /data, as well as HTTP
fact deletion requests (DELETE DATA queries) to /update
in order to remove deprecated knowledge.

A. EXPERT KNOWLEDGE MODELED IN THE ONTOLOGY

At the core of the knowledge captured in the ontology
are the error codes, which are a perfect example of
what is meant by fault context in the neuro-symbolic
architecture visualization in Fig. 1. An ErrorCode
can have DiagnosticAssociations with physical
components that are part of the entity of diagnosis
(SuspectComponent). A crucial aspect of such an asso-
ciation is the priority_id, based on which components
are suggested to be examined in a certain order in the
presence of a given error code. In addition, affected_by
represents a list of other components whose malfunction
could affect the correct functionality of the considered
component (dependencies can be conceived as a tree, cf.
Fig. 9). Domain experts can define a ComponentSet to
reduce the number of redundant diagnostic steps in case
there is a specific component that can be leveraged to
verify the correct functioning of a whole set of components.
Moreover, each error code represents a FaultCondition.
Obviously, due to the tremendous variety of diagnostic
entities in most domains, e.g., vehicle models in [20],
and the constant development of additional ones, expert
knowledge will usually never be exhaustive. Since the
diagnosis is component-based, it is feasible to progress
from use case to use case so that the system supports an
increasing number of subsystems over time. Consequently,
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it is crucial to have an efficient and structured knowledge
acquisition, which is covered in section IV-C. The matter
of correctness is assumed to be handled via crowdsourcing,
with the pool of associated experts having the ability to refine
entries.

B. DIAG. KNOWLEDGE MODELED IN THE ONTOLOGY

As anticipated, there is another theme to the ontology, which
is the acquisition and reasonable arrangement of diagnostic
data. For each DiagEnt ity instance that is entered into the
KG, i.e., for each entity that is diagnosed with the system,
a DiagLog is created that provides the KG with a kind
of explanatory summary of the entire diagnostic process.
However, this is not a mere summary, but each entry is
automatically sorted into the existing web of expert knowl-
edge and past diagnostic data by instantiating the concepts
of the ontology. Initially, any recorded error code appears in
this log, as this is always the starting point for a diagnosis.
Perhaps most significant are the diagnostic steps, which are
also part of the log in the form of Classification
instances that store their reason, either another classification
that detected an anomaly (reasonFor) or a diagnostic
association with an error code recorded in the entity (LedTo).
Each classification has a binary result (prediction)
that indicates whether the checked component has an
anomaly or not. The concept Classification has
two sub-concepts: ManualInspection is a classification
performed manually by a human. This is necessary in
cases where sensor signal-based analysis is infeasible for
a component, i.e., use_sensor := false. The other
sub-concept is SignalClassification, which clas-
sifies a signal using a classification model (cf. Sec. V).
In this case, we specify an uncertainty value, an ID
and various preprocessing and architectural information
of the model that produced the classification. The tar-
get of a signal classification are the SensorSignals,
which are also stored in the KG and possibly grouped
as an instance of a ParallelRecSignalSet. The
ontology in Fig. 2 not only generalizes the concepts of
the ontology presented in [20], but also extends them
considerably, e.g., by including multivariate signals and
the corresponding concepts: SubComponent, Channel,
InputChannelRequirement, etc. The idea is that
a signal can consist of more than one channel and a
corresponding model expects the multivariate, i.e., multi-
channel signal in a specific order. Finally, we also provide
heatmaps for the classification of the signals, which allow an
interpretation of the predictions (cf. Sec. V-A). Heatmaps
are stored in the KG along with their generation method. The
final diagnosis takes the form of a series of FaultPaths
that start with one component (root cause) and then cascade
to others. Fault paths are not only stored in the diagnostic
log, but also associated with fault conditions for knowledge
discovery potential.
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C. ENHANCEMENT OF EXPERT KNOWLEDGE

The expert knowledge enhancer can be used to augment
the KG hosted by the Fuseki server with entity-agnostic
expert knowledge. In particular, it generates semantic facts
based on the information entered through a web interface
and connects these facts in a meaningful way to what is
already available in the KG, i.e., it serves as a backend
for the knowledge acquisition component. Alternatively, it is
possible to select an existing instance, view the currently
available data, and refine it. Entering a new instance leads to
a series of operations in the backend. Thus, it is always expert
knowledge input via the web interface and corresponding
generation of semantic facts in the backend. All of this is
accompanied by a series of input validation mechanisms. This
way, a simple KG extension for the expert goes hand in hand
with an automatic proper “wiring”’ of semantic facts in the
background.

D. ENHANCEMENT OF ENTITY-SPECIFIC DIAGNOSIS
KNOWLEDGE

The diag. knowledge enhancer, on the other hand,
enhances the KG with diagnosis-specific instance data, i.e.,
it connects the data recorded in a particular entity, as well
as sensor readings, classifications, etc. generated during the
diagnostic process, with corresponding background knowl-
edge stored in the KG. The process typically starts by creating
an instance of the entity to be diagnosed. Likewise, it typically
ends with a call to extend_kg_with_diag_log, which
takes numerous arguments, including the error code instances
that are part of the diagnosis and the entity ID. This
leads, for instance, to FaultCondition “Boost Control
Position Sensor Circuit: Implausible Signal”, represented
by ErrorCode "P2563”, resultedIn a FaultPath,
entailed by a DiagLog instance, createdFor the
DiagEntity instance withentity id ”ID2342713".
Moreover, "P2563"” appearsIn this particular instance of
DiagLog. These are only a few examples of the information
collected during diagnosis and its interrelationships. The
full set of concepts and relations can be seen in the
visualization of the ontology (cf. Fig. 2), for all of which
automatic semantic fact generation and thus KG extension
is implemented.

E. KNOWLEDGE GRAPH QUERY TOOL

Eventually, there is a library of numerous predefined
SPARQL queries and response processing to access informa-
tion stored in the KG that is used in the diagnostic process,
such as query_entity_ instance_by_id(id) and
query_suspect_components_by_error_code
(code). The latter, for instance, automatically sends and
processes the query shown in Fig. 3 for a given error code
”"P2563”. Note that DTC is the particular type of error
code used in [20] and can be seen as an instantiation of
ErrorCode.
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/OBD/sparql JSON

PREFIX do: <http://www.semanticweb.org/diag ontology#>
2 v SELECT ?comp_name WHERE {
?comp a do:SuspectComponent; do:component name ?comp_name .
?dtc a do:DTC; do:code "P2563"; do:hasAssociation/do:pointsTo ?comp .
}

FIGURE 3. SPARQL query to retrieve components [20].

V. ANN-BASED SIGNAL CLASSIFICATION

A key idea of the developed diagnosis system revolves
around sensor information. Signal recordings are performed
on specific physical components in the entity of diagnosis
to detect indications of problems (anomalies). The recorded
signals are fed into a classification model previously trained
on a large dataset, which evaluates whether each recording
contains anomalies.’> In this case, the task comes down to
binary univariate / multivariate time series classification.
In general, however, the architecture does not assume the
signals to be time series; it would also work with images,
for instance. To give an example: In [20], the battery voltage
during the engine starting process is used. For battery voltage
records V. € R", performance was best when standard
z-normalization was applied to the raw time series data, i.e.,
V' o= {X’;ﬁv |x; € V), with mean uV and standard
deviation o V. Fig. 4a shows a regular (1) and an anomalous
(0) z-normalized voltage sample. Since the main focus of
this work and [20] is not to propose a superior ANN
architecture for binary classification (anomaly detection) of
time series data, we compared several standard architectures
from the literature, made slight adjustments, and selected
the best performing one for our purposes. In the case of
the univariate signals under consideration, this was a Fully
Convolutional Network (FCN). The FCN model (shown in
Fig. 4b) is based on [58], in which the authors propose
a strong baseline architecture for time series classification.
Details concerning the training setup, data, etc. can be read
in [20]. For multivariate signals, we trained and applied XCM
(Explainable Convolutional Neural Network for Multivariate
Time Series Classification) [59] models.

S,

\ .
waj —— class 0

class 1

o~
Tnput

norm. voltage (V)
L

BN + RelLU

ConviD(64, 3)

BN + RelLU

!
)

00 26 53 79 105 131 158 184
seconds (s)

(a) Norm. Battery Voltage [20] (b) FCN Architecture [20]

FIGURE 4. Battery voltage signal classification.

A. SALIENCY MAP GENERATION FOR TIME SERIES

Explainability and interpretability should be core features
of diagnosis systems. They arise relatively naturally in the
system proposed in [20] and generalized in this work through
the specific interplay of neural and symbolic methods. XAI

3https:// github.com/tbohne/oscillogram_classification/releases/tag/v0.2.0
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methods are used to generate visual explanations for time
series classifications as an exemplary type of artifact, always
embedded in the overall knowledge-based diagnostic process.
Ultimately, a comprehensive explanation is constructed by
contextualizing all these diagnostic artifacts with symbolic
state transitions as an explanatory report. Additionally, they
augment the KG and enable to learn the most significant
aspects of the signal types over time. Despite the common-
place of a black box nature of deep learning approaches,
CNNs, among other architectures, offer the advantage
of explainability, e.g., through Class Activation Mapping
techniques [46], [47], providing explanatory insights into
the temporal / spatial segments that are important for the
network’s prediction. Thus, subsequent to the classification
of a signal, the explanation of the decision proceeds on
the basis of Class Activation Maps (CAMs). This is to
ensure that humans do not have to “blindly”” rely on the
model’s predictions, which should reduce the proneness to
errors, and can further enable computational sensemaking
towards supporting humans [60], [61]. There are several
techniques used in deep learning to visualize areas of an
image that are most relevant to predicting a certain class,
e. g., Grad-CAM [46], HiResCAM [62], Grad-CAM++ [63],
Score-CAM [64], SmoothGrad [65], and LayerCAM [66].
They provide a way to interpret the decision made by an
ANN model (with compatible architecture, unless model-
agnostic) by highlighting the regions of the input image that
contribute the most to the classification result. The details of
its implementation and how the methods are applied to time
series data can be read in [20]. Eventually, saliency maps can
be generated for a time series classification model analogous
to the standard case with image data. Each of the methods
receives the normalized time series values V' e R”, the
trained model M, and an optional prediction y (default is the
“best guess”, i.e.,y = argmax; P(i| V') Vi € {0, 1}) asinput,
and outputs a heatmap H € [0, 1]"” highlighting the parts that
are most relevant for the classification. We are interested in
values h € H close to 1, these are the most important parts
of the signal V’. Each value h; € H rates the importance
of a corresponding input value v; € V', Vi € {l,...n}.
Since the different methods have different advantages and
weaknesses, the best-suited depends on the considered task.
Fig. 7 shows a side-by-side plot of all generated heatmaps.
As can be observed in the visualization, in this case the
different methods agree very well on the relevant regions for
the prediction. In the end, it enables domain experts to assess
whether these areas are plausible bases for decision making
and allows for knowledge discovery through the resulting
KG entries. In the case of multivariate signals, a heatmap
is created for each channel, i.e., for each synchronously
considered variable over time. Fig. 5 shows the variable
attribution maps for four parallel recorded signals generated
with the Grad-CAM method. These highlight the segments
that were most relevant for the prediction when extracting
information from each variable separately. Additionally,
since anomalies can arise from the specific interplay of
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FIGURE 7. Saliency map generation methods side-by-side [20].

various signals, it is of interest to consider the time attribution
maps in Fig. 6, i.e., points in time at which interactions of
interest took place. Both types of attribution map are obtained
from the XCM [59] architecture.

VI. NEURO-SYMBOLIC ANOMALY DETECTION AND
FAULT DIAGNOSIS

As the previous sections have shown, knowledge- and
machine-learning-based diagnosis requires the integration
of various components. To define the prototypical overall
process (diag. circuit in Fig. 1) and to integrate all
developed modules, a state machine was defined.* It is a
domain-agnostic generalization of the vehicle diagnosis state
machine from [20]. Fig. 8 shows its architecture, which is
implemented using the smach’ library. Initially, there is meta
and context data processing. Based on the read information,
the entity-specific instance data is entered into the KG (cf.
Sec. IV-D). If error code data is available, the KG is extended
with the processed data, i.e., the information that the fault
conditions represented by the individual error codes occurred
in the respective entity, etc. If the entity instance already exists
in the KG, it is extended, otherwise it is newly created. Based
on the acquired fault context, the actual diagnostic process is
initiated.

4https:// github.com/tbohne/nesy_diag_smach/releases/tag/v0.1.6
5Python library to build hierarchical state machines [67].
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FIGURE 8. Domain-agnostic neuro-symbolic diagnosis state machine
(generalizing [20]).

The actual diagnosis starts with a state in which a
best-suited error code instance is selected for further pro-
cessing. There are two possible transitions. If an instance
is selected, the process continues with suggesting suspected
components. Otherwise, no error was detected and the
indirect conclusion of a potential sensor malfunction is
provided. This conclusion should be verified or refuted by the
human. Then there is one of two outcomes: Either the sensor
works, which means that the diagnosis was unsuccessful

210207



IEEE Access

T. Bohne et al.: Neuro-Symbolic Anomaly Detection and Complex Fault Diagnosis

(refuted_hypothesis in Fig. 8, only the disproved initial
hypothesis and the context are provided due to unmanageable
uncertainty), or there is a diagnosis of a defective sensor
(cf. Fig. 8). The case of an unsuccessful diagnosis is not
a weakness of the system, but rather the handling of the
edge case in which a potentially existing previous error or
anomaly is no longer present in the diagnosed entity, i.e.,
there simply is nothing to diagnose. The more interesting
case: Certain components in the entity of diagnosis are
recommended to be investigated in light of the available
information (fault context). Based on the selected error
code instance, the KG query tool is used to query the
corresponding suspect components, and for each, whether
it can be reasonably diagnosed with the considered sensor.
Afterwards, we first distinguish between the subset of suspect
components for which sensor diagnosis is appropriate and
those that must be verified manually. Then, synchronized
sensor recordings are performed at the proposed components
of the respective subset, and the resulting time series are
classified using trained ANN models (cf. Sec. V). The
prediction can be interpreted by overlaid heatmaps (cf.
Sec. V-A). Subsequently, the subset of recordings to be
inspected manually is handed over to the human. In the end,
there is a set of anomalous components identified by the
trained models and the human. If this set is empty, i.e., no
anomaly has been detected, the next iteration of suggestions
follows. However, if no anomaly is detected and there are
no remaining components to suggest, the next error code
instance is selected. If anomalies are found, though, the root
cause analysis follows, which is explained in Section VI-A.
All the specifics and subtleties of the diagnostic procedure
can be read in [20].

A. ROOT CAUSE ANALYSIS TO DETERMINE THE SOURCE
OF THE DEFECT
Once an anomaly is identified in the described manner, the
fault is isolated by recursively inspecting the cause-effect
relationships in the entity of diagnosis, which are part of
the KG (cf. Sec. IV-A), i.e., graph traversal coupled with
anomaly detection. This basically creates a causal sub-graph
for each anomalous component from which the root cause
can be derived. After all, in technological systems errors
are rarely encountered that are entirely independent of other
components in the system. Typically, there are cascading
paths where a problem starts at one component and then
spreads to others. The actual interest is directed at the
root cause instead of mere side conditions. The termination
criterion is that there are no further known components that
have not yet been examined and that could directly affect
an anomalous component. During the recursive procedure,
the fault path, explicitly considered links, etc. are tracked.
The result is visualized dynamically for each diagnosis, e. g.,
Fig. 9.

The recursive and dynamic sub-graph construction based
on KG queries is defined by the pseudocode shown in
Algorithm 1 [20], initialized with an empty graph and the
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FIGURE 9. Fault isolation result example [20].

initial anomalous component Cp. After isolating the problem,
the diagnosis is entered into the KG, along with a detailed
record of all relevant information that led to it (cf. Sec. IV-B),
to learn from it and facilitate future diagnoses. Ultimately,
the diagnosis is presented in the form of the inverted fault
path in Fig. 9 as this was the affected-by-direction, not the
direction starting from the probable root cause of the fault.
For the example in Fig. 9, this would be {Cp — C4 — Cp}.
So the problem probably started at Cp, cascaded through Cy4,
and finally to Cp. Although it is not guaranteed to be the
actual root cause, it should provide a domain expert with a
fairly strong understanding of the problem prevailing in the
entity in question.

Algorithm 1 Recursive Function That Constructs the Com-
plete Causal Graph for the Specified Components

Input: graph: dictionary, components: list
Qutput: constructed causal graph
1: if len(components) == 0 then
2:  return graph
3: end if
4: comp <« components.pop(0)
5: if comp not in graph.keys() then
6:  affecting_comp < query_affected_by(comp)
7:  components <— components U affecting_comp
8:  graph[comp] <« affecting_comp
9: end if
10: return construct_causal_graph(graph, components)

B. NEURO-SYMBOLIC CIRCUIT

The suggested components to measure during diagnosis
stem from the KG. After the signals are recorded, they are
interpreted and a heatmap is overlaid (cf. Fig. 7). A crucial
idea of the overall approach is to close the circuit and
feed this information back into the KG. In case of an
anomaly, it is the information where the error is located in
the signal, i.e., generally where the system tells us to look
to identify the problem under consideration, the region of
interest (ROI). This is a very useful debugging resource,
highlighting issues such as overfitting and deviation from
expert judgements. If the classification of a whole range of
signals reveals that, for instance, certain highlighted segments
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correlate with certain error code ranges, this is very valuable
knowledge that is unavailable a priori. This requires reliable
and accurate heatmaps, which is why we put so much
emphasis on comparing different well-established techniques
for generating them in [20]. Since plausibility may also
depend on the context of the classification, the interpretable
symbolic state transitions etc. are crucial information for
the assessment. For experts, it is often particularly difficult
to precisely specify the properties of such a ROL It is
often a very intuitive, experience-based and hard to grasp
process, so it could be very valuable to simply learn the
ROIs in this way and then compare them to the intuitive
notions of human experts. There may also be patterns that
are very subtle and difficult for humans to recognize. Thus,
the classification, i. e., the neural part of the neuro-symbolic
system, benefits from the KG, which essentially narrows
down the search space, and the KG in turn benefits from
the neural part, namely from the results and explanation
of the ANN-based classification. In the end, if a threshold
is exceeded for an error code, i.e., a certain number of
roughly agreeing heatmaps has been gathered for it, one
could crop this sub-ROI and train a classification model for
it. Once this error occurs, the sub-ROI is cropped and the
more specialized model is applied, resulting in a sub-ROI
patch classification. In conclusion, the system theoretically
gets better at diagnosing errors that it has seen frequently
in the past. A further option is to cluster all recorded
heatmaps, irrespective of the particular fault, in order to find
patterns. This is only one illustration of the opportunities for
knowledge discovery. As introduced in Section IV-B, all kinds
of relevant diagnostic information are gathered and linked so
that previously unknown correlations can be discovered by
deploying the system in practice. A thorough demonstration
and evaluation of the capability of knowledge discovery
is beyond the scope of this work. However, in a separate
work, empirical results on well-established time series
classification datasets demonstrate the effectiveness of our
saliency map-driven method for knowledge discovery [68].

VII. SYSTEMATIC EVALUATION

This section focuses on a systematic evaluation of the
architecture using randomized, parametrized synthetic prob-
lem instances and corresponding ground truth solutions
generated based on the formalism established in the following
evaluation framework.® It enables a quantitative approach
even in cases where there is a lack of sensor data and
expert knowledge. Hence, it also extends previous work [20],
in which only a qualitative discussion took place.

In general, even under perfect conditions, it is not possible
to collect an unlimited amount of data and knowledge
that covers all possible scenarios and enables a truly
comprehensive evaluation of the diagnostic system. As [69]
correctly states, hybridization can take many shapes, which
poses a particular challenge for common benchmarks. In the

6https:// github.com/tbohne/nesy_diag_bench/releases/tag/v0.0.2
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following, we set up a benchmark that goes beyond the
specific use case in [20] by formalizing and generalizing
the core properties that it shares with many other diagnostic
domains. In a sense, we explore the performance of the
system across a broad spectrum of configurations and thus
theoretical domains.

While the architecture is presented as a human-in-the-
loop system, the systematic evaluation is fully automated,
since the role of the human is not crucial for assessing the
performance and limitations of the system itself. We merely
skip the waiting times for human interactions when providing
input, etc. From the perspective of the system, it makes no
difference. The only substantial difference lies in human
interventions, such as doubting classifications or entire
diagnoses based on the explanatory report. While evaluating
this would constitute a substantial contribution, it is clearly
beyond the scope of this work, which is focused on
evaluating the functioning of the system, not the subtleties
of human-machine interactions and interpretations. In the
context of the present evaluation, it is assumed that the
human provides input instantaneously and that all suggestions
are accepted. In practice, as previously discussed, it can be
beneficial to repeat classifications, but there is no mechanism
yet to automatically improve false recommendations (beyond
logging). This is future work. The human role in terms of
efficiency or runtime is reflected in the following sections.

Table 1 summarizes the notations of the parameters
and metrics that are introduced in the following sections.
In order to facilitate understanding of how the abstract
parameters used in the synthetic instances map to the
characteristics of real-world diagnostic domains, and to
assess the practical relevance of the evaluation’s conclusions,
the corresponding concept of the general ontology in Fig. 2
is mentioned for each. All of these are substantiated by
corresponding real-world equivalents in the automotive
domain demonstrated in [20]. Let C be the set of components
(SuspectComponent in Fig. 2) of constant size that
are part of a diagnostic domain. Each diagnostic problem
instance is composed of |C| := 129 components. This is
motivated by two aspects: First, we plan to experiment with
the 129 UCR datasets’ in the future. Each dataset represents
one component, this is already anticipated here. Additionally,
based on the concrete instantiation of our system in [20],
this seems to be a reasonable order of magnitude for
many practical problems. Moreover, each instance specifies
which components have anomalies (underlying ground
truth solution for prediction of Classification in
Fig. 2), with which other components they are causally
related (affected_by in Fig. 2), the ground truth fault
paths (expected diagnosis, underlying ground truth solution
for the predicted FaultPath in Fig. 2), the input error
codes (ErrorCode in Fig. 2) and the corresponding sus-
pect components (DiagnosticAssociation in Fig. 2),
and finally the simulated accuracies for the classification

7https //'www.cs.ucr.edu/ eamonn/time_series_data_2018/
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TABLE 1. Notations of parameters and metrics.

Variable Description
C set of components of constant size
1 set of instance sets
iel instance set
in €1 specific instance from instance set
« anomaly percentage
B affected-by percentage UB per component
~LB ~UB LB, UB for ANN model accuracy
6 UB percentage for distractors
€ UB for fault path component percentage
¢ seed for random generation processes
n instance index
plo" anomaly link score
plf’ ground truth fault path score
pi2 ground truth match percentage
in !
D3 anomaly score
fa e average, maximum number of fault paths
g, nmex average, maximum fault path length
;“,fi"’“"' average, maximum fault path deviation
c'l" compensation by affected-by savior
c'z" missed compensation chances
cg’ no second chance cases
di diagnosis success percentage
) classification ratio
nlc” number of classifications

rd, pm, pmax

& average, median, maximum runtime

TP,TN,FP,FN actual classification results

Iy, tn, fpsfn expected classification results

np, Ny ground truth number of positives and negatives
mil'" missed anomalies (misclassifications)

m;" missed anomalies (unclassified)

miy all missed anomalies

models (Model in Fig. 2) of each component. Overall,
the following results are based on the systematic solving
of 4000 random-generated, parametrized diagnostic problem
instances, as described below. The number of instances arises
from the possible combinations of the defined parameter
intervals subtracted by some parameter combinations that do
not yield any further insights. The aim of this evaluation
is twofold: We show that the proposed system functions as
expected, but we also provide insights into the structure and
properties of the considered general diagnosis problem.
First, we introduce some variables: a: anomaly percentage,
B: affected-by percentage (upper bound), and y: model
accuracy. Depending on the context, the variables are either
denoted in fractional representation ([0, 1]) or as explicit
percentages. « represents the fraction of C that comprises
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anomalous components (randomly generated and uniformly
distributed), B specifies an upper bound (UB) for the random
affected-by links of each component, and y is self-explaining.
The ground truth fault paths are generated based on « and
B. We consider the component network and recursively
follow the affected-by links of all anomalous components.
These are the edges of the final fault paths. Only unique,
longest fault paths are taken into account, i.e., sub-paths
are ignored. Furthermore, let § be the UB percentage for
distractors. Distractors are suspect components that are
not part of the ground truth fault path, but nevertheless
associated with some input error code. Moreover, let € be
the UB for the fault path component percentage, based
on which diagnostic associations are generated. An input
error code is generated for each ground truth fault path,
and each error code should have a number [1, Lfmnj] of
randomly associated components from the corresponding
ground truth fault path of length n. There have to be as
many random error codes as there are ground truth fault
paths (assuming no duplicates). The first must always be
the “anti root cause”, i.e., the start of the affected-by chain,
so that all components are reachable and diagnosis is feasible.
Both § and € make the problem a little more challenging
and realistic. Not all ground truth anomalies are already
indicated by the error code, and there are also some indicated
components that turn out to be irrelevant. With distractors,
we are essentially assuming that the error code association
to components is not perfectly correct and relevant in each
case. Generally, it would be possible to count how often
a distractor leads to a false positive (incorrectly identified
anomaly). However, this is not of interest because there
is no fundamental difference between a distractor or any
other component during the diagnosis leading to a false
positive. The distractors are only concerned with increasing
the likelihood of false positives. The specific components that
function as distractors in a particular case are not significant
for the evaluation. Finally, let ¢ and n be the seed for the
random generation processes and the index of each instance
in the set, respectively. Each instance set i € I is composed
of 100 instances i, € i, randomly generated based on the
same configuration that is coded in the instance name, i.e.,
< |C|_a_,3_e_8_yLB_yUB_§_17 > 8

Fig. 10 shows an abstract overview of the evaluation
process. It starts in the top center cell by specifying the
parameters of the instance set to be evaluated. Based
on this, the randomly generated instance (JSON) and the
corresponding knowledge graph (n-triples) are generated
and serve as input, background knowledge and ground
truth solution for each generated problem instance. Cell
three sketches one of the main aspects of the background
knowledge, i.e., the components of the diagnosis entity
together with their causal connections. Subsequently, the
state machine solves the provided instance and presents the

8https://github.com/tbohne/nesy_diag_bench/blob/main/res/
exp_instance_sets.zip
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FIGURE 10. Abstract vis. of the evaluation process.

diagnosis in cell five. Finally, in the last cell, the determined
solutions are compared to the ground truth solutions of the
instances.

The underlying KG is automatically replaced per instance
during evaluation. The most important aspects that are part
of the KG files generated for each random problem instance,
i.e., for each n-triples file, are: suspect components, affected-
by relations, input error codes, diagnostic associations
between error codes and components, priority IDs of
diagnostic associations, and finally fault conditions. For each
instance, it is ensured during instance generation that it is
actually solvable. Some of the configurable parameters are
not changed throughout the experiments, because they are
not as important for the analyses and fixated to practically
plausible default values: |C| = 129 (cf. above), ¢ = 0.5,
6 = 0.1. Thus, we will use the following notation to
precisely refer to the most important (varying) aspects of
the instance set configuration: < o_f_y™®_yUB > The
graphs in Fig. 11 illustrate the effects of the parameters
o, B and y on the problem structure. The nodes represent
components of the diagnosis entity and the edges represent
the affected-by relations between components. Red nodes
represent anomalies, and the out-degree is annotated at each
node along with the accuracy of the corresponding trained
neural network model (out-degree; model accuracy). B sets
an UB for the out-degree of each node and [yB,yUB]
defines the interval for the simulated uniformly distributed
random model accuracies. Thus, we see 50% anomalies,
model accuracies in [0.95,0.99], and an out-degree of at
most 2 in Fig. 11a. Reducing o and g (cf. Fig. 11b) leads
to 20% anomalies and an out-degree of less than or equal
to 1. In this case, the model accuracy is always 1. The
results of the following sections are based on systematically
generated instance sets based on the following intervals
for the varying parameters: ¢ € {0.01,0.05,0.1, 0.2},
B e {0.01,0.02,0.03,0.05,0.07,0.1,0.2}, Yy ¢
{0.9,0.95, 1.0}, and y VB € {0.95, 0.99, 1.0}. All parameters
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FIGURE 11. Effects of o, 8, LB and yUB for |C| = 10.

considered are either set to practically plausible, domain-
agnostic values or intervals were specified, the limits of which
are empirically justified below. The values for y& and y V8
are always set in pairs, i. e., they always share the same index
in the set of configurations. These synthetic instances are
abstract representations of the specific problem formulation
in [20] as well as many other conceivable practical domains.

The following section will analyze the impact of cer-
tain configuration aspects on the solving procedure and
results. Instead of only visually estimating the correlation,
we compute the Pearson correlation coefficient p for many
plots in the following. As always, this is not causation.
However, it is an approximation that answers the question
of whether causation is possible, i.e., an indicator used to
confirm or refute certain hypotheses. We expect a classifier,
e.g., a trained neural network model, for each component
¢ € C and we know the accuracy y of each (cf. node
annotations in Fig. 11). The accuracy on new, unseen data
is not necessarily converging to the accuracy of the models.
This depends on the dataset distribution, i.e., data drift, model
generalization capabilities, etc. It is not guaranteed that a
model performs similarly to the established accuracy on
unseen data. However, as our objective is not to evaluate
the trained classifiers but the diagnosis system as a whole,
in the evaluation, we do not train neural networks; rather,
we assume they have a certain known accuracy. Then,
we simulate the application of neural networks by generating
random outcomes with a probability of being correct based
on a model’s expected accuracy. Consequently, over a
large number of trials, the simulation’s accuracy should
converge to the model’s original accuracy due to the law
of large numbers. Accordingly, over a sufficiently large
number of simulated runs, the resulting accuracy should be
approximately equal to the model’s accuracy, assuming the
outcomes are independent.

The evaluation is contingent on the assumption that the
dataset the models are applied to exhibits similar characteris-
tics to the original test data from which the accuracy value
was derived and sort of ignores the inherent variability in
real-world data. Nevertheless, the simulation is valuable for
exploring theoretical outcomes over a wide range of problem
configurations, i.e., domains. It is permissible to disregard
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this kind of variability here because it is already factored
into the accuracy spectrum and the evaluation takes place at
a higher level. The aim here is not the typical performance
evaluation of neural networks, but rather the evaluation
of the overall system, given a spectrum of trained neural
networks with certain known accuracies, in order to assess
the extent to which the system can be effectively applied to
a problem scenario when a trained model of a certain quality
is available. Actually training and applying neural networks
would not contribute anything to the present evaluation
beyond proving the existence of such models, which is
unquestioned. In general, we consider a binary classification
scenario in which the probability for the positive class is
lower than that for the negative class, i.e., an imbalanced class
distribution. However, it is only imbalanced in terms of the
expected occurrences in practice, not in terms of training data.

A. INSTANCE LEVEL RESULTS

In order to discuss results on the instance level, we show the
solutions of i =< 129_10_20_50_10_95.99_42 >,i € I
as one representative, instructive instance set. Fig. 12 shows
the fault path distribution across the 100 instances i, € i.
There is a positive correlation of p = 0.84 (p <K 0.001)
between the number of fault paths and the average fault path
length (cf. third plotin Fig. 12), i. e., with increasing fault path
length, the number of fault paths also increases. This makes
sense, as there are more permutations with more components
per fault path. Of course, all permutations could only be
possible for 8 = 1.0, which would imply a fully connected
anomaly graph. Usually, due to 8, not all permutations are
feasible. Nevertheless, there are more feasible permutations
with larger o and B values. For a fully connected graph,
there are («|C|)! permutations. The question is how many
permutations are to be expected based on values 8 # 1.0. For
this particular instance set, there are (0.1-129)! = 6.23¢° total
permutations, assuming a fully connected anomaly graph.
However, the median number of ground truth fault paths is
13.5, which represents 2.17¢™° =~ 0% of the total. It is
possible to approximate the number of permutations that are
actually feasible based on the input parameters of the problem
domain (e, B, C), though:

10g((LotICIJ - 1)%)
19 ~ 1
A log( ) ] ()

19

[~ §<La|cu — )+ Le|C) @
j=1

First, in (1), i. e., in the estimated fault path length, (l¢|C|] —
l)g represents the expected number of anomalous connec-
tions, i. e., the number of anomalous links that each anomaly
is expected to have. Consequently, the remaining anomalies
are multiplied by the branching factor. The logarithm is
introduced to account for diminishing or non-linear growth.
For larger networks (o) or higher connectivity (8), fault
paths tend to be longer, but the growth rate is non-linear.
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Lﬁ reflects how the connectivity of the

The denominator

network determines the expected path length. A higher degree
of connectivity results in longer potential fault paths. When
B is small, i. e., when considering a sparse network, 1 — E is
slightly smaller than 1, and — is only slightly larger than

1, indicating limited growth. Wﬁereas for a highly connected
network, i.e., B close to 1, 1 — B approaches 0 and the
total fraction becomes large, reflecting the higher number of
connections and thus longer expected fault paths. Therefore,
the denominator essentially scales the growth rate based on
connectivity.

In (2), the sum represents the number of levels in the
recursive fault path generation process. In each iteration,
it adds an estimate of the number of new fault paths generated
at that level. Thus, at each level j, every anomaly is multiplied
by the branching factor and its remaining potential, i.e.,
the number of anomalies subtracted by j. The currently
considered anomalies are multiplied by the remaining
anomalies, where current and remaining are approximately
equal for one iteration. Thus the square. At each later level of
the procedure, there should be fewer anomalies available to
connect to. The first layer represents the anomalies |«|C|]
in the first iteration of the sum. This is multiplied by the
branching factor g which represents how many anomalies
each anomaly is connected to. However, these anomalies are
again connected to the remaining number of anomalies, i.e.,
la|C|] — 1 for each branch. The —1 is dominated by the —j,
which is why it is sufficient to square the number of anomalies
subtracted by j and multiply it by the branching factor in each
iteration. Therefore, the number of expected paths per level
considers pairwise combinations of remaining anomalies. Itis
an estimate of the feasible permutations of each anomaly,
along with all of its expected associated anomalies, added to
the initial number of anomalous components, e. g., to reflect
entirely isolated components.

The diagnosis system filters out redundant fault paths, e. g.,
fault paths that are a subset of others. Also, adding |«|C]|]
in (2) can be too high, in the most extreme counterexample
all anomalies could be part of a single fault path, no isolated
ones. Nevertheless, the other extreme case is just as possible,
whereby all anomalies are isolated. Therefore, the approx-
imation could generally slightly overestimate the number of
fault paths, yet it should still be a reasonable approximator for
the expected order of magnitude. Each anomalous component
is at least part of one fault path, possibly more based on S.
B has to be divided by 2 because it is an UB. The actual
values will be equally distributed in [0, B]. In this case, the
approximation yields:

[~ |_log((|_0.1 -129] — 1)%)J — 10.90] = 0 3)
l 10g( 02) .

0
2
[~ %(Lo.l S129] — )+ 10.1-129] =12 (4)
j=1
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Accordingly, it estimates the order of magnitude of the
expected number of fault paths rather well, in this case the
true value is &~ 112.5% of the estimated value. However, this
is a somewhat uninteresting case since the sum in (4) has no
influence due to the very small estimated fault path length of
0.9. To provide a more meaningful example, we consider a
configuration witha = 0.3 and 8 = 0.1:

log ((10.3-129] — D%
1 1=
10g(@)

I~

11 4)

11
[~ (Z %(LO-3 -129] — j*) + 10.3 - 129] ~ 643 (6)
j=1

The median ground truth number of fault paths in this
case is 804.5, demonstrating the appropriateness of the
approximation (= 125% of the estimated value), even with
larger estimated fault path lengths of [ = 11 in this case.
The corresponding ground truth average fault path length
is 10.9, i.e., the approximation of [{ also works reasonably
well, in this case almost perfectly. Additionally, Fig. 12 shows
that most instances lead to relatively low solving runtimes,
regardless of the number of ground truth fault paths, with one
exception: Instance n = 95 leads to a runtime of 1000.9 s.
As can be seen in the first two plots, this is also the one with
the most and longest fault paths, but the difference in terms
of runtime is far greater compared to the other two attributes.
For this instance, it is of interest to consider another metric,
the fault path deviations f;, which is defined as the absolute
difference between the number of determined fault paths and
the number of ground truth fault paths (f;). This instance has
a huge deviation of f;, = 3991.

B. CUMULATIVE RESULTS

The following section discusses cumulative results,’ i.e.,
aggregated results across the 100 randomized instances
generated per instance set i € [. Let Gi, = (C,E;) be
the causal graph for some instance i, € i of some instance
set i € I, i.e., the network of effective connections, and
Ai” C C the set of anomalous components. Furthermore,

Ain C E;, represents the ground truth anomaly links with

9https://github.com/tbohne/nesy_diag_bench/blob/main/
res/exp_solutions.zip
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Aj, = {(v1.n) € E;, | (v, ) € A?ﬂ, vi # vz} and F; the
result of a diagnosis run for instance i,, i. ., a determined set
of fault paths. Finally, let F, i, be the set of ground truth fault
paths. We then define the set of determined anomaly links
as Fi, = {(cn, cn—1), (Cn—1, €p-2), -, (Cn—n—1), CO) | ¢i €
fYf € Fi,7}. Based on this, we define p:)" as the anomaly
link score, pll" as the ground truth fault path score, pé as the
ground truth match percentage, and p;" as the anomaly score
as key performance metrics:

F; NA; .
iu_ﬂfﬂﬁmwo ;
Py = A, | )
1.0 else
, Fi NF;
plp = o0l ®)
|Fi, |
Pyi= 2 iy =) ©)
iy€i
St e a|C| — («|C| —TP) TP a0)
3 «|C] «|C]

Fig. 13 primarily serves as a motivation to not exceed
a and B values of 0.2, i.e., to only consider o, 8 €
[0.0, 0.2]. The classification ratio ¢), i.e., the fraction of
components ¢ € C of the diagnosed system that are classified,
is already approaching 1 for some i € I. In such cases,
it basically performs an exhaustive search, i.e., it simply
checks all components, which is not a sensible scenario
for the system. Pl obviously depends on the combination
of o and the connectivity 8. As can be seen in Fig. 13,
there is a general tendency for increasing ¢, to result in
worse ground truth match percentages pé, with the exception
of cases where the model accuracy is extremely high or
even perfect. The conclusion of this plot is that it is
advantageous to minimize ¢/ or to pay close attention to
obtain very accurate models, i.e., y values close to 1.
Generally, FPs (regular components treated as anomalies)
lead to unnecessary additional classifications based on their
affected-by relations. This can result in an overall increased
clr". Conversely, FNs (missed anomalies) can reduce the clr”.
The number of FPs naturally depends on three variables:
o, B, and y (cf. Fig. 14). « in isolation is not able to increase
the number of FPs. In fact, it can even reduce the potential for
them because there are more TPs. However, in combination
with 8 it leads to larger ¢, which also only lead to FPs
if y allows for misclassifications. The number depends on
how far y is away from 1.0 and how many classifications
are performed based on o and B. Even when the value of
y is relatively low, the number of FPs remains relatively
low when there are few classifications based on « and S.
On the other hand, if « and S are both exceedingly high,
and y is perfect, then « and B have no influence whatsoever,
the number of FPs will always be 0. Therefore, the outcome
depends on the interplay of the three. As anticipated and
also visible in Fig. 14, « in isolation is not able to fully
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FIGURE 14. FP analysis.

explain the number of FPs, e.g., « € [5,20] covers the
entire FP range on the x-axis, although a significant positive
correlation is visible (0 = 0.35, p <« 0.05) due to increased
ol B in the second plot is a way worse predictor with no
correlation at all. The third plot shows an expected strong
negative correlation of p = —0.84 (p <« 0.001) between
y and the number of FPs. This is because y is causal in
each case, for all values of o and . The parameters o and
B solely determine the number of applications of y. It may
also be worthwhile to aggregate the variables and analyze the
combined correlation with the number of FPs. The weighted
average %’fjww yields p = 0.39 (p < 0.05), with
weights conforfnilng the aforementioned intuitive explanation
of setting a focus on y and rating « as slightly more important
than 8, i.e., wi = 0.5,w; = 0.3, w3 = 1.0. The fourth
plot aggregates the three variables as ath resulting in p =
0.44 (p < 0.05). Except for B in isolation, there is a quite
significant correlation in all cases, indicating that the number
of FPs indeed correlates with these three variables. It is also
reasonable to exclude cases of 100% accurate models, as this
eliminates the influence of the other two variables («, 8). The
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fifth plot shows the filtered results with p = 0.56 (p < 0.05).
Finally, the sixth plot correlates the number of FPs with the
ratio C"y‘c', which leads to p = 0.55 (p < 0.001). This
provides insight into how the number of classifications affects
the FPs in relation to y. Obviously, this would also be higher
when excluding the 100% cases.

Thus, y in isolation is the variable that exhibits the
strongest (negative) correlation with the number of FPs.
This effect would be even stronger if the range [yL8, y UB]
were to be increased. Obviously, even when the number of
FPs fully depends on the values of «, 8, and y, it is not
necessarily possible to find a simple aggregation function
for them that results in a perfect correlation, given that their
relationship may not be strictly linear. Each entry, i.e., each
instance set i € I, in the plots is color-coded with its pé
performance. Essentially, how many instances were solved
entirely correctly, without a single misclassification.

The number of FNs intuitively depends on the anomaly
percentage and the model accuracy, i.e., o and y, as is
confirmed in Fig. 15.
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FIGURE 15. FN analysis.

The first plot shows a clear correlation between o and
the number of FNs (p = 0.65,p « 0.001). It is a lot
stronger than the correlation between « and the number of
FPs, which was p = 0.35. This is intuitively reasonable, since
anomalies, which are determined by «, are a precondition
for FNs, but not for FPs. As anticipated above, 8 should be
less relevant for FNs, which is also confirmed in the second
plot. Nevertheless, there is a significant negative correlation
of p = —0.36 (p <« 0.05) with B as opposed to the FP case,
which may appear surprising. This can be attributed to the
fact that FNs circumvent the usage of affected-by links by
falsely triggering the termination criterion. One might expect
that the amount of 8 should have no influence on the number
of FNs. As mentioned above, FNs intuitively depend on the
number of anomalies (precondition) and the model accuracy.
Higher B can generally support an increased ¢, and more
classifications can also lead to more misclassifications of
anomalies and thus more FNs. However, the exact opposite
is the case, namely a negative correlation. The FNs increase
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with decreasing B. The effect can be explained as follows:
At lower B, the FNs deactivate fewer links. Deactivating
links would reduce the ¢,", and thus the ¢’ is not reduced at
lower 8, which also preserves the chance for FNs. However,
a lower § also reduces c,’ by itself. This would therefore
mean that the deactivation effect of FNs is stronger than the
increased ¢, due to higher 8. A lower B particularly leads
to situations in which many anomalies are separated from
one another and thus only reachable via input error code and
not via affected-by. Then an FN does not prevent other FNs
from occurring due to the termination criterion. The third plot
again illustrates a crucial relation. There is a strong negative
correlation of p = —0.66 (p <« 0.001) between y and the
number of FNs, which is comprehensible given that higher
model accuracies prevent FNs. Due to the fact that 8 seems
less relevant for the number of FNs (more than for the number
of FPs, but still less than the other two variables), we only
aggregate o and y, i.e., £, in the fourth plot, which shows
a very strong correlation of p = 0.69 (p <« 0.001). Once
again, the filtered version in the fifth plot shows an even
higher correlation of p = 0.78 (p <« 0.001). Finally, for
previously discussed reasons, &€ shows about as much
(p = 0.58, p <« 0.001) positive correlation as in the FP case.

1) RUNTIME ANALYSIS

Let r{" be the average runtime, r;" the median runtime, and
r"** the maximum runtime of some instance set i € [I.
Furthermore, let f represent the average number of fault
paths, f** the maximum number of fault paths, and fl.“,
fi”’“" the analogue for the fault path deviations of some
instance set i € [I. Moreover, let ll?l be the average and
["*" the maximum fault path length. r{" is not significantly
correlating with ¢,* (cf. Fig. 13). At first glance, it may appear
to be due to the outliers in e.g., i =< 10_20_90_95 >.
However, an examination of rl.m reveals that there are slight
changes, but the overall structure remains consistent. There is
no clear correlation between ¢! and the runtime. Therefore,
the number of classifications is not the dominant factor in
determining longer runtimes. The runtime correlates quite
well with the number of fault paths and their length (cf.
Fig. 16). Interestingly, 7% 54 90 95- and 7} 5 90 95~ are
by far the longest (cf. Fig. 13). As shown in Fig. 17, there are
some extreme outliers in this instance set in terms of runtime.
Fig. 17 also illustrates that those perfectly coincide with the
outliers in terms of fault path deviations.

Fig. 18 is a highly insightful plot for i =<
20_10_90_95 =>. First, in this plot, it is evident that with
fi"* = 2146 there is one extreme outlier in terms of
the number of fault paths (instance n = 74). However,
crucially, this fault path outlier does not correspond to the
runtime outliers, as can be seen in the fourth plot. It only
has a runtime of 223.3 s. In contrast, the runtime outliers
(n = 49 : 2806.1 s, n = 81 : 1609.6 s) only have a small
number of fault paths (n = 49 : 35, n = 81 : 78), which
is counterintuitive. The instance n = 49 has a considerable
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FIGURE 18. Outlier analysis.

runtime, yet exhibits only a few fault paths, while it is sort
of the other way around for n = 74. Initially, this seems
to contradict some crucial assumptions. Another noteworthy
aspect is that the outlier in terms of the number of fault paths
(n = 74 : 2146) also has the largest average fault path length
(li‘;4 = 10.96, cf. third plot), which is plausible. Yet, the
second largest fault path length instance (lf3 = 10.19) has
an extremely lower number of fault paths (n = 23 : 81, cf.
second plot). Hence, the prolonged runtimes observed can
only be attributed to the number of fault path deviations (cf.
Fig. 17). Accordingly, the runtime is not only determined by
the number and length of ground truth fault paths, but also by
the length and number of determined (incorrect) fault paths.
Thus, it is not the actual number of fault paths (35) that is of
consequence in the case of n = 49, but rather the significant
fault path deviation of 9802. The rationale is that all potential
paths must be generated and considered, regardless of their
correctness. Again, the fault paths are generated a posteriori
on the basis of the identified anomalies and the symbolic
knowledge of causal links. Essentially, this is a post-hoc fault
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path generation based on graph traversal (depth-first). It thus
appears reasonable to correlate the runtime with the sum of
fault path deviations and the ground truth fault paths, as this
should perfectly correlate with the runtime (cf. Fig. 19).
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FIGURE 19. Runtime analysis.

The clearest correlation can be seen in plots two and four.
Plot two correlates ;" with " + fim“x Vi € I. This shows
a perfect positive correlation (p = 0.99, p <« 0.001), which
confirms that the runtime is most dominantly determined
by the number of fault paths, both ground truth ones and
virtually found ones. The fourth plot correlates r;"* with
fif+ fi“‘v’i € I, again with a perfect positive correlation
(p = 0.98, p <« 0.001). The others show a similar picture,
while, as expected, the average and median can wash out
the effect somewhat due to large outliers. Consequently,
the runtime of the fully automated part of the system is
primarily determined by the post-hoc generation of fault
paths. The system’s efficiency in a real-world, step-by-step
diagnostic scenario is primarily contingent upon the reaction
times of humans that provide the input signals, i.e., the
human interactions. In cases where all data is entered into the
system instantaneously, this analysis holds true. Otherwise,
the runtime is determined by human interaction times, which
are of course subjective and situation-based. Model inference
times are negligible in all experiments with UCR time series
datasets from various domains, as well as for real-world
recordings from the automotive domain in [20]. They can be
considered instant for practical purposes, i.e., in context of
the other elements of diagnosis.

max;e; r{' = 241.3 5 is by far the longest average runtime,
resulting from i =< 10_20_90_95 =>. It is of interest
to examine its FPs (cf. Fig. 20). While it has only slightly
more (FP = 7.3) than < 5209095 > (FP = 6.2)
and < 20_10_90_95 > (FP = 6.6), it has a significantly
larger number of anomalies in one case, and substantially
more connected anomalies in the other, which makes it more
probable that the FPs result in long fault paths. Obviously,
all three sets share the lowest considered model accuracy
y € [0.9,0.95]. As previously discussed, the total number
of fault paths has the greatest impact on runtime. The number
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of fault paths in turn depends on the fault path lengths due to
all the permutations and branches that result from them. This
line of reasoning is perfectly aligned with the second plot of
Fig. 34, which demonstrates a very high positive correlation
of p(f?, 1) = 0.81 (p <K 0.001). FNs are generally
less likely as there are far fewer components that actually
have an anomaly and can thus lead to FNs. Depending on
a € {0.01,0.05,0.1, 0.2} there are either 99%, 95%, 90%
or 80% regular components, i. e., a massive class imbalance.
Therefore, it is expected to have 4, 9, 19 or 99 times as many
FPs as FNs. For instance, in the case of « = 0.2 and |C| =
129, there are 26 anomalies and 103 regular components, i. e.,
~ 4 times as many regular components, and thus it is expected
that there are also 4 times as many FPs as FNs, which is
exactly what can be seen in plots two and four of Fig. 20 for
the @ = 0.2 sets.
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FIGURE 20. Performance analysis.

2) PERFORMANCE ANALYSIS

We must emphasize that only the case of y = 1.0 really
evaluates the correct functioning of the diagnosis system.
The other cases are theoretic reflections on the nature of the
problem as well as some guidance on when the system is still
expected to meet the practitioner’s expectations (evaluation
under certain circumstances). As a first sanity check, all
instance sets with y = 1.0, i.e., < o_B_100_100 >,
achieve 100% ground truth matches (cf. Fig. 20), i.e., every
ground truth fault path is found and no additional ones
(ph = 100% Vi € I g 100_100>)- In cases with y = 1.0,
all other configurations of the instances are irrelevant, the
results will always be entirely correct. This evaluates the
correct functionality of the system if everything is purely
deterministic. The ground truth match percentage pé is simply
counting the boolean values for the instances i, € i, i. e., how
many of them are solved entirely correctly. This emphasizes
that even a single misclassification that is not compensable
can cause a False here and thus have a huge impact on the
result, it is an all-or-nothing metric. A similar argument can
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be made for the average ground truth fault path score py’, only
somewhat more fine-grained. It is a stricter metric compared
to p:)” , since here not only the actual anomalies must be found,
but also no regular components may be classified as such, i. e.,
FPs are harmful. Accordingly, the results are worse in certain
configurations. Now to the practically more realistic scenario
without completely perfect models, i.e., y < 1.0. Here, the
configuration, i. e., the nature of the problem instance, is very
critical for the rehablhty of the approach. Crucially, there can
be a po' = p3' = 1.0 and still p, # 100%. Because of
FPs, the system may find more anomalous links or anomalies
than there actually are. First, we consider the less bright green
colored instance sets in Fig. 20, i. e., pé € [75, 100)%: Here,
= 0.01, B = 0.05, and y € [0.95,0.99]. In this case,
on average, each anomalous link is also identified (p_oi =
1.0), but p3' = 0.97 and only 94% of the ground truth fault
paths on average (p;’ = 0.94). As can be seen in plots two
and four in Fig. 20, this is due to very few FPs and FNs.
Consequently, it can already be concluded that this practically
realistic configuration leads to almost perfect results. Then
to the yellow cases, i.e., pé € [50, 75)%: Three instance
sets, i.e., three configurations, ended up in the group: <
1.5.90.95 >, < 1.10.95_99 >, < 1.20_95_99 >. In all
three cases, there are comparatively few anomalies (only 1 for
|C| = 129). The first variant has inferior model accuracies,
but also a less connected network of components, which
leads to more isolated anomalies. In such a scenario, less
accurate models are less damaging. The other two sets have
more accurate models, but also more connected components.
It looks as if the system still finds every anomalous link
on average in each case, but there simply is no link that
was not found, all (non-existent) links of the empty set
were found. p‘li is further reduced. i =< 1.5 90 95 >
and j =< 1_.20_95_99 > show very similar performance
(1" = 0.79, p/ = 0.78). One has less connectivity but
also less accurate models and the other has the more accurate
models but the highest level of connectivity, which seems to
cancel out the advantage of improved model accuracy. In this
case, k =< 1_10_95_99 > is the best solved configuration
(P1* = 0.85), it is sort of the compromise between the
two previous ones. The model accuracy is improved, but the
connectivity is not increased as much as in < 1_20_95_99 >.
The problems are mainly due to FPs (cf. second plot in
Fig. 20) that clutter the fault paths, noise in a sense. FNs could
lead to missed anomalous links, which did not happen in this
group. In fact, there are FNss, as can be seen in the fourth plot,
but po' = po’ = po* = 1.0.j has zero FNs on average,
but i has 0.08 and & has 0.01 FNs on average. Thus, there
are instances with 1 FN and yet p:)” = 1.0,e.g,n = 13.
The reason for this is that pi)” counts links; if there is only

one anomaly, there are no links. As a reminder: pg’ is based
on fault paths, i. e., it is about edges in identified fault paths.
As introduced in (7), it considers the intersection of predicted
ones and ground truth ones. This means, however, that fault
paths containing only one component are disregarded in this
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FIGURE 21. Classifications vs. Overall performance.

metric. The rationale behind this is that it is insufficient to
find all the anomalies without the correct connections. Also,
in the case of the three instance sets, there cannot be more than
one FN, as there is only one anomaly in each case. This leads
to both F i, and Ain being empty. In such a case, pé)” = 1.0
(cf. (7)). If there is no fault path that was not found, all (non-
existent) fault paths of the empty set were found. However,
the FNs lead to missed anomalles in the case of i and k:

= 0.92,p5 = 1.0, p3* = 0.99. In the end, all three
conflguratlons are still solved rather well. Then to the more
problematic group of pé € [5,50)% with quite a number
of configurations: < 5_5_95_ 99 >, < 5_20.95_99 >,
< 5.10.95.99 >, < 10.5.95.99 >, < 1_10_90_95 >,
< 1.20.90 95 >. Two of them still reach a perfect
Po<1-10.90.95> _ 5<1.20.90.95> _ | 0 However, these
are again cases with « = 0.01, i.e., only one anomaly and
p-3<1 10_90_95> __ 0. 93 = <1 20 90_! 95> — 0.98. The worst
is p0<5 20_95 99> = 0. 93 Wlth p3<5 20_ 95 99> — (0.96. The
other three are somewhere in between. While these values still
appear rather satisfying, there are heavy reductions in terms
of pi i particularly in the case of i =< 1_20_90_95 >, which
has dropped to pi’ = 0.47. This is particularly significant
when comparing it to the only slightly different configuration
< 1.5_90_95 > from the yellow group, compared to which
we observe a reduction of 32% due to the increased f.
Similarly poor results are obtained for i =< 5_20_95_99 >,
which drops to p1’ = 0.6, and j =< 1.10_90_95 >
(P1/ = 0.59). These two configurations are clearly not solved
satisfactorily from a practical perspective. The other three are
better, but probably still inadequate for practical purposes.
The reasons for this are again mainly FPs, i.e., regular
components treated as anomalies, but also some FNs. Finally,
the last group with pé € [0,5)% is far from practically
reasonable. Unsurprisingly, there is no configuration in this
group with po’ = 1.0. Practically all configurations in this
group are infeasible, the most extreme even go down to

p‘li = 0.19, which is the case for i =< 10_20_90_95 >
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For such a high number of anomalies («) and such a high
connectivity (8), a model accuracy like this (y) is completely
insufficient. As you can see in plots two and four in Fig. 20,
there are a lot of FPs in these configurations and also way
more FNs compared to the previous configurations. The FNs
are mainly due to the increase of o in conjunction with the
low y values. When there are no or very few anomalies,
there is also little room for FNs, i.e., for missed anomalies.
In these configurations, the potential for FNs is increased,
so that more anomalies are missed.

Obviously, in the group of instance sets with y = 1.0, all
five metrics (four plots and ground truth match) displayed in
Fig. 21 are also 1 or 100, respectively. In the end, it is also
worth noting that po’ > 0.85Vi € I (cf. Fig. 21), even in case
of challenging configurations.

The accuracy % clearly depends not only on y,
but also on the number of classifications (until convergence),
i.e., not only on the uncertainty itself, but also on the
number of uncertainties that are chained together, i.e., o
and B. It essentially compares correct predictions with all
predictions, which in turn represents the model accuracy if
enough classifications are performed. In principle, high y
values lead to high accuracies, but with an increased clr",
incorrect classifications receive less weight, making it a
decisive factor. Therefore, the accuracy deviates from y with
suboptimal models and very few classifications. With enough
classifications, the accuracy value converges to the expected
value y. The actual number of positives is n, = «|C| based
on the known class distribution, so the expected number of
TPs is t, = yny,. This assumes that there are no or few
entirely missed anomalies, i.e., that most of the n, are actually
classified. Reflections on misses and compensations can be
found below. Likewise, #, = y(1 —a)|C|, f, = (1 — y)(1 —
o)|C|, and f;, = (1 — y)a|C|. This leads to the expected
accuracy in (11).

lim ya|Cl+y(1-)C]
oo [Cllyaty(d—a)+(A=y)1 —a) + (1 = y)a)

=Y
Y

Obviously, this is all based on the expected values 1, 1,
Jp, and f, and only holds on the basis of the law of large

i
ne'

numbers and thus a certain number of classifications nlc".
How many depends on various characteristics, but looking
at Fig. 21 suggests that 77,/ was sufficient for each instance
set i € [. Thus, the accuracy plot in Fig. 21 is rather
uninteresting, it just resembles y . The next metric to consider

. .. . .
is the precision, i.e., ot

. yalC| _ ya
Wl oo YAICI A =pY)A —a)IC] ya+ 0 —y)]—-a)

12)

Thus, the precision converges to a term that depends on y
and o, i.e., it shows the relationship between the model’s
accuracy and the class distribution, indicating how the
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FIGURE 22. Evaluation metrics for classifications.

expected precision is affected by those factors. However,
when o = 0.5, i.e., when the classes are balanced, it again

converges to . And finally the recall tptfﬁl

yalC| _,
yalCl+ (1 — y)alC]

13)

i
e — 00

The expected recall again converges to y, just as the accuracy.
It is essentially the accuracy within the positive class
distribution. Since the F'1 score balances precision and recall,
it is clear what it depends on. In conclusion, these metrics
do not have to be analyzed empirically, it is known what to
expect analytically. It can only give insights w.r.t. the question
of whether there already had been enough classifications for
convergence for each instance set. Finally, precision is the
most interesting metric since it is not necessarily converging
to the model accuracy.

Fig. 22 shows that the recall is rather high (= y)
throughout the instance sets, i. e., the system is able to recall
anomalies quite well, which is particularly significant for
diagnosis systems, as FNs are so undesirable in diagnostic
problems. Recall essentially measures how many relevant
cases were identified. Missing even one true anomaly could
have serious consequences in practical scenarios. As the
second plot shows, the precision is not as high, so some
regular components are classified as anomalies. The accuracy
of the anomaly prediction is less critical because the most
important aspect of diagnosis is to find the actual problems.
This is reflected in the recall metric and also visualized by the
previously considered pg” . If the system detects all anomalous
links and only considers a few more, actually non-anomalous
links, as anomalies, it is usually not as bad. However, it is
important to note that reaching a higher recall than precision
is not a result of some prioritizing mechanism built into the
system, it is purely the result of the problem configuration.
As explained, it is simply less likely to misclassify an
anomaly compared to a regular signal, but this is just due
to the fact that there are less anomalies to misclassify and
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not a result of the system being better at recognizing true
anomalies. This is a quite crucial difference. If we would
consider instance sets with anomaly percentages of, e.g.,
50, this effect would no longer be present (precision would
also be =~ y). However, as argued before, this is neither
reasonable from a practical perspective, nor does it make
much sense to use the presented diagnosis system in such
a scenario. The presented system is designed for problems
where anomalies are the rare case, and having anomalies all
over the place would also compromise the notion of regular
versus anomaly. To give a specific example: In instance set
i =< 5.20_90_95 >, we see a very poor precision, but
still a quite high recall. This is due to a large number of
FPs, as you can see in Fig. 32. So the system identified
most of the crucial issues, but the fault paths are cluttered
with some additional components that actually do not show
any anomalous behavior. The practical consequences of
this highly depend on the application domain, but the
plots allow to gain a good understanding of whether a
particular configuration would be feasible in the considered
domain.

3) MISSED ANOMALIES

pé)” , pg’ and recall may seem to measure very similar aspects,
they are not equal, though. First, we have to note that there
is a difference between TP and n,, i. e., between the number
of true positive classifications and the actual ground truth
number of positive instances. Likewise for TN and n,,. Some
ground truth positive components may not be classified at
all. Furthermore, even with zero FNs, the system does not
necessarily find all anomalies and anomalous links due to the
abortion criterion of stopping when arriving at a component
classified as regular, i. e., not following affected-by relations
of negatively classified components. This raises the question
of missed classifications that are not counted as FNs, although
they are ground truth positives. They are not counted at all,
which leads to the interesting additional metric of how many
ground truth anomalies are missed with the approach, either
directly due to FNs, i.e., misclassified anomalies, or as a
result of this due to the abortion criterion, or even based on
the abortion criterion in the case of a TN. A simple case
illustrating both indirect scenarios is shown in Fig. 23. If the
first classification is a TN, the anomalies are missed due to
the abortion criterion. If, on the other hand, it is a FN, the
two anomalies are missed due to a false classification. Thus,
some can be missed as a cost for early stopping (efficiency
reasons), i. €., TNs but still some anomalies following it. This
is the result of some affected-by relations that are not relevant
in the case, the anomaly is not propagated further. This can
happen as affected-by does not stand for guaranteed error
propagation, it is just possible that an error is propagated
from the root cause to the end of an affected-by chain. Yet
this cannot happen in the synthetic cases: The instances are
constructed in such a way that there is always at least one error
code pointing to some ground truth fault path. Even if we
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assume the first component in Fig. 23 to be a distractor, which
is the only case in which the scenario of a TN classification
before anomalies is possible, there would be a ground truth
fault path {C — B}. So even if the corresponding input
error points to e. g., {A, B}, it would be possible to find the
anomalies via the suspect component B. This scenario is
therefore not possible in the synthetic case. However, the case
of missed anomalies due to FNs is just as possible as in real-
world scenarios. FNs can also trigger the abortion criterion so
that there could be a branch that is not investigated because
of early stopping. If there are anomalies in this branch, they
are not reflected in the F'1 score. Those are not FNs, they
were not classified at all. Hence, there can be an F'1 score of
1.0, although many anomalies may be missed. It is simple to
find a degenerate example where after one FN (or TN in real-
world scenarios) there is an arbitrary high number of missed
anomalies. Therefore, one misclassification can in principle
lead to an arbitrary number of missed anomalous links due
to a long chain of affected-by relations. We have no solution
for the unfortunate case where an anomaly is hidden and not
reachable via error code or chain of affected-by links. There
is a difference between situations in which there is no path to
the anomaly, and those in which there is a path, but the error
is not propagated. The first (and second) case is not possible
in the synthetic scenario as it is ensured to have such a path,
but possible in practice in situations of an incompleteness of
the underlying symbolic knowledge representation that can
be resolved by extending it.

A workaround could be to increase the probability of
finding them, e.g., via an enhanced connectivity, although
this is obviously not something that can be invented in a
practical scenario, it is given based on the properties of the
domain. But one can at least reason about likelihoods of
such cases. It is more likely to miss something in a very
sparse graph. The system has to follow some compromise
between increasing the likelihood of finding an issue and still
keeping the diagnosis effort limited, i.e., prevent doing an
exhaustive search over all components. It is another argument
to avoid FNs with a higher priority than FPs, as mentioned,
the priority in diagnosis problems anyway. It is reinforced
here, FPs lead to redundant classifications, longer fault paths,
etc., but FPs are aspects we consider problematic that actually
are not; it would be way worse to miss components that are
indeed erroneous (FNs). In a nutshell: Both FPs and FNs
should be avoided, but FPs are not as bad, they just result
in being overly cautious in a way — it is more important
to find problems than to not call anything a problem that
is not. Nevertheless, it is also suboptimal to e. g., replace
a wrongly identified root cause (FP) in [20] that is in fact
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functioning perfectly. Moreover, one should not understate
the potential practical costs of FPs in terms of unnecessary
recursive investigations along causal chains. Even if these
chains are typically not extensive, depending on § and y,
it nonetheless entails additional effort. In case of an FP, either
the entity of diagnosis has no problem at all, or there is
another problem and another diagnosis run has to be started.
Then it is very unlikely to have another misclassification
at the same component. Obviously, this holds only when
having a second step that verifies, a human-in-the-loop.
If something hints that the system may be wrong, the human
always has the option to not follow the suggestions, or at
least to repeat the process. This should be highlighted: When
there are results or recommendations that are not entirely
convincing, then it is not implausible to simply repeat the
process, because it is very unlikely to again have the same
false prediction. It is non-deterministic in a way due to
changes in the records. To conclude, the difference between
recall and both pg’ and p;” is that the latter measure how many
anomalies or anomalous links of the ground truth were found,
whereas recall is only considering the confusion matrix,
so that missed anomalies are not considered at all. Hence,
even with a perfect recall, there are not necessarily perfect
ln ln . . . . .
po and p;' due to the abortion criterion. As anticipated,
it can be of interest to measure the missed anomalies. The
number of ground truth anomalies per instance is known,
i.e., |Cla, and also the number of found anomalies fp + p.
In most cases, the difference between the two is negative
and in some cases it is zero, which means that the system
usually finds more anomalies than expected due to FPs.
Sometimes it finds the exact number of expected anomalies
in the experiments, but never less than the expected. It is
also interesting to consider the number of missed anomalies
directly due to misclassifications (not as a consequence), i. €.,
mlI” = fn. mt e [0.0,1.9] across all the instance sets
i € I. Finally, we also measure the entirely missed ones,
i.e., anomalies that were not even considered due to the
abortion criterion (based on FN): m? = |Cla — mlI" — 1p.
my' € [0.0,0.3]. In the end, all missed anomalies can be
found with ml3” := |Cla—tp. Obviously, mll'] +m12"+tp = |Cla
and mll" + m;” = m;”. By this, we can tell that there are
very few cases of entirely missed components, but there are
some. The potential for this would be greater if there were
longer fault paths, i. e., more chained anomalies. In our case,
the anomalies are distributed rather uniformly across the
component space; if they were more clustered, there would be
more misses. This could be further analyzed in future work,
as anomalies are not necessarily always evenly distributed.
On the contrary, in practice it is probably often the case that
anomalies are co-occurring in subsystems. The benchmark
assumes a uniform distribution of anomalies across the
component space, which may not accurately reflect all
practical scenarios, especially those where faults are typically
clustered within specific subsystems. However, in the context
of industrial anomaly detection, both cases are observed:
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There are domains with uniformly distributed anomalies
across the component space, in particular industrial settings
with multiple parallel fault origins, but also domains with
clustered anomalies in certain subsystems. There is evidence
that fault detection and isolation should not be limited to
local subsystems, but rather applied to large-scale systems
as in this work, both with single and multiple fault
origins [70]. As [71] emphasizes, a significant body of
literature on fault diagnosis focuses on a single fault at a time,
without addressing the diagnosis of root causes of multiple
simultaneous faults. The authors argue that industrial systems
are vulnerable to multiple faults concurrently, which may or
may not be interconnected, thereby increasing computational
complexity. It is noteworthy that while the evaluation in this
work focuses on the rather uniform distribution of multiple
parallel faults, it does include a certain degree of clustered
anomalies. The clusters are only unlikely to be very large
depending on the configuration.

Now we can explain a seemingly counterintuitive obser-
vation: There are quite high F 1 scores for instance sets i € I
with very low pé, e. g., the red-colored ones in Fig. 21. But gy’
is still quite high in these cases, such that only a small fraction
of the ground truth fault paths is not found. On the other hand,
a lower F1 score always has negative impact on the overall
ground truth match performance. The correlation p(F1, pé)
is only 0.56 (p < 0.001), but this is due to the fact that even
a perfect F1 does not guarantee a high pg (cf. Fig. 23). The
situation of lower F1 will always lead to worse pé, though.
The F'1 score does not correlate with i’ (o = 0.05, p > 0.5,
cf. Fig. 24), which confirms that 7, is sufficient for the
precision and recall to converge in case of each instance set
i € 1. However, even few misclassifications can have a huge
impact in terms of ground truth matches. Finally, the F 1 score
fairly perfectly correlates with p1’ (0 = 0.86,p < 0.001,
cf. Fig. 24). This shows that a high ratio of found ground
truth fault paths is insufficient to end up with a high pé
and also that quite few anomalies are missed (not classified
due to the phenomena illustrated in Fig. 23) on average.
The F1 score does not correlate as strongly with py’ (0 =
0.49, p « 0.05, cf. Fig. 24), which again is a result of the
above reasoning. There is a higher correlation with p3’ (p =
0.72,p « 0.001), e. g., due to cases of fault paths of length
one, but also not as high for the same reasons. Nevertheless,
a higher F1 score is generally helpful for p:)" and p;". Thus,
the above counterintuitive observation is partially due to
missed anomalies, i.e., anomalous components that are not
wrongly classified and thus part of F1, but that are not
classified at all due to the reasons illustrated in Fig. 23. Again,
F1 and plo” and p;” are correlating as one would intuitively
expect, just not as much due to the discussed reasons.
Intuitively, when F'1 increases, i. e., when the classifications
improve, the end results also improve, but this is only a
necessary and not a sufficient condition (except for y =
1.0). Even with almost perfect classifications, one does not
necessarily arrive at equally good end results; this also
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FIGURE 24. F1 analysis.

depends on the symbolic side, e. g., due to the termination
criterion.

The next aspect to analyze is the impact of missed
anomalies on the overall performance of the system shown
in Fig. 25. We clearly see the expected negative correlations.
The three columns within the po’ row show almost the same
level of correlation. The row for py’ exhibits a way stronger
significant correlation (p ~ —0.85,p « 0.001) compared
to the row for py’, in which plots one and three roughly
agree (p ~ —0.35,p <« 0.05). The middle plot shows
a stronger negative correlation p(p’, rﬁzi) = —048,p K
0.05. This is to be expected because pf)” is not affected by
FPs and thus purely determined by FNs and early stoppings,
whereas the fault paths are. Interestingly, the correlations
between p3' and the mi,' are somewhat between the two
rows in Fig. 25 (p =~ —0.65,p <« 0.001). Since most of
the misses in the considered scenarios are caused by direct
misclassifications, this is unexpected. The misses due to FNs
on isolated components have no influence on po’, but on p3
The stronger correlation of misses with py’ compared to p3’
can be explained as follows. Generally, the entries are similar
to the p"oi rows, but there is an additional vertical line of entries
at niz,," that is very close to zero. A fairly low p3’ with almost
Z€ero rﬁni can occur, as one miss leads to an anomaly score of
zero for instances with only one anomaly. Nevertheless, this
is very unlikely and still leads to p3’ > 0.92 for the considered
model accuracies over 100 instances of a set. Ultimately,
it depends on «. If « = 0.01, one miss has a high impact
on the performance, if @« = 0.2, one miss is not so decisive,
which is why the worst p3° & 0.92 covers the entire 7173’ range
[0.0, 2.1]. For po', it simply takes more misses to really have
an impact.

4) PERFORMANCE IMPACT OF PARAMETERS

Based on the previously discussed convergence, we can
directly look at the correlation between the average model
accuracy y (instead of the accuracy score) and the most
important overall performance metrics (cf. Fig. 26).
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FIGURE 25. Impact of missed anomalies.
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FIGURE 26. y against performance.

There is a clear and obvious tendency that higher y values
appear with higher po’ (o(y,po’) = 0.76,p < 0.001)
and higher pi’ (o(y,p1)) = 0.76,p <« 0.001) values.
But the model accuracy is certainly not the only factor
determining the overall performance (if y < 1.0). This
is clearly illustrated by the instance sets with y = 0.97,
where there are plln values ranging from below 0.6 to above

0.9. Likewise for pg" and p;", although the ranges are a
lot smaller with [0.93,1.0] and [0.96, 1.0]. Additionally,
higher y values appear with higher pé values (p(y, pé) =
0.74,p <« 0.001), which is intuitively plausible. The
diagnosis success percentage d', which measures the cases
in which the system ends up with a diagnosis, i.e., at
least one fault path, is not significantly correlating with
v, p(y,d}) = 0.28,p > 0.05, and seems to be mostly
determined by other factors. Likewise for the fi" and fi’"“x,
which show insignificant negative correlations. Intuitively,
better models lead to less deviations. Similarly, Fig. 27 shows
a tendency that lower B values seem to be beneficial, but
it is not in isolation able to explain the results and also
way less obvious. There is no significant correlation with
po' and p3', but quite some negative correlation with pi’
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FIGURE 27. B against performance.

(o(B,p1") = —0.41,p <« 0.05). The remaining ones again
do not show a significant correlation. In summary, we see a
sort of cluster in the bottom-right quadrant of the second plot,
i.e., lower affected-by scores more often occur with higher
pll”. Overall, it seems as if increasing 8 does more damage
than it helps. Although this notion is a bit misleading: 8 is
part of the domain knowledge and not some parameter that
can be arbitrarily lowered or increased. A higher 8 simply
represents a more complex problem that is thus harder to
solve with high accuracy. The tendency for worse solutions is
thus simply the result of an increased problem complexity in
combination with an insufficient model accuracy. Therefore,
the positive and negative aspects of it do not seem to
balance out in the parameter space considered in this paper,
the negative impact (increased complexity) seems to be
stronger. However, the increased connectivity is required
for compensation of misclassifications, which is analyzed in
Fig. 39.

Again, considering the ratio % (cf. Fig. 28), we can observe
the cluster for smaller ratios, i.e., more accurate models or
less anomalies seem to help for an overall better performance,
which is not surprising. With (%, po’) = —0.45, p < 0.05,
p(g,pg) = —0.45,p < 0.05 and p(%, d) = 04,p <
0.05, there are only three significant correlations with a
magnitude > 0.4. Interestingly, for the first two metrics,
a smaller ratio leads to better performance, but for dj this
trend is inverted. However, this is only due to the instance
sets with ¢ = 0.01. In other words: An increase in « helps to
avoid situations in which only one misclassification leads to
no_diag. Furthermore, it is surprising that it does not correlate
significantly with p3’, which is closely related to py'. The
resulting ranges are also comparable: p3’ € [0.9, 1.0]Vi € I
and p"oi € [0.85,1.0]Vi € I. To answer this question,
it is reasonable to consider o and y in isolation against
p3'. There is no significant correlation between p3' and a.
However, p(y, p3') = 0.92 (p <« 0.001). Thus, « is irrelevant
for the anomaly score, because in principle there can be
p3t € [0.0, 1.0] for each «, depending on y. This is different
for py’ for the reasons already mentioned. Each value of «
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FIGURE 28. % against performance.

enables the entire observed p'3i range [0.92, 1.0], which is
not the case for py’ due to o = 0.01, where py' = 1.0Vi €
Iy g 18 yus..

« by itself is not able to explain the overall performance
either. Obviously, fewer anomalies seem to help, and the
same three variable pairs exhibit the largest correlations, i.e.,
pla, po’) = —0.42 (p < 0.05), pla,ph) = —0.43 (p <
0.05) and p(a, di) = 0.4 (p <« 0.05). We also considered the
ratio % There is not a single significant correlation between
Y and the six metrics considered in the previous Figures.
Generally, the worse the model, the better the graph should
be connected in order to compensate wrong classifications.
However, this also has the negative side-effect of leading
to more classifications and thus also to more potential for
misclassifications. As discussed before, p87 is not affected by
this as much as plI”.

Fig. 29 also has a quite clear message: The quotient %‘[
should be small for good performance. There is a strong
negative correlation p(%‘l,p'o") = —0.58 (p <« 0.001).
Intuitively, when there are more classifications or a weaker
model{ accuracy, there is a lower pg", except for y = 1.0,

then n;” is irrelevant. Again, there is no significant correlation
with p3’, as suboptimal results can be obtained with very few
(e. g., one) classifications. Furthermore, there is a quite high
negative correlation p(%,pé) = —0.52 (p <« 0.001) with
the same intuitive understanding. Finally, there is a positive
correlation of the same magnitude with di. The other plots
show insignificant correlations. In case of py’ this is due to the
perfectly accurate models, the trend is clearly visible in the
plot. For the last two plots, i. e., the fault path deviation, this is
due to the large outliers and the cases with perfectly accurate
models. Trivially, the performance is worse when having too
many classifications with a too poor model accuracy.

n! is by itself not as well-suited to explain the effect.
y is always very close to 1.0, which means that the
denominator seems neglectable. Showing the same tendency,
the correlations are a bit weaker, though, e. g., ,o(n'ci , ﬁoi) =
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FIGURE 29. '% against performance.

—0.53 (p < 0.001) and p(7i', p}) = —0.48 (p < 0.05). This
is due to the cases of perfectly accurate models.

Now we start some reflections on the differences |po’ — F 1|
and |py! — F1|. First, we consider a large |pol — F1|: When
F1 <« po', there are wrong classifications that did not
affect pg’ as much as they did F1, e.g., a lot of FPs that
did not prevent the further search for truly anomalous links.
As argued before, in some situations it can even help to
explore some unexplored areas in the network. On the other
hand, F1 > po’ can happen in situation of early stopping,
e. g., there could be only one FN that is not affecting F'1 that
much that hides a long chain of missed anomalies behind it,
causing a poor pg’. Then to the case of a large |p7’ — 17_1|:
One could assume that F'1 should generally be closer to pl{’,
because both directly depend on classification results, i.e.,
the confusion matrix. The confusion matrix is based on the
uncertainty of the models, but also on n?’, which is in turn
based on « and B. A large difference between the two is
not surprising, though, because misclassifications are more
damaging to pll” . A single misclassification can affect a whole
lot of fault paths. The first plot in Fig. 30 shows a strong
correlation p(po’, p1’) = 0.64 (p <« 0.001) between the
two most important performance metrics, which is intuitively
plausible as they both depend on accurate models and a
reasonable problem structure. The next three plots consider
the product @B on the y-axis, which may be better suited
to show their influence than the ratio, since it enables to
also judge the magnitude. The second plot does not show
a significant correlation p(af, [po’ — F1|) = —0.24 (p >
0.05), not even if y = 1.0 instances are filtered out.
Nevertheless, this is an indication that with smaller products,
there are more early stoppings or FPs. The likelihood of FPs
increases with smaller « values, since there are less ground
truth anomalies. The following plots show similar or slightly
larger correlation coefficients, except the final one. The last
plot shows a strong positive correlation p(ef, |p1’ — F1|) =
0.57 (p <« 0.001). An interpretation could be that with
increased B, the number of fault paths that are affected by
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FIGURE 30. « - 8 against performance.

a misclassification increases. Overall, there is a tendency of
better performance for smaller products. In particular, the
fourth plot clearly shows a cluster of good results in the
bottom-right quadrant.

Fig. 31 shows the same plots for the ratio % instead
of the product. The second plot shows a stronger negative
correlation compared to the product. However, it only
becomes significant when filtering out the y = 1.0 cases,
then it is p(, Ipo’ — F1]) = —0.45 (p < 0.05). This is
an indication that with smaller ratios, i. e., larger connectivity
due to B, there are more early stoppings or FPs, e. g., due to
more classifications. In particular when the ratio is < 1, i.e.,
when the connectivity is higher than the anomaly percentage,
po’ is usually way better than F'1. Again, F 1 is only concerned
with the performed classifications, whereas pg” alsc_) includes

components that have not even been classified. If pg’ is better
than the F1 score (the average F1 across all instance sets
is 0.9, the average p'oi is 0.96, and the average p'3i is 0.97),
it can be due to FPs. FPs negatively affect the F'1 score, but
have no negative effect on the pg" score, they can even lead
to an accidental discovery of the previously described case
of a hidden anomaly. The third plot shows a slightly stronger
negative correlation (,o(%, p'oi) = —0.29) compared to the
product. However, it is narrowly insignificant (p = 0.07).
Nevertheless, in this case a larger B, i.e., a smaller % ratio,

seems beneficial for pg, which indicates the compensational
effect of 8. As argued before, increasing § has negative
side-effects for the overall performance, but those do not
affect pg’. p:)" benefits from the increased c,’. In summary,
B in isolation does not exhibit a significant correlation with
po’ (cf. Fig. 27), since it is mostly affected by other factors.
However, in relation to «, larger 8 values improve the pf)”
performance. Crucially, the final plot again only shows a
significant correlation when filtering out the y = 1.0 cases
(p(%, |p1t — F1) = —0.4,p <« 0.05), which is the one
witff a very strong positive correlation in case of the product
(cf. Fig. 30). Hence, the sign is different, because this time
larger B lead to smaller ratios, which in turn confirms the
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FIGURE 32. Confusion matrix.

interpretation that the number of affected fault paths increases
with larger B. The key observation is that the difference is
usually negative, meaning that the average F1 is usually
better than p; . p:)” had the advantage of not being affected by
FPs, the fault paths are, though. Very crucially even, a single
FP can turn a whole set of otherwise correctly identified
ground truth fault paths into a mismatch.

Fig. 32 shows the confusion matrix plots. FPs and FNs
were already discussed as part of Fig. 20. It is expected to
have 4, 9, 19 or 99 times as many FPs as FNs, depending on
a. The same is of course true for the TNs compared to the
TPs. Obviously, the number of TPs is closely related to «,
it naturally increases with «. One can clearly observe four
groups along the instance sets in the average TP plot with only
very little variance within each group. This grouping perfectly
resonates with « € {0.05, 0.2, 0.1, 0.01}. For the TNs, there
is no such clear grouping, which might be surprising at first.
It seems that the system is a lot more reliable in predicting
anomalies compared to regular signals. FPs can lead to more
classifications, while FNs can prevent them. For FNs, the
effect is less visible, because there simply are less FNs. The
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effect can be approximated by subtracting the additional TN
classifications due to FPs from the TNs; FP- 8 -|C| should be
a reasonable approximation. However, it also depends on the
number of components already classified at the time of the
considered FP. It is insufficient to simply subtract the FPs,
since each FP can increase cl," and thus lead to more TNs.
One would have to subtract all the TN classifications they
led to based on S. The TPs are a lot less disturbed, because
there simply is not much alternative. Either the true anomaly
is predicted as one, then it is a TP, or the true anomaly is
predicted as negative, which leads to a FN. But the potential
for this is rather small, as mentioned before, the potential
for the other way around is 4 to 99 times as high. Thus, the
system is better at predicting positives, because there simply
is less potential for error. Generally, it is rather unlikely to
classify something incorrectly, since y; > 0.9Vi € I, but if
it happens, it is a lot less likely to predict wrong and miss an
anomaly with this. Simply because there are fewer anomalies
than regular signals.

5) FAULT PATH ANALYSIS

The second plot in Fig. 33 shows that there are massive
outliers in terms of the number of fault paths. max;¢; fia ~ 65,
while max;e /"™ = 2146. Note the logarithmic x-axis.
The combinatorial explosion again happens in the cases of
< 20_10_y"®_yUB > The fault path length depends on the
combination of @ and B. This can be seen very well in plot
six of Fig. 34. In general, more fault paths and longer fault
paths, which usually coincide, are harder to match completely
correctly, which is why pé is way worse for larger numbers
of fault paths that are longer, except when having perfectly
accurate models. Essentially, more ground truth fault paths
result from longer fault paths, i.e., fault paths involving
more components that are interconnected, leading to more

permutations.
Fig. 33 is best explained by the following Fig. 34. First,
there is the insignificant p(8,f") = —0.16 (p > 0.05)

(cf. first plot). This is because S only has an influence in
relation to «. The second plot shows the expected almost
perfect correlation of p(f?, [{) = 0.81 (p <« 0.001). This
is because longer fault paths are based on more anomalies,
which in turn allow more permutations and thus increase the
number. The third and fourth plots indicate that « is a good
predictor for £ and I, i.e., p(a, f) = 0.76 (p < 0.001) and
oo, ll.”) = 0.5 (p < 0.05). The most crucial point is that the
product af correlates perfectly well with the number of fault
paths and their lengths, i.e., p(aB, f*) = 0.69 (p <« 0.001)
and p(ap, I) = 0.96 (p <« 0.001). However, the effect on
/i is way stronger for o, which is a precondition for any fault
paths. 8, on the other hand, is not able to affect fl.“ by itself,
only in combination with «, i. e., B controls it when « is high
enough. Many anomalies are not chained together, but mostly
isolated. Nevertheless, the 8 influence on the length of fault
paths and thus also on the number of fault paths is absolutely
decisive and confirmed by the aforementioned correlation
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coefficients, in particular by the increase in the correlation
coefficient with [{' from 0.5 to 0.96 by multiplying & and 8.

Finally, we can estimate the actual number of feasible
permutations, i. e., fl.“ with the earlier introduced formula (2).
The average approximation percentage across all instance
sets is 89.53, i.e., the actual number of fault paths is on
average 89.53% of the estimated. The percentage range
across all instance sets is [58, 150], the median is 87.83%.
Thus, the approximation marginally overestimates, butis very
useful to judge the magnitude, at least for the parameter
ranges considered in this work. Also of interest are the fault
path deviations shown in Fig. 35. The range of fault path
deviations within one instance set is rather large, [2, 30246]
in the most extreme case. Note the logarithmic x-axis. So,
if it is important not only to find all anomalies, but also
not to call anything an anomaly that is not, the results can
get arbitrarily poor in some configurations. Each instance
set has at least one instance with O fault path deviations,
except < 10_20_90_95 > with at least 2. Usually, fim“x <
105, in many cases even fi”’“x < 10, but with fi’"“x €
{3991, 30246, 499, 9802, 1085} for i € {< 10_20_95_99 >,
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FIGURE 35. Fault path deviation.

< 10_20_90_95 >, < 5_20_90_95 >, < 20_10_90_95 >,
< 20_10_95_99 >} there are some extreme exceptions.
Again, each set with y = 1.0 achieves 0 deviations according
to expectation.

Unsurprisingly, fi“ is highest in instance sets with the
longest and most fault paths with imperfect models. Although
not always: i =< 5_20_90_95 > seems to not fit that
scheme. It has only as many and as long fault paths as
many other sets with smaller fi“, but in this case the huge
number of deviations can be explained with the comparatively
low y. There are some more instance sets with such a
level of y, but those either have fewer anomalies, are less
connected, or are exploding in terms of deviations, e.g.,
i =< 10_20_90_95 =>. The even more extreme case of
o = B = 0.2 turned out to be infeasible due to excessively
large fi“. In fact, some more nuanced tests revealed that
the combinatorial explosion already occasionally occurs for
instances with « = 0.2, 8 = 0.12. Also, all instance sets
with a significantly large fi“ belong to the red category in
terms of p5, i.e., p5 € [0, 5)%. This is expected, when there
are large deviations, not a lot of ground truth fault paths
are matched. i =< 10_20_90_95 > has the largest fi“.
Compared to j =< 10_20_95_99 > it has less accurate
models, which explains the difference. Compared to the
second highest fk“ for k =< 20_.10_90_95 >, it has
equally accurate models and less anomalies that are more
connected. Once again, the connectivity seems to be very
damaging: i has less anomalies, which should be easier
to solve, but the increased connectivity leads to a higher
potential for misclassifications. The beneficial effect of a
higher connectivity, which is that a missed anomaly could
be reached again via another path, seems to be canceled out.
The misclassified component in such a case is not considered
again, but components that it could be affected by that were
not considered could be reached and potentially identified as
anomalies then. It is of interest to measure how often this
happens: Anomalous affecting components that were missed
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due to a misclassification and then found via another path.
Therefore, anomalies that are not recognized as such, which
triggers the abortion criterion for the considered branch. This
means that potential anomalies within this branch are missed,
except when they are reachable via another path, which would
exactly be the compensating factor one intuitively might
assign to B. Intuitively, one could assume that the higher 8,
the better it should be in case of inaccuracy. This is due to the
fact that at some point each misclassification is reached again.
Obviously, each component is only classified once. This is a
problem when the wrongly classified component is either the
root cause, or the only connection to a potentially long branch
of anomalies, i.e., the critical point. Otherwise it might be
possible to reach it via another path. As a future extension,
it might be reasonable to search for such critical paths in the
causal network and treat them separately, e. g., by classifying
certain components more than once if they appear on a critical
path. It is a lot less likely to misclassify a component twice.
There is generally a tradeoff: The number of classifications
(and corresponding recordings) should be small to minimize
the effort and runtime, but at the same time there should be
as few mistakes as possible. Of course, there will also be the
vice versa case: A previously correct classification followed
by a misclassification. It might be reasonable to approach
this heuristically: If there is an anomaly that turns out to
be confirmed by other causal links on the critical path, it is
assumed to be true, otherwise it could be verified again.
While the system may appear very fragile to a single
misclassification on a critical path, it is rarely a matter of
concern. First, FPs are not problematic in this regard, as they
may lead to additional work, but not to any missed anomalies.
FNs, on the other hand, are very rare on their own and
even less frequently leading to additionally missed anomalies.
We analyze this effect in detail in the following section and
show that missed anomalies due to FNs are extremely rare.

6) COMPENSATION OF POTENTIALLY MISSED ANOMALIES
We are interested, in particular, in how well the system is
able to compensate model inaccuracies through structural
knowledge, i.e., whether there is some clear compensation
and thus a beneficial effect, or whether it is more balanced
out and B has positive and negative effects on the overall
performance. The positive effect is that it can compensate
FNs by reaching potentially missed anomalies again via
another link. The negative effect is that it leads to higher ¢’
and thus also to more potential for misclassifications. The
question is whether these two effects cancel each other out.
First, we introduce the compensation by affected-by savior
metric cll'7 that is best described by Fig. 36.

Initially, we go through the affected-by relations of each
FN and search for ground truth anomalies. If they were found
via another link, there is a cll” compensation (cf. Fig. 36).
The following classification is not required to be correct
for this, we consider the additional chance to find it as
the compensation. If this is not the case, i.e., the ground
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truth anomaly is not found via another link, we check if it
would have been possible via another link, this would be a
missed chance, metric c'z", i.e., an unclassified component
that has a link pointing to the missed one. Again, it is not
about the classification result, and also not about whether
the component is somehow reachable, we only count the
existence of such a link. If both are not the case, it is counted
as no second chance, metric c;”. Crucially, the savior is only
counted once for one component, even when multiple FNs
are pointing to the same potentially missed anomaly. Thus,
it represents an exists relation. In addition, each component
is counted at most once as a savior, so that the ground truth
number of anomalies represents a natural upper bound for
the number of saviors in an instance. The same holds for
clz". A missed chance is only counted once, even if there are
many links that could have been used. It is worth noting
that we do not follow the branches after a missed anomaly
that could potentially include arbitrary many more missed
anomalies. Fig. 37 is suited to confirm whether an increasing
B is beneficial for the results. Surprisingly, in plot 1 in Fig. 37,
it can be seen that ¢’ is not significantly correlating with
B.i.e., p(B,¢1") = —0.15(p > 0.05). This indicates that
the lowest considered § = 0.01 may still be sufficient to
allow for the required compensation, or at least that not the
entire B range is necessary, i.e., that a further increase in
B beyond a certain point is no longer useful in terms of
compensation. The parameter may essentially only vary in
a range in which the lower fraction already enables the full
amount of compensation, which renders the remaining larger
part of the range B € [0.01, 0.2] irrelevant in this regard.
Furthermore, in cases where anomalies are missed due to
FNs there seems to also be always enough connectivity for
compensation. And, on the other hand, when there are lower
and thus not enough connectivity for compensation, it is also
very unlikely to miss anomalies, so that no cl{’ is required.
This is confirmed by the following correlation. If saviors
would not reduce missed anomalies, there would be a high
correlation between the two. There is a perfect correlation of
p = 1.0(p <« 0.001) between ¢;' and potentially missed
anomalies, i.e., anomalies that would have been missed
without a savior. Thus, if there are a lot of missed anomalies,
there is also a high CII”. If there are few missed anomalies,
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FIGURE 37. Compensation correlation.

there is a low cll']. There is a natural balance between the two:

The system will not have a high clz'7 without a high cll", and
vice versa. Because in such a scenario, the anomalies are sort
of isolated, which is also not increasing cl3" as there simply
are very few or no such missed anomalies.

We have already seen that high 8 values can have a quite
negative impact on the overall performance (cf. Fig. 27),
which shows that there might be an incentive to use the
system in domains with lower connectivity. Although not too
low either, because the system depends on a certain level
of connectivity. However, this is only due to the fact that a
higher connectivity is generally more complex and thus also
more error prone. In conclusion, there is no tradeoff between
good compensation and no huge negative effects. As seen,
the compensation naturally scales with the missed anomalies
and is always appropriate. The overall negative impact of a
high 8 is not only a side effect of many classifications with
imperfect models, but also a result of higher connectivity
leading to greater impact on many fault paths. Again, this is
only assessing the performance of the system under certain
conditions, B is not something that can be arbitrarily lowered
or increased as it reflects causal relationships between
components of some real-world domain. The compensation
in the case of the entire instance sets (cf. Fig. 37) is heavily
based on the numbers of FNs (the potential for missed
anomalies), i.e., p(c"li,fn,-) = 0.44 (p <« 0.05). This is
also confirmed by the very low numbers of missed chances
displayed in the second plot of Fig. 38. If there are few missed
chances in all scenarios, then there is also little room for
compensation via increased §, indicating that 8 is already
enough for many scenarios. clz" is heavily based on 8. Missed
chances are more likely with a higher § because then it is
more likely that there is another link, but at the same time
they are less likely because then they are less likely to be
missed due to the overall increased connectivity. This was
confirmed by introducing the instance set with 8 = 0.01.
Apparently, 8 positively correlates with the number of missed
chances, i.e., p(8, c'zi) = 0.45 (p < 0.05), but again only if
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the instances with y = 1.0 are filtered out. As anticipated,
there are few missed chances, but a high connectivity, i.e., a
high B, clearly benefits it. Situations with no second chance
are so rare across all considered instance sets (cf. Fig. 38),
that it does not enable a further analysis. This is again for
the same reason: c;” scenarios appear when there are missed
anomalies, but no further links, which happens almost never.
This is a confirmation of the previous argument of a natural
balance. As discussed, plots four and five in Fig. 37 are
considering ¢!, which in this case only correlates with the
FNs, not with 8. The final plot is interesting, though. There
are low ¢! values, but it shows that missed chances have
a huge impact on the overall performance. There is a clear
negative correlation of p(c"zi,ﬁli) = —0.62(p <« 0.001).
An increasing c;” usually goes hand in hand with a worse
performance, which is intuitively evident.

To confirm the previous arguments, we now consider some
low B instances in isolation. For these instance sets, there
should be a clear correlation. We consider < 20_1_90_95 >,
< 20.2.90 95 >, and < 20.5.90.95 >, ie,a =
0.2, B € {0.01,0.02,0.05}, yLB 0.90, and yY8 =
0.95. As expected, there is a very clear correlation of
(B, 1) = 0.99 between connectivity and compensation.
The same holds for p(8, ¢>') = 1.0, and also for p(B, ¢3') =
0.97. Although these correlations are all insignificant due
to the small sample size, they do provide an indication.
Finally, there is also a significant perfect negative correlation
(&', p1) = —1.0(p < 0.05). Thus, the correlation between
B and ¢’ may indeed end with B =~ 0.05. For higher
values, there seem to be no significant changes. However,
itis also crucial to note that the three instance sets considered
here to analyze the S influence all share the maximum
value of « = 0.2, because this is the most interesting case
for analysis. If there are few anomalies, then there is also
little room for missed chances, etc. It is also interesting to
consider the absolute value ranges over the entire instance
sets. On average, ¢;' € [0.13,25.9], &' e [0.0,0.58],
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FIGURE 39. Compensation correlation (¢ = 0.2).

and &3 € [0.0, 0.3]. For the three selected low B instance
sets there are the following progressions with increasing
B € {0.01,0.02,0.05}. &;%: 6.11 — 11.68 — 21.75, &'
0.01 — 0.05 — 0.27, and ¢3': 0.03 — 0.03 — 0.3. Fig. 39
shows all solved instance sets with « = 0.2, which are 12.

For those instance sets, we also see the expected clear
correlation p(B,c1) = 0.93 (p < 0.001). Not for ¢/,
though, p(B, ') = 0.4(p > 0.05), which is a bit misleading
in the above case of the three selected instances. The same
lack of correlation can be seen in p(B, z') = 0.26 (p >
0.05). We already provided an argument explaining both.
Obviously, p(é>!, pi’) = —0.67 (p < 0.05) again shows a
clear negative correlation. Therefore, in the end, the effect is
mainly due to . If « is sufficiently large, B correlates heavily
with c'l".

The positive compensatory effect of S is clearly visible and
it grows with the otherwise missed anomalies themselves,
naturally balancing them. Nevertheless, it is of interest to
determine whether the positive compensation effect or the
negative impact grows faster with increasing §. For this we
only consider the six instance sets with « = 0.2 and y €
[0.95,0.99] to analyze the isolated impact of an increasing
B € [0.01,0.1]. Table 2 shows the results. The average
number of misclassifications, i.e., FN + FP, increases,
but not substantially, not even by one misclassification on
average. Also, there is no influence on po’, p3' and pé.

iy iy . . o
poy and p; are again unaffected due to their resilience to
FPs, and p5, would generally be affected, but is very low or
0 anyway for the instance sets with « = 0.2 and this level
of y. One might expect a positive compensatory effect on
17"0[, if there were misses before, it should get better. First,
it could be canceled out: If there are about as many misses
as compensations, the effect on py' is invisible. However,
this is not the case, as can be seen in Table 2, there are
far more compensations than misses in every case. The
misses remain relatively stable across all 8, but ¢;/ increases.
Most of the misses are misclassifications, the rest is more
or less negligible, so that the number of misclassifications
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TABLE 2. Analyzing the influence of increasing g.

B | FN+FP | po | pi | by | & | mi | mg | w3
0.01 2.7 0951095 | 0 63 | 0.79 | 0.02 | 0.81
0.02 2.4 096 | 093 | 2 11.9 | 0.65 | 0.01 | 0.66
0.03 2.3 095 092 | 4 155 | 0.53 | 0.05 | 0.58
0.05 2.7 096 | 086 | 2 | 22.0 | 0.58 | 0.05 | 0.63
0.07 2.8 096 | 079 | 0 | 249 | 0.6 | 0.03 | 0.63
0.10 3.0 095 | 072 | 0 | 259 | 0.62 | 0.03 | 0.65

does not change significantly. Moreover, an incorrectly
classified component is not reclassified, so there is no way
to compensate for this. Compensation is only useful for
the unclassified anomalies behind such a misclassification,
which are, however, very few. This is why p'oi does not
change, the compensations measure the potential to mitigate
the effects of misclassifications, but not the misclassifications
themselves. Since the effects of misclassifications are very
small either way, there is almost no effect on py’. Thus,
we see that the compensation potential is steadily increasing,
although it is not really required for the instances considered
so far, since the majority of the missed anomalies are
immediate misclassifications. It would therefore be of interest
to generate example instances with anomalies that are more
clustered and not so evenly distributed across the entire
component space. _

Crucially, there is a major impact on plln, which decreases
massively with increasing 8, and also a huge influence on
cll'7 , which increases with 8. The number of misclassifications
thus increases more or less continuously by around 10%
when going from 8 = 0.01 to § = O0.1. On the other
hand, ¢;’ grows continuously by around 311%. Hence,
in this range, the growth of compensation is way stronger
than the growth of misclassifications. However, it is not
only the misclassifications themselves that are harmful, but
also the number of fault paths that are affected due to the
increased connectivity of the network. Therefore, we see p: 1i
continuously decreasing from 0.95 to 0.72. From this we can
tell that the compensation grows faster / stronger than the
negative effects, but the negative effects are still significant,
particularly with regard to p;’. Consequently, the problem
is not so much that there are more misclassifications, but
that a misclassification has a stronger impact on the overall
performance (pg).

Fig. 40 shows the corresponding correlations for the six
instances. Finally, the previously considered nz,' shows that
there are very little entirely missed anomalies. Thus, it indeed
helps to have a more connected anomaly graph in order to
compensate misclassifications that in turn also raise based
on an increased connectivity. Intuitively, one could assume
that it is all about the ratio %, if this gets small, it should
be beneficial. We saw the clustering of favorable results
in the bottom-right quadrants in plots three and four in
Fig. 31, i.e., a tendency of better results for smaller  ratios.
Generally, large  should help with imperfect models and
a certain amount of «, since there are many classifications
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FIGURE 40. Analyzing the influence of increasing 8.

and thus also much potential for misclassification. These
misclassifications should be better compensated when having
a higher connectivity, i.e., a higher . However, as we
learned, the higher compensatory capability goes hand in
hand with an increased potential for further misclassification
and a more severe impact of misclassifications. In a way,
there is always as much compensation as required in terms of
missed anomalies, but negatively affected fault paths remain
a concern.

7) BALANCING n’ AND y

Fig. 41 can answer the question of how many classifications
n can be reasonably performed at most based on a certain
y. However, as argued before, n? is based on « and 8, so that
these are implicitly part of the plot. Therefore, the statement
could be rephrased as how many and how connected the
anomalies should reasonably be, and how accurate the models
must be in each case. It is essentially about the number of
chained classifications versus the model accuracy. The first
plot is already very insightful. If pé > 50% is expected,

it is advised to have n,! < 25, except for perfectly accurate
models. The following four plots filter the 1./ displayed on the
x-axis based on increasing thresholds ¢ € {0.7,0.75, 0.8, 0.9}
for pi’. The results are not surprising. The fifth plot provides
a good summary: If very good results are expected, i.e.,
12 1> 0.9, it is advised to perform as few classifications as
possible, or to obtain close to perfectly accurate models. The
final plot is also somewhat interesting: There, we filter the
x-axis based on the maximum p’ per y value. y = 0.92 has

.l > 100, but with pé < 5%. In the previous sections,

we have already seen how large ng values come about («,
B). In this section, we are only interested in the question of
when the performance gets infeasible based on y.

Fig. 42 considers the same question, but filters the x-axis
based on py’ instead of pi’. As argued before, pg’ is in a sense
more critical as it directly measures the identified problematic
links. pll" can, for instance, be low due to a number of FPs,
which is not that critical if all ground truth TPs are actually
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FIGURE 42. y vs. ﬂ' (filtered based on ,Toi).

found. In plots two to four it can be seen that even with the
worst y = 0.92, it is possible to go up to .l > 125, i.e.,
&'~ 1,if a po' of 0.8 suffices. Plot five shows that even
if po’ > 0.9 is expected, y > 0.97 is sufficient to go up to
&' = 1 with |C| = 129. The final plot is filtered based on
the maximum po’ per y and shows that it is still reasonable
to only perform as many classifications as absolutely needed,
at best 71, < 25 when y € [0.93,0.97]. This shows that FNs
do play a role as well.

Fig. 43 again considers the same question, but filters the
x-axis based on pg, which is even stricter than pj I Plots two
to four show the exact same results, where it is obvious that
y = 0.97 is the only imperfect model that is performing
well enough to match the expectation, and only with an
average .l = 10.32. If we ask for pé > 90%, only the
perfectly accurate models are able to achieve this. Finally, this
is another confirmation that it is beneficial to minimize nlc”.

One final metric to be considered is the diagnosis success
percentage dsi per instance set i € [, which measures the
fraction of instances that were solved with a diagnosis, i. e., at
least one fault path. This is not measuring the quality of fault
paths, it is only measuring whether there is some diagnosis at
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all, i. e., an outcome that is not no_diag. As we only consider
instances that actually comprise problems, this should be a
rare occurrence. Most instance sets have d! = 100%, only
< 1.10.90_95 >, < 1_10_.95_99 >, < 1.20.90_95 ><
1.5.90_95 >, and < 1_5_95_99 > deviate, still all having
dsi > 95%. It does not surprise that all of these share
a = 0.01, as this should go hand in hand with very few
classifications and anomalies. Because this can only happen
when not a single anomaly is found, i. e., all input error codes
lead to no anomalies, which is unlikely if there are many
anomalies and fairly accurate models. In the « = 0.01 cases,
there is only one anomaly for |C| = 129, which means that a
single misclassification can lead to no_diag.

C. SCALABILITY ANALYSIS

While the broad, systematic evaluation focused on scenarios
with a fixed |C| := 129 due to the previously discussed
reasons, the scalability in terms of performance and com-
putational costs to cases with significantly larger or smaller
numbers of components is demonstrated in the following. For
this purpose, we consider additional instance sets:

e <20_10_20_50_50_90_95_42 >
e <50_10_20_50_50_90_95_42 >
e < 80_10_20_50_50_90_95_42 >
e <250_2_5 50_90_95_42 >
e <500_2_5 50_90_95_42 >

e < 1000_1_3_50_50_90_95_42 >
The majority of the sets are once again comprised of
100 instances. Due to the increased computational costs,
the sets with |[C|] = 500 and |[C| = 1000 are based
on 10 instances each. Moreover, in such cases, smaller o
and B values are used for the same reason, still providing
practically meaningful examples. The fact that all considered
instances are solved demonstrates the system’s scalability to
significantly larger and smaller scenarios. It is noteworthy,
though, that an equivalent iterative version of the recursive
causal sub-graph construction as well as fault path candidate
generation had to be implemented in order to avoid exceeding

50509
50_50_9
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Python’s default maximum recursion depth in the cases of
|C] = 500 and |C| = 1000. Without investigating all
subtleties, each considered set led to p'oi > 0.8, which
would be even higher if y©8 and y Y2 were higher. Therefore,
each additional set is successfully solved. It is evident that
the most substantial change when increasing |C| is the
increase in r{’. The following progression is observed as the
magnitude of C increases from |C| = 20 to |C| = 1000:
255 — 1685 — 46.7s — 1252s — 132995 —
6583.8s. r"™ = 16940.4s is extremely high for i =<
1000_1_3_50_50_90_95_42 >. Accordingly, the order of
magnitude of |C| = 1000 may be considered a reasonable
upper bound for many practical scenarios. To conclude, there
are expected increases in runtime and memory consumption;
however, the system still functions adequately on consumer
hardware at least up to |C| = 1000 for the considered o
and 8.

Occasionally, experiments with smaller |C| led to recur-
sion depth issues as well before implementing an iterative
version, e.g., i =< 250_10_20_50_50_90_95_42 =>.
In cases of |C| = 250 or higher, the runtime and memory
consumption rapidly increases and may become intractable
with high o and g values. Nevertheless, as long as it remains
tractable, it may be feasible in practice to have increased
runtimes to solve a hard problem. Moreover, assuming 10%
anomalies is typically way beyond the number of parallel
anomalies to be expected in most practical domains. While
250 components may appear manageable, having such a
high degree of connectivity and such a high number of
anomalies quickly leads to a combinatorial explosion in
terms of possible anomalous paths. The complexity escalates
rapidly. The greater the number of components involved and
the higher the connectivity, the less anomalies should be
expected to handle requirements in terms of runtime and
memory. Prior to the implementation of the iterative version
of the recursive processes, the system’s scalability practically
ended with |[C| = 250. The bottleneck was the state
ISOLATE_PROBLEM_CHECK_EFFECTIVE_RADIUS in
Fig. 8. There, the maximum recursion depth was reached
for larger C. Converting the algorithm to an equivalent
stack-based iterative version improved the scalability in terms
of |C| as demonstrated by the above experiments with |C| =
1000.

To further assess the system’s limitations, we examine
one instance of < 1000_5_10_50_50_90_95_42 > and
< 500_5_10_50_50_90_95_42 >. The system no longer
crashes due to the maximum recursion depth, but due to the
combinatorial explosion in the fault path computation, it is
intractable for practical purposes and was terminated after
48 hours of runtime in both cases. The depth-first search-
based fault path computation is operating with an anomaly
graph comprising 157 edges and 25 nodes in the second case,
which is intractable. To provide context, the most complex
instance set in the main experiments of this work is |C| =
129 with ¢ = 0.2, i.e., 25 components, and § = 0.1.
Thus, there are cases in which 25 components work with
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B = 0.1 and a runtime of only a few seconds. Clearly,
the connectivity is not absolute, but related to the number
of components, i.e., there are a lot more connections with
|C| > 500 and thus more edges. To verify, a sample instance
from < 129_20_10_50_10_100_100_42 > has 23 edges,
as expected, way less edges than 157. Consequently, it is
reasonable to find a smaller upper bound. For this purpose,
we consider < 500_5_5_50_50_90_95_42 >. A sample
instance of this configuration was solved with a runtime of
2707.5s and 19 fault paths. This particular instance is suitable
to refer to a special case in the fault path approximation
formula 2. The [{ approximation is negative, which leads to
an empty sum in the £ approximation, so that only |e|C|]
is counted, which leads to a rather good approximation
of 25. This occurs when (|«|C|] — l)g < 1 in 1,
resulting in a negative logarithm. Due to the resulting empty
sum in 2, the approximation continues to work. Finally,
we consider the same configuration with |C| = 1000:
< 1000_5_5_50_50_90_95_42 >. With 933 edges, this is
another instance that is clearly intractable. To summarize,
for |C] = 1000, « = 0.01,8 = 0.03 worked, while
o = 0.05,8 = 0.05 did not work. It is worthwhile to
test the in-between scenario of « = 0.03, 8 = 0.03, i.e.,
< 1000_3_3_50_50_90_95_42 >. This instance is solved
with a substantial runtime of 12506s. With this, the scalability
of the system is sufficiently explored.

D. CONCLUSION OF THE EVALUATION

The purpose of the evaluation was to draw conclusions
and provide guidance with regard to the applicability
of the presented diagnosis system in a wide variety of
domains. In particular, one aim was to examine limitations.
We evaluated the system by solving 4000 domain-agnostic
problem instances and analyzed the results. The idea was to
systematically test the neuro-symbolic diagnosis framework
independently of the previous real-world use case in [20],
as it is too restricted to draw general conclusions. First,
we determined a reasonable approximation for the expected
order of magnitude of the number of feasible fault path
permutations based on partially connected anomaly graphs
(B # 1.0). The average approximation percentage across
all instance sets is 89.53, i.e., the actual number of fault
paths is on average 89.53% of the estimated. The percentage
range across all instance sets is [58, 150], the median is
87.83%. Thus, the approximation marginally overestimates,
but is very useful to judge the magnitude. It was demonstrated
that it is feasible to only consider o, 8 € [0.0, 0.2] since
&'t~ 1.0. ¢ obviously depends on the combination of
a and the connectivity 8. Naturally, it is advantageous to
minimize ¢’ or to pay close attention to obtaining very
accurate models, i.e., to maximize y, in particular with
increased problem complexity through f;* and I. FPs lead
to unnecessary additional classifications, while FNs can
reduce ¢, (by circumventing the affected-by links through
incorrectly triggering the termination condition). While the

VOLUME 13, 2025

termination criterion may appear very fragile to a single
misclassification on a critical path, it is rarely a matter of
concern. It is a limitation, but it is also a motivation behind
such a broad evaluation in order to understand its impact.
FNs are very rare on their own and even less frequently
leading to additionally missed anomalies. In the evaluation,
we analyze this effect in detail and show that missed
anomalies due to early stopping are extremely rare across the
considered, practically motivated parameter intervals. Even if
a subsequent anomaly after a FN is initially missed, it remains
missed only if it has no other causal connections that are
investigated via input error code (diagnostic association) or
anomalous connection. This is also why it happens almost
never across all experiments.

The number of FPs depends on how far y is away from
1.0and nlc" based on @ and g, since they determine the number
of applications of y. The number of FNs depends on « and
y. Anomalies, which are determined by «, are a precondition
for FNs, but not for FPs. The runtime is not only determined
by the number and length of ground truth fault paths, but
also by the length and number of determined (incorrect)
fault paths (cf. perfect correlation p(rj"*,f"* + fi’"“x)).
The rationale is that all potential paths must be generated
and considered, regardless of their correctness. The system’s
efficiency in a real-world, step-by-step diagnostic scenario is
primarily contingent upon the reaction times of humans that
provide the input signals, i.e., the human interactions. In cases
where all data is entered into the system instantaneously, this
analysis holds true. Otherwise, the runtime is determined by
human interaction times, which are of course subjective and
situation-based. We demonstrated that the system functions
flawlessly at y = 1.0 (y = 1.0 = pb = 100),
i.e., perfect results of the system when everything is purely
deterministic. In addition, we gave theoretical reflections
on the nature of the problem and provided some guidance
on where the system is still expected to meet practitioners’
expectations. When y < 1.0 (evaluation under certain
circumstances), the configuration, i.e., the type of problem
instance, is very decisive for the reliability of the approach.
The results enable an estimation of the expected domain
viability based on the parameter configuration and also some
requirements based on performance expectations. In category
py € [75,1000% with « = 0.01, B = 0.05 and y €
[0.95, 0.99], the system achieves py' = 1.0, p3' = 0.97 and
pit = 0.94. This practically realistic configuration leads
to almost perfect results. The next group pé € [50,75)%
contained three instance sets with « = 0.01, 8 € [0.05, 0.2],
vy € [0.9,0.95], and yVB e [0.95,0.99], still leading
to po'! = 1.0, but p;’ e [0.78,0.85]. Moreover, p3' €
[0.92, 1.0]. These configurations are still solved rather well.
pé € [5, 50)% is based on quite a number of configurations:
a € [0.01,0.1], B € [0.05,0.2], L8 € [0.9,0.95], and
yUB € [0.95,0.99]. The instances are still solved with
po’ €[0.93,1.0] and p3' € [0.93,0.98], but i’ = 0.47 in the
worst case, which is clearly not satisfactory from a practical
point of view. After all, pg € [0,5)% is far from being
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practically viable. The most extreme case goes down to p;’ =
0.19 for i =< 10_20_90_95 >. For such a large number
of anomalies and such high connectivity, such a model
accuracy is inadequate. We confirmed that 1./ was sufficient
for convergence of the various metrics in each instance
set. Crucially, achieving a higher recall than precision is
not the result of a prioritizing mechanism built into the
system, but is purely based on the considered, practically
motivated parameter space. The system is intended for use
in domains where anomalies are the exception. The system
is generally better at predicting positives because there is
simply less potential for error. Generally, it is rather unlikely
to classify something incorrectly, since y; > 09Vi € I,
but if it happens, it is a lot less likely to predict wrong
and miss an anomaly with it. We have seen that the human
still plays a crucial role, e.g., in repeating (verifying) the
process in case of doubt, as it is non-deterministic due to
changes in the recordings. The system usually finds slightly
more anomalies than expected due to FPs, sometimes it
finds the exact number of expected anomalies, but never less
than expected. Regarding the number of missed anomalies,
we found that mi;" € [0.0,1.9] and ' € [0.0,0.3],
so at most 2.2 missed anomalies in total on average. Thus,
there are very few cases of entirely missed components, but
there are some. Importantly, it is not only possible to miss
anomalies due to FNs, but also due to TNs in combination
with the abortion criterion and non-propagated errors (the
latter is only true in real-world scenarios, though). We saw
that a single misclassification can in principle lead to an
arbitrary number of missed anomalous links, although it is
unlikely to be very large depending on the domain under
consideration and the degree of isolation of the components.
However, if the domain in question has very long chains of
components instead of a relatively dense graph as considered
in this work, it might be worth keeping in mind. A further
insight is that low F'1 scores are always negative for the
overall ground truth match performance, but even a perfect
F1 does not guarantee a high pg due to missed anomalies.
In other words: Good classification results are a necessary
but not a sufficient condition for good end results (except for
y = 1.0). Few misclassifications can have a huge impact in
terms of ground truth matches. A high p; 1" is insufficient to
obtain a high pé. Moreover, pg’ and pg” are not affected by
FPs and thus purely determined by FNs and early stoppings,
whereas the fault paths are. If pé" is better than the F'1 score
(the average F'1 across all instance sets is 0.9, the average
po’ is 0.96, and the average p3' = 0.97), it can be due to
FPs. FPs negatively affect F'1, but have no negative effect on
the pg” score, they can even lead to an accidental discovery
of a hidden anomaly. Intuitively, the worse the model,
the better the graph should be connected to compensate
misclassifications. However, this also has the negative side
effect of leading to more classifications and therefore
more potential misclassifications and a greater impact of
misclassifications. When there are more classifications or a
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. i
weaker model accuracy, there is a lower p,, except for y =

1.0, then nlc" isirrelevant. In general, the performance is worse
when there are too many classifications with a too poor model
accuracy, i.e., %l should be small for good performance.
As B increases, the number of fault paths affected by
a misclassification increases. Overall, there is a tendency
towards better performance with smaller « and g values.
With greater connectivity due to B, there are more early
stoppings or FPs, e. g., due to more classifications. A smaller
% ratio seems beneficial for pg’, which demonstrates the
compensatory effect of 8. Increasing B has negative side
effects for the overall performance, but these do not affect

pg. plo" benefits from the increased c,’. In relation to a,

larger B values improve the p:)” performance. The fault path
length depends on the combination of « and g8 (cf. almost
perfect correlation p(af, [{')). More fault paths and longer
fault paths, which usually coincide (cf. p(f?, ) = 0.81),
are harder to match completely correctly, which is why p,,
is way worse for larger numbers of fault paths that are
longer, except when having perfectly accurate models. The
effect on f is way stronger for a, which is a precondition
for any fault paths. B, on the other hand, is not able to
affect f; by itself, only in combination with .. The range of
fault path deviations within one instance set is rather large,
[2,30246] in the most extreme case. Each instance set has
at least one instance with O fault path deviations, except
< 10_20_90_95 > with at least 2. Usually, fi’"“" < 105,
in many cases even fim‘”‘ < 10, but there are some extreme
exceptions. fia is highest in instance sets with the longest
and most fault paths with imperfect models. When dealing
with imperfect y values, it is advised to have few anomalies
that are sparsely connected, or the instance will explode
in terms of deviations, e.g., i =< 10_20_90_95 >. The
even more extreme case of « = S = 0.2 turned out to
be infeasible due to excessively large f“. A high degree of
connectivity can be harmful: The beneficial effect, which
is that missed anomalies can be reached again via another
path, seems to be canceled out by the increased ¢’ However,
the beneficial effect would be even stronger if there were
less isolated anomalies, i.e., more chains of co-occurring
anomalies. Nevertheless, we took a close look at how well
the system is able to compensate model inaccuracies through
structural knowledge. In cases where anomalies are missed
due to FNs, there always seems to be enough connectivity
for compensation. On the other hand, when there is not
enough connectivity for compensation, it is also very unlikely
that anomalies will be missed, so that no compensation is
required. There is a natural balance between the two: The
degree of compensation naturally scales with the number of
missed anomalies. Nevertheless, higher connectivity results
in higher problem complexity and usually leads to worse
overall performance if the model accuracy is not enhanced
accordingly. Missed chances are more likely when S is
higher because then it is more likely that there is another
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connection, but at the same time they are less likely because
then they are less likely to be missed due to the overall
increased connectivity. Situations without a second chance
are extremely rare across all considered instance sets based on
the same reasoning. Although there are few, missed chances
have a huge impact on the overall performance. There is
a perfect positive correlation p(B, ¢i’) between connectivity
and compensation (if « is sufficiently large, e. g., « = 0.2).
The positive compensatory effect of g is clearly visible, and
it grows with the otherwise missed anomalies themselves,
naturally balancing them. The growth of compensation is way
stronger than the growth of misclassifications. However, it is
not only the misclassifications themselves that are harmful,
but also the number of fault paths that are affected due to
the increased connectivity of the network. The compensation
grows faster / stronger than the negative effects, but the
negative effects are still significant, particularly with regard
to p1'. Consequently, the problem is not so much that there
are more misclassifications, but that a misclassification has
a stronger impact on the overall performance. In summary,
the higher compensatory capability is accompanied by an
increased potential for further misclassifications and a higher
impact of single misclassifications. In a way, there is
always as much compensation as required. Ultimately, it is
not as simple as increasing B8 to compensate inaccurate
models. On the contrary, the importance of high model
accuracies is even more significant when dealing with highly
connected diagnostic domains. A sparse network is not
necessarily worse than a highly connected one when having
suboptimal model accuracies. This is particularly highlighted
by the very strong positive correlation p(FP + FN, f8)
and the strong negative correlation p(f, i) (when o =
0.2,y € [0.95,0.99]). A further question was how many
classifications ng can reasonably be carried out at most
based on a certain y. As always, it is advisable to optimize
the models used for sensor signal evaluation to achieve the
highest possible accuracy. Also, with increasing ng at least
one misclassification very quickly gets close to certainty with
imperfect y. Nevertheless, we determined some approximate
values for how many chained classifications (based on the
connectivity of the domain) are still feasible at certain model
accuracies. If pé > 50% is expected, it is advised to have
ne! < 25, except for perfectly accurate models. If very good
results are expected, i. e., p 1i > 0.9, itis advised to perform as
few classifications as possible or to obtain close to perfectly
accurate models. Obviously, it is not possible to arbitrarily
reduce the number of classifications, as they are determined
based on the problem definition, so it is meant as a guideline
for assessing feasibility. pg’ is in a sense more critical as it

directly measures the identified problematic links. plf can,
for instance, be low due to a number of FPs, which is not that
critical if all ground truth TPs are actually found. Even with
the worst y = 0.92, it is possible to go up to n > 125,
ie, ¢’ = 1,ifapy = 0.8 suffices. If gy’ > 0.9 is
expected, y > 0.97 is sufficient to go up to ¢/ = 1 with
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|C| = 129. However, it is still sensible to perform only as
many classifications as absolutely necessary, at best ng < 25,
if y € [0.93,0.97]. For pé, which is even stricter than pll",
y = 0.97 is the only imperfect model that is performing
well enough to fulfill the expectation of pé > 70%, and
only with an average n,' = 10.32. If we ask for p’2 > 90%,
only the perfectly accurate models are able to achieve this.
This is a further confirmation that it is advantageous to
minimize n,’. Overall, we saw that pol > 0.85Yi e I,
even in case of challenging configurations, which means that
the considered model accuracies of y € [0.9, 1] are fairly
satisfying. Regarding the entire diagnosis, most instance sets
i € I resultin di = 100%. The deviating ones all still
have d; > 95%. It is not surprising that all of these share
a = 0.01. In the @« = 0.01 cases, there is only one anomaly
for |C| = 129, which means that a single misclassification
can lead to no_diag.

VIil. CONCLUSION AND DISCUSSION

This paper generalizes and extends our approach presented
in [20] and provides a framework for multimodal, human-
in-the-loop anomaly detection and complex fault diagnosis.
It introduces a systematic, practically motivated, large-scale,
domain-agnostic synthetic problem instance generation for
diagnosis of systems with causally interconnected compo-
nents that enable some form of sensory assessment per
component. We formalize the abstract problem and define
a parameter space covering the relevant aspects that can
be configured during instance generation. With this, the
properties of structures of connected systems can be altered
to reflect a wide range of practical diagnosis domains.
Additionally, we provide a thorough evaluation of the gen-
eralized and significantly extended version of our previously
proposed hybrid neuro-symbolic diagnosis system [20].
The neuro-symbolic diagnosis benchmark goes beyond the
specific use case in [20] by formalizing and generalizing
the core properties that it shares with many other diagnostic
domains. We explore the performance of the system across
a broad spectrum of configurations and thus theoretical
domains. We also analyze the impact of certain configuration
aspects on the solving procedure and results. Essentially,
we use ANNS to detect anomalies at components suggested
by a KG based on the provided fault context. Symbolic
approaches are used to guide the ANN-based classifications
and to isolate the problem. The reasoning of the system is
encoded in the presented state machine architecture. Apart
from the general advantage of neuro-symbolic systems that
both paradigms are mutually beneficial and compensate
for each other’s weaknesses from the introduction, we can
now also say more specifically that the presented system
requires the neuro-symbolic architecture and how hybridiza-
tion contributes to the given task. This is because the
general diagnostic problem under consideration can be solved
more effectively and efficiently by a neuro-symbolic system
compared to a purely connectionist or purely symbolic model.
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It is unrealistic to manually formulate symbolic rules for each
new sensor signal dataset, clearly justifying the introduction
of neural networks. Moreover, in a purely connectionist
system, there would be no entry point and an exhaustive
enumeration would have to be performed leaving only the
anomalies and no knowledge of fault paths and root causes.
We not only answer specific questions with regard to the
performance level of our diagnosis framework, but also
consider fundamental aspects of the general type of diagnosis
problem, e. g., the balance between compensation on the one
side and increased fault potential on the other, based on the
connectivity of the network. There are several tradeoffs and
balancing factors that are worth considering in every domain
and this paper can help guiding it. In [20], we argue that the
system has the potential to drastically improve the efficiency
and precision of the diagnostic process for modern vehicles,
thereby helping to compensate for the shortage of specialists
and preserving scarce expert knowledge through the resulting
KG. In this work, we perform a systematic evaluation based
on synthetic problem instances, i.e., a formalized problem
structure, across all kinds of abstract diagnostic domains
to assess the correct functionality and limitations of the
system. We not only generalize the architecture, but also
show how the system performs under different conditions.
To do this, we define the core parameters to generate and
solve 4000 randomized problem instances. This systematic
process ensures that the developed architecture is robust and
reliable not only in a specific problem case, but also across
a wide range of situations and domains. This is crucial in
order to transfer the system to different domains and to
enable potential users to assess its practical effectiveness and
limitations for their respective domains. To this end, we also
explore the scalability in terms of performance and compu-
tational costs to cases with significantly larger or smaller
numbers of components. Moreover, we heavily improve the
transferability to other domains such as anomaly detection
in industrial facilities or medical diagnosis by generalizing
both the state machine and the ontology underlying the KG
based on the neuro-symbolic architecture shown in Fig. 1.
The presented framework provides a blueprint for addressing
the problem of guiding a diagnostic process relying on
both domain expertise and sensor signal interpretation. The
explanatory report, contextualizing the generated heatmaps,
enables domain experts to readily assess whether these areas
are plausible bases for decision making. These explainability
techniques not only reduce error-proneness by enabling
humans to verify the result, but can also increase trust in the
models — also supported by a human-in-the-loop approach.
Finally, it should be mentioned that all the developed
software, i.e., every module or component that contributes
to the diagnosis system or its evaluation, is released as open
source software (URL references are provided as footnotes
in the respective sections) to facilitate reproducibility and
domain transfer. To summarize, we consider the integration
of machine learning and XAl into knowledge-supported fault
diagnosis systems.
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A concrete next step would be to consider instances or
domains with anomalies that are more clustered and not
so evenly distributed across the entire component space.
Clusters are arguably practically plausible in many domains,
as anomalies may occur in common subsystems. In this
work, point anomalies were mainly considered due to the
uniform distribution, as long chains are unlikely, but burst
anomalies could be another interesting aspect to investigate.
For this, there could be a set of instances with a few manually
constructed chains of anomalies, e. g., to observe the effects
of an increase in 8 in such cases. As anticipated, we plan to
further demonstrate and analyze the architecture’s potential
for knowledge discovery by using the UCR time series
datasets in a way where each individual dataset represents
one component of an entity of diagnosis. This would not have
contributed to the evaluation that was the focus of this paper,
but is nevertheless a meaningful next step. Also beyond the
scope of this work but a meaningful extension would be a
process for automated learning from diagnostic errors. While
mechanisms for updating, refining, and removing entries
within the KG have been implemented, there is no automated
approach to learning from diagnostic errors identified by
human experts beyond enabling the basis for it via logging
and contextualizing explanatory reports. However, incorrect
outcomes are typically not attributable to erroneous KG
entries. Typically, they refer to misclassifications that can be
addressed via repetition (in case of doubt) or training more
accurate classification models. If there is a problem with
the KG, it is commonly due to incompleteness (missing true
facts) rather than incorrectness (holding explicitly false facts).
This incompleteness is a natural state under the open-world
assumption and requires extension via the associated pool
of human experts. Obviously, this is assuming a KG of
high correctness due to the construction based on expert
knowledge as in [20]. An arbitrary incorrect KG can result
in arbitrarily impaired solutions. In the end, unsuccessful
diagnoses are logged in the KG and can be analyzed by
human experts. In future work, we also plan to instantiate the
system in a robotic self-diagnosis application to further gather
real-world data and develop mechanisms for automated
conclusions based on unsuccessful diagnoses.
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