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Fast and accurate 3D hand reconstruction is essential for real-time applications in VR/AR, human-computer
interaction, robotics, and healthcare. Most state-of-the-art methods rely on heavy models, limiting their use on
resource-constrained devices like headsets, smartphones, and embedded systems. In this paper, we investigate
how the use of lightweight neural networks, combined with Knowledge Distillation, can accelerate complex
3D hand reconstruction models by making them faster and lighter, while maintaining comparable reconstruc-
tion accuracy. While our approach is suited for various hand reconstruction frameworks, we focus primarily on
boosting the HaMeR model, currently the leading method in terms of reconstruction accuracy. We replace its
original ViT-H backbone with lighter alternatives, including MobileNet, MobileViT, ConvNeXt, and ResNet,
and evaluate three knowledge distillation strategies: output-level, feature-level, and a hybrid of both. Our
experiments show that using lightweight backbones that are only 35% the size of the original achieves 1.5x
faster inference speed while preserving similar performance quality with only a minimal accuracy difference
of 0.4mm. More specifically, we show how output-level distillation notably improves student performance,
while feature-level distillation proves more effective for higher-capacity students. Overall, the findings pave
the way for efficient real-world applications on low-power devices. The code and models are publicly avail-
able under https://github.com/hunainahmedj/Fast-HaMeR.

A key challenge in computer vision and graphics
is estimating the 3D pose and shape of the human
hand from visual inputs like images, videos, or
depth maps. Accurate and real-time 3D hand re-
construction is essential for many computer vision
and graphics applications such as augmented and
virtual reality, human-computer interaction, sign
language recognition, and human behavior analysis.
These applications require precise hand modeling
to interpret hand articulations and understand ges-
tures. This problem is challenging because human
hands are highly articulated, self-occluding, and
vary significantly across individuals. In recent
years, there have been significant advances in hand
reconstruction (Chatzis et al., 2020), which have
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Figure 1: Real-time monocular 3D hand mesh recon-
struction using lightweight student networks. We present
a Knowledge Distillation approach for training lightweight
networks that accelerate 3D hand reconstruction with-
out compromising quality. Our best-performing network
achieves real-time inference with only a modest drop in re-
construction quality. The Figure showcases qualitative re-
sults across challenging scenarios, including mutual occlu-
sion, complex hand poses, and interactions with various ob-
jects.



been made possible with the use of modern Deep
Learning techniques (Pavlakos et al., 2024), (Li et al.,
2024), (Ge et al., 2019), (Lin et al., 2021), (Malik
et al., 2020), (Aboukhadra et al., 2023), (Dong et al.,
2024), (Potamias et al., 2025). However, many
state-of-the-art hand mesh recovery methods remain
computationally expensive (Pavlakos et al., 2024;
Potamias et al., 2025), as they rely on large-scale net-
works with transformer-based architectures, making
real-time performance difficult to achieve.

To accelerate state-of-the-art 3D hand mesh re-
construction, we propose a Knowledge Distillation
(KD) framework for hand mesh reconstruction that
transfers knowledge from a large, accurate teacher
model to a lightweight student network. While ap-
plicable to various models, we focus on HaMeR, a
transformer-based architecture with a ViT-H back-
bone. Our approach replaces this backbone with
more efficient alternatives—such as MobileNet, Mo-
bileViT, ConvNeXt, and ResNet—while preserving
reconstruction quality. During training, the student
learns to mimic the teacher at multiple levels: final
outputs, intermediate features, or both. This distil-
lation strategy enables the student model to achieve
near-teacher performance at a fraction of the compu-
tational cost, making it suitable for real-time applica-
tions on resource-limited devices.

Through practical experiments, we demonstrate
that applying Knowledge Distillation, along with us-
ing lightweight backbones, leads to improvements in
runtime performance with comparable reconstruction
accuracy. This paper makes the following key contri-
butions to the domain of 3D hand reconstruction:

* Demonstrating the effectiveness of common dis-
tillation losses (output-level and feature-level) for
the task of hand mesh reconstruction.

* Proposing a lightweight alternative to the state-of-
the-art HaMeR model, achieving 35% of its size,
1.5x faster runtime, and with an accuracy differ-
ence of just 0.4mm.

* Analyzing how student architectures respond to
different distillation losses, showing that feature-
level supervision benefits higher-capacity models,
while output-level losses are more effective for
smaller or structurally aligned ones.

2 RELATED WORKS

In recent years, several works have been proposed for
monocular 3D hand reconstruction that utilize depth
scans (Wu et al., 2018; Ge et al., 2018; Aboukhadra

et al., 2024), RGB frames (Rong et al., 2021; Lin
et al., 2021; Park et al., 2022; Pavlakos et al., 2024),
or a hybrid RGB-D approach (Makris and Argyros,
2015; Sridhar et al., 2016; Malik et al., 2020). These
works can be broadly divided into two categories:
parametric model-driven approaches and direct mesh
recovery approaches. Arguably, the primary distinc-
tion between these approaches lies in the use of para-
metric hand models (Romero et al., 2017; Loper et al.,
2015; Anguelov et al., 2023; Li et al., 2022). These
hand models provide prior anatomical constraints to
facilitate the reconstruction of the hand. Paramet-
ric model-driven approaches learn a low-dimensional
mapping from image features to hand model parame-
ters, which allow them to generate a 3D mesh, while
the direct mesh recovery approaches choose to regress
the mesh directly without the use of parametric mod-
els.

Previous works, such as HAMR (Zhang et al.,
2019b), introduced a weakly-supervised approach to
recover hand mesh and pose from a monocular hand
image using silhouette consistency loss. FrankMocap
(Rong et al., 2021) followed with a modular whole-
body pose estimation system, incorporating separate
modules for face, hand, and body. To address occlu-
sion, HandOccNet (Park et al., 2022) leveraged trans-
formers, utilizing an attention mechanism to handle
occlusions via the correlations between visible and
occluded regions. Supervised learning methods, due
to data constraints (i.e., lack of diverse, real-world
data), can often fail to generalize well to uncon-
strained, real-world images. To address this, (Hasson
et al., 2021) introduced a learning-free optimization-
based approach to reconstructing 3D hand-object in-
teractions, using only RGB video frames.

Direct mesh recovery methods tend to bypass
parametric models by directly regressing 3D hand
mesh vertices. METRO (Lin et al., 2020) is a fully
transformer-based human pose estimation and mesh
reconstruction method, which features a multi-layer
transformer encoder. The core mechanism is Self-
attention (Vaswani et al., 2017), which enables joint
modeling of vertex-vertex and vertex-joint interac-
tions, and it can learn both short and long-range in-
teractions. Mesh Graphormer (Lin et al., 2021) com-
bines the strengths of self-attention (Vaswani et al.,
2017), and graph convolutions for human body mesh
reconstruction. THOR-Net (Aboukhadra et al., 2023)
introduced the first framework for estimating 3D pose
and shape of two hands interacting with an object,
along with the texture of the vertices in the result-
ing hand meshes, through combining the strengths of
Graph Convolutional Networks (GCNs) and Trans-
formers with self-supervision. Recently, Hamba



(Dong et al., 2024) introduced a graph-guided bi-
scanning (GBS) Mamba-based framework (Gu and
Dao, 2023) for single-view 3D hand mesh reconstruc-
tion.

HaMeR (Pavlakos et al., 2024), the framework
we built upon, represents a new state-of-the-art ap-
proach for hand mesh reconstruction from a single
RGB image. It combines a ViT-H (Dosovitskiy et al.,
2021) backbone with a transformer decoder to regress
MANO (Romero et al., 2017) parameters. The suc-
cess of the method can be attributed to scaling the ar-
chitecture and training data, leading to improved gen-
eralization. Despite outperforming all previous RGB-
based approaches, scaling the HaMeR network came
at the cost of runtime and resource efficiency, which
makes it unsuitable for real-time applications. There-
fore, in our work, we aim to improve runtime and re-
source efficiency by utilizing HaMeR as a reference
for training lighter networks.

2.1 Knowledge Distillation for
Acceleration

Knowledge Distillation (KD) (Hinton et al., 2015) is
a famous technique for reducing network complexity
that transfers the knowledge from large teacher net-
works to smaller student networks. Distillation was
used recently to compress and accelerate Large Lan-
guage Models (LLMs) (Ko et al., 2024; Gu et al.,,
2024; Hsieh et al., 2023). On the other hand, KD has
been only marginally explored in the context of 3D
reconstruction and pose estimation problems. Works
such as (Zhang et al., 2019a) and (Hwang et al., 2020)
focus on full-body pose tasks, distilling 2D or 3D
joint information without addressing dense geometric
structures. (Zhang et al., 2020) and, more recently
(Capistrano et al., 2025), apply KD to hand pose esti-
mation, transferring pose-level knowledge into com-
pact models. In contrast, our method applies both fea-
ture and output distillation to compress a full mesh
reconstruction model, preserving high-quality geom-
etry beyond joint estimation.

3 METHOD

Our goal is to develop a fast, lightweight, and effi-
cient method for parametric 3D hand reconstruction
that matches the performance of slower, resource-
intensive models. While our framework is designed to
generalize across different reconstruction algorithms,
we focus on accelerating the state-of-the-art HaMeR
(Pavlakos et al., 2024) model without loss of gener-
ality. We achieve this task by training smaller and

lighter student networks that learn from the original
high-capacity teacher network (i.e., HaMeR) through
the use of Knowledge Distillation. At a high level,
the framework consists of the original HaMeR as a
teacher network T' with frozen weights, and a smaller
and lighter network that acts as a student S.

3.1 Teacher Model (HaMeR)

HaMeR (Pavlakos et al., 2024) features a fully
transformer-based design, in particular, it adopts a
Huge Vision Transformer (ViT-H) (Dosovitskiy et al.,
2021) as its backbone. The output token sequence
(i.e. image features) is fed into a transformer-decoder
head responsible for regressing the MANO param-
eters (0,B) and camera parameters T, where 6 €
R*® B € R0, The transformer head utilizes self-
attention and processes a single token while cross-
attending to the backbone output tokens (Pavlakos
et al., 2024). The regressed parameters are fed into
the MANO head to obtain a 3D mesh of the hand
along with the 3D joint locations K%D for 21 key-
points, where K3? € R¥*N, and N = 21. The camera
parameters includes a 3D translation vector (¢ € R?)
necessary to project the 3D mesh and the 3D joint lo-
cations onto the image plane and in obtaining the 2D
joint locations K2 € R**V.

In order to utilize datasets with no 3D annota-
tions, HaMeR applies a re-projection loss Lpp be-
tween the 2D projection of the 3D predicted joint
locations and 2D ground-truth joint locations. The
Keypoint 3D Loss L3p measures the distance between
the predicted 3D joint locations and the ground-truth
joint locations, in order to encourage the model to
reconstruct the correct 3D hand pose. For datasets
that provide MANO (Romero et al., 2017) annota-
tions, the MANO parameter loss Lyano penalizes the
difference between the predicted MANO parameters
and the ground-truth parameters, ensuring the model
learns to predict the correct parameters. The com-
bined loss of L,p, L3p, and Lysayo will be referred to

as Lgr.

3.2 Student Model

The student network retains the overall architecture
of the teacher model; however, in our work, we
replace the larger ViT-Huge backbone (Dosovitskiy
et al.,, 2021) with smaller networks, namely, Mo-
bileNet (Howard et al., 2017), MobileViT (Mehta and
Rastegari, 2021), ConvNeXt (Liu et al., 2022), and
ResNet (He et al., 2015). We utilize these networks
as backbones in our student network S, aiming to
evaluate the trade-offs between reconstruction accu-
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Figure 2: High-level overview of the teacher-student architecture, only relevant distillation losses are used depending on the
KD level. ¢(Fr) refers to a 1x1 convolution to project the dimensions of the teacher’s features to match those of the student’s
for feature-level distillation. The teacher network is used only during training; at inference time, only the trained student

network is used.

racy and inference speed. These choices represent
a few design philosophies, such as lower parameter
counts, depthwise convolutions (Howard et al., 2017),
lightweight hybrid transformer-based models (Mehta
and Rastegari, 2021), and residual connections (He
et al., 2015). Furthermore, the criteria for choosing
this subset of backbones is their relative performance
on the ImageNet-1K dataset (Deng et al., 2009). Ad-
ditionally, we considered their number of parameters
stated in the torchvision library, and their runtime ef-
ficiency.

3.3 Knowledge Distillation

During the training process, an input image is passed
through both the student S and the teacher network
T. Both T and S produce intermediate feature maps
(i.e, Fr and Fs) and final predictions (i.e, ¥7 and ¥)
where ¥ = {K3P K?P,0,B,1}. We enforce similar-
ity between the predictions on three different levels:
output-level, feature-level, and combined distillation.
We then evaluate each approach to determine which
performs best.

In the first approach, we calculate distillation
losses between ¥ and Yy (i.e., output-level distilla-
tion). In the second approach we calculate distillation
losses between Fr and Fy (i.e, feature-level distilla-
tion), and finally, between both Fy and F, and Y7
and Ys (i.e., combined distillation). Figure 2 shows
the different distillation methods. By enforcing these
similarities, we allow the smaller student model to

learn how the bigger teacher model learns and repre-
sents the inputs internally, at the same time decreasing
output latency due to the smaller size of S. We finally
evaluate each distillation scheme to select the best ap-
proach.

Output-level distillation In the case of output-level
distillation, to enforce similarity between V7 and f/g,
we use the same loss terms from the original network
(specified in Section 3.1) but substitute the ground
truth values for the teacher’s predictions. The total
loss for output-level distillation includes the original
losses L7 on the ground truths in addition to the

losses between the student’s predictions ¥s and the
teacher’s predictions Yr. We also use Agp to con-
trol how much distillation losses contribute to the total
loss.

lﬂ,‘otal,out = LGT + ;\'KDLKD,OMI (1)

Lip.ou = IR — KFP |3+ ||K3P — K3P |3 + |65 — O7 13

(@)

Feature-level distillation Knowledge Distillation
on the feature maps (i.e., feature-level distillation) en-
ables the student S to learn feature representations
similar to those of the teacher network T'. Since the
output feature maps Fg and Fr may differ in chan-
nel dimensionality, we apply a learnable 1x1 convo-
lution ¢ to project the feature dimensions of Fr to



match those of Fs. Additionally, we align the spa-
tial dimensions using bilinear interpolation when they
differ. The total loss for the feature-level distillation
includes losses on the ground-truth data £, and be-
tween teacher and student features (i.e., Fr and Fg re-
spectively): Lgp, fear = ||Fs—O(Fr)| |% Yfear is used to
scale the feature-distillation loss, while Axp controls
the contribution of the distillation loss to the total loss.

Ltotal.,feat = LGT +}"KD('Yfeat X LKD,feat) (3)

Combined distillation Finally, the motivation be-
hind combined distillation is to guide not just the fi-
nal representations but also the intermediate represen-
tations simultaneously, in hopes of achieving better
results by combining the merits of output distillation
and feature distillation.

Lmtal,comh = Lor + xKD(LKD,out + Yfear X LKD,feat)
“)

3.4 Datasets

The reason behind the state-of-the-art performance
of HaMeR lies in its scaling of training data and
the learning capacity of the network architecture.
The dataset used for training HaMeR consists of ap-
proximately 2.7 million annotated samples, combined
from different sources. FreiHAND (Zimmermann
et al., 2019), HO3D (Hampali et al., 2020), H203D
(Hampali et al., 2020), InterHand2.6M (Moon et al.,
2020), MTC (Xiang et al., 2018), DexYCB (Chao
et al., 2021) provide 3D annotations along with RHD
(Zimmermann and Brox, 2017) which is a synthetic
dataset, while COCO WholeBody (Jin et al., 2020),
Haple-FullBody (Fang et al., 2022), MPII + NZSL
(Simon et al., 2017) contribute with 2D annotations.
The unification of various hand pose datasets into a
consistent format ready to be used is a crucial con-
tribution from the HaMeR team, allowing large-scale
supervised training with minimal pre-processing. Ac-
cordingly, we adopt the same combined dataset and
sampling distributions used in HaMeR for training all
of our networks. We evaluate and provide quantita-
tive results on the HO3D-v2 (Hampali et al., 2020)
dataset, allowing us to compare our results directly
with HaMeR and other baselines. The dataset serves
as an ideal evaluation set as it offers challenging and
realistic hand-object interaction scenarios.

4 EXPERIMENTS AND RESULTS

In this section, we present a quantitative evaluation of
our proposed KD approach on the HO3D-v2 dataset
(Hampali et al., 2020). We use standard evaluation
metrics, including PA-MPJPE (J,), and PA-MPVPE
(V) both being in mm, and F@5mm, and F@ [ 5mm.
The official HO3D-v2 competition website provides
more details on the metrics used for evaluation'. We
also comment on the performance of the model with
respect to its number of parameters and FPS, as shown
in Table 1 and Figure 3. All experiments and FPS
calculations are evaluated on a consumer-grade RTX-
4060 Ti GPU.

4.1 Ablation Study

We start by establishing performance baselines using
lightweight backbones without any distillation. Sub-
sequently, we compare the different distillation meth-
ods to assess their impact on performance.

4.1.1 Baseline Performance without Distillation

Prior to applying any distillation, we establish base-
lines by replacing HaMeR’s original ViT-H back-
bone (Dosovitskiy et al., 2021; Pavlakos et al., 2024)
with a range of lightweight models (Howard et al.,
2017; Mehta and Rastegari, 2021; He et al., 2015;
Liu et al., 2022). Each model is initialized with
ImageNet-pretrained weights and trained only using
ground-truth supervision, without the teacher model’s
guidance.

The baseline experiments, shown in Table 2, high-
light a clear trade-off between model complexity and
performance. The original HaMeR (671M parame-
ters) produces the best results across all metrics, but
runs at only 27 FPS. In contrast, lighter models like
MobileViT-S (Mehta and Rastegari, 2021) reduce pa-
rameter count by 6x and improve the inference speed
by 1.55x, but with a /.6mm drop in accuracy. ResNet-
50 (He et al., 2015) offers promising results with only
10% of the parameter count, and /.85x speed-up, at
just a Imm difference in accuracy. ConvNeXt-L (Liu
et al., 2022), arguably, offers the best trade-off be-
tween compression and accuracy, with a /.48x in-
crease in FPS and about 64% reduction in complex-
ity, performs only 0.6mm worse than HaMeR. These
results demonstrate promising trade-offs and indicate
that data scaling may be more beneficial than increas-
ing model complexity alone.

https://codalab.lisn.upsaclay.fr/competitions/4318#
learn_the_details
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Figure 3: Trade-off between model accuracy (PA-MPJPE),
speed (FPS), and parameter size (circle size). The Fig-
ure shows that the most accurate model is HaMeR; how-
ever, it shows that other alternatives give close performance
with fewer resources and better runtime. ConvNeXt-L with
feature distillation falls right behind HaMeR in our experi-
ments with 1.48x FPS boost and 64% reduction in size.

4.1.2 Output-Level Knowledge Distillation

Next, we evaluate output-level distillation, where the
objective is to allow the student network to learn
from the predictions of the teacher network along
with the ground-truth. The formulation of all the rel-
evant loss terms is detailed in Section 3.3. All the
results in this study are summarized in Table 3. Ap-
plying teacher supervision on the outputs of the stu-
dent model produces interesting results across dif-
ferent Axp (KD weight) values. For MobileNet-L
(Howard et al., 2017) configurations, we observe no

Table 1: The number of networks’ parameters in millions,
along with the runtime of different backbone configurations
in Frames-per-Second (FPS). All configurations were tested
on a consumer-grade RTX 4060 Ti GPU. We also report the
number of floating point operations (GFLOPs) as stated in
the torchvision library.

Total
Backbone Params (M) FPS 1 GFLOPs
MobileNet-L 42.0 48 0.2
MobileViT-S 42.0 42 0.5
ResNet-50 69.3 50 4.1
ResNet-101 88.3 36 7.8
ConvNeXt-L 240 40 344

ViT-H 671 27 167.3

Table 2: Performance evaluation after training different
backbones without KD to set baselines. The experiments
are sorted in ascending order of the total parameter size of
the network.

Backbone Jerr ' Verrl F@5.0/F@15.0 1
MobileNet-L 9.2 9.3 0.532/0.967
MobileViT-S 9.5 9.5 0.515/0.966
ResNet-50 8.8 8.9 0.563/0.971
ResNet-101 8.8 9.0 0.558/0.971
ConvNext-L 8.3 8.5 0.599/0.976
ViT-H (HaMeR) 7.7 7.9 0.635/0.980

Table 3: Output-level Distillation: Evaluating different
backbones trained with KD loss applied on the outputs of
the student and teacher models. Agp refers to the weight of
the KD loss.

Backbone AMp Jer!l Verl F@5.0/F@15.01

MobileNet-L 0.3 9.5 9.6 0.525/0.964
MobileNet-L 0.5 9.3 9.4 0.528 /0.964
MobileNet-L 0.8 9.3 9.4 0.525/0.964
MobileViT-S 0.3 9.1 9.2 0.536/0.968
MobileViT-S 0.5 9.0 9.1 0.543/0.970
MobileViT-S 0.8 9.5 9.6 0.516/0.965
ResNet-50 0.3 9.0 9.2 0.547/0.969
ResNet-50 0.5 8.9 9.0 0.562/0.968
ResNet-50 0.8 9.0 9.1 0.556/0.970
ResNet-101 0.3 8.9 9.1 0.552/0.970
ResNet-101 0.5 8.8 8.9 0.569/0.970
ResNet-101 0.8 8.5 8.7 0.583/0.974
ConvNext-L 0.3 8.3 8.5 0.588/0.976
ConvNext-L 0.5 8.2 8.4 0.596/0.978
ConvNext-L 0.8 8.4 8.7 0.582/0.974

improvements in any of the metrics; instead, we ob-
serve a degradation of up to 0.3mm for PA-MPVPE,
along with similar degradation for all other metrics.
On the other hand, MobileViT-S (Mehta and Raste-
gari, 2021) configurations offer noticeable improve-
ments at Axp = 0.5, with 0.4mm improvement in PA-
MPVPE. This gain could indicate the compatibility
between the similar architecture shared by both the
ViT-Huge (Dosovitskiy et al., 2021) teacher backbone
and the MobileVit-S student backbone (Mehta and
Rastegari, 2021). The improvement, however, starts
to degrade at Axp = 0.8. ResNet-50 (He et al., 2015)
does not yield noticeable improvements with output-
level distillation; the baseline without any distillation
remains the best-performing configuration. ResNet-
101 (He et al., 2015) with a deeper CNN architecture
suggests some improvements at Axp = 0.8 with ap-
proximately 0.3mm improvement in PA-MPVPE. The
configuration with ConvNeXt-L (Liu et al., 2022) and
Axp = 0.5 shows a small improvement by 0.1mm in
PA-MPVPE.
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Figure 4: Qualitative results on images from the internet, the scenes represent hands interacting with the environment. We
compare our results of the best configuration (ConvNext-L with feature-level distillation) with HaMeR both in 2D and 3D.

4.1.3 Feature-Level Knowledge Distillation

In this section, we further explore the performance
of the models with distillation applied on the feature-
map level. More specifically, in these configurations,
the backbone in the student network attempts to learn
a similar feature representation as the larger teacher
model. The evaluation results are presented in Table
4.

We observe that MobileNet-L. (Howard et al.,
2017), MobileViT-S (Mehta and Rastegari, 2021),
ResNet-50, and ResNet-100 (He et al., 2015) all show
no improvement with feature-level distillation, with
some even performing worse than output-level distil-
lation. Interestingly, ConvNeXt-L (Liu et al., 2022)
performs best under feature-level distillation, with
Axkp = 0.8 and yrp = 12, it was able to achieve the
best results across all the metrics, showing a 0.2mm
improvement in PA-MPVPE compared to its baseline.
The results for ConvNeXt suggest that feature-level
distillation might be more suitable for relatively high-
capacity student networks. A network like ConvNeXt
with deep and modern architecture and rich hierarchi-
cal features might be better suited to learn the spatial
and semantic cues in the teacher’s feature maps.

4.1.4 Combined Distillation: Feature + Output

Finally, we evaluate the performance of the student
networks trained with a combined distillation loss,
where knowledge is transferred at both feature maps

and output levels. This setting aims to leverage the in-
formation from both loss types and mimic the teacher
more holistically. The quantitative results for this
strategy are reported in Table 5.

We observe that for most backbones, combined
distillation achieves performance between that of in-
dividual output-level and feature-level strategies. The
combination of both distillation methods (i.e., output-
level and feature-level) generally does not surpass
the individual methods. For instance, ConvNeXt-
L configurations do not show the same improve-
ments gained by feature-level distillation. We can
also observe this for ResNet-101, where combined
distillation offers only a marginal increase in perfor-
mance. The results from these experiments show that
while it is possible to obtain some improvements over
non-distilled models, specifically for relatively larger
models, a combined distillation approach may dilute
the stronger signal of either individual method.

4.2 Comparison with the
State-of-the-art

In Table 6, we compare our best-performing model
with recent state-of-the-art methods for 3D hand
reconstruction. Using a ConvNeXt-L (Liu et al.,
2022) backbone trained using feature-level distilla-
tion (Agkp = 0.8, yrp = 12), our approach outper-
forms strong baselines including HandOccNet (Park
et al., 2022), METRO (Lin et al., 2020), ArtiBoost



Table 4: Feature-level Distillation: Evaluating different
backbones trained with KD loss applied on the feature maps
produced by the backbones of student and teacher models.
Akp refers to the weight of the total KD loss, while yrp
refers to a scalar used to scale only the feature-distillation
loss.

Backbone Ao Yep Jerrd Vel F@5.0/F@15.0 1

MobileNet-L. 0.3 6 9.6 9.7 0.514/0.961
MobileNet-L. 0.5 6 10.4 10.5 0.460/0.952
MobileNet-L. 0.8 12 10.0 10.2 0.477170.958
MobileViT-S 0.3 6 9.5 9.4 0.525/0.965
MobileViT-S 0.5 6 9.8 9.9 0.49170.961
MobileViT-S 0.8 12 9.7 9.7 0.509/70.959
ResNet-50 0.3 6 9.1 9.2 0.54170.969
ResNet-50 0.5 6 9.2 9.3 0.53170.968
ResNet-50 0.8 12 9.0 9.0 0.546/0.971
ResNet-101 0.3 6 9.0 9.1 0.54770.970
ResNet-101 0.5 6 8.9 9.0 0.546/0.970
ResNet-101 0.8 12 9.0 9.0 0.546/0.971
ConvNext-L 0.3 6 8.5 8.6 0.579/0.978
ConvNext-L 0.5 6 8.2 8.4 0.591/0.977
ConvNext-L 0.8 12 8.1 8.3 0.599/0.979

Table 5: Combined Distillation: Evaluating different
backbones trained with KD loss applied on the outputs and
the feature maps produced by the backbones of student and
teacher models. Agp refers to the weight of the total KD
loss, while yrp refers to a scalar used to scale only the
feature-distillation loss.

Backbone Akp Yep Jerrd Vel F@5.0/F@15.0 1

MobileNet-L 0.3 6 9.6 9.7 0.509 7 0.960
MobileNet-L 0.5 6 9.8 9.9 0.49970.961
MobileNet-L 0.8 12 10.3 10.4 0.472/0.951
MobileViT-S 0.3 6 9.8 9.8 0.498 7 0.960
MobileViT-S 0.5 6 9.7 9.8 0.498/0.959
MobileViT-S 0.8 12 9.9 10.0 0.489/0.958
ResNet-50 0.3 6 9.1 9.2 0.540/0.969
ResNet-50 0.5 6 9.2 9.2 0.538/0.969
ResNet-50 0.8 12 9.2 9.3 0.533/0.968
ResNet-101 0.3 6 9.0 9.1 0.551/0.970
ResNet-101 0.5 6 8.9 9.1 0.553/0.970
ResNet-101 0.8 12 9.0 9.2 0.55070.969
ConvNext-L 0.3 6 8.6 8.8 0.573/0.975
ConvNext-L 0.5 6 8.5 8.7 0.581/0.976
ConvNext-L 0.8 12 8.4 8.5 0.587/0.978

(Li et al., 2021) and I2L-MeshNet (Moon and Lee,
2020). Our method achieves comparable perfor-
mance to the recent methods, while also improv-
ing upon the inference time as discussed in Sec-
tion 4.1.1. In Figure 4, we present qualitative re-
sults for our best-performing network configuration
(i.e., ConvNeXt-L with feature-level Distillation) on
challenging images collected from the internet. We
also present results from HaMeR (teacher network)
to demonstrate the difference in reconstruction ac-
curacy. Although HaMeR’s qualitative results align
more closely with the hands in the images, KD-

Table 6: Comparison with the state-of-the-art using our
best network configuration. The selected model contains
a ConvNeXt-L (Liu et al., 2022) as the backbone and
was trained using feature-level distillation with Agxp =
0-87'YFD =12.

Method Jerr 4 Verr J F@5.0/ @15.0 7
Pose2Mesh (Choi et al., 2020) 12.5 12.7 0.441/0.909
THOR-Net (Aboukhadra et al., 2023) 11.3 10.7 -/-
12L-MeshNet (Moon and Lee, 2020) 11.2 139  0.409/0.932
ArtiBoost (Li et al., 2021) 11.1 109 0.488/0.944
METRO (Lin et al., 2020) 104 11.1 0.484/0.946
12UV-HandNet (Chen et al., 2021) 99 95 0.956/0.803
HandOccNet (Park et al., 2022) 9.1 8.8 0.564/0.968
HaMeR (Pavlakos et al., 2024) 77 79  0.635/0.980
Hamba (Dong et al., 2024) 7.5 7.7 0.648/0.982
WiLoR (Potamias et al., 2025) 7.5 7.7 0.646/0.983
Ours 81 83 0.599/0.979

trained ConvNeXt achieves similarly strong perfor-
mance with only minor inaccuracies.

S CONCLUSION

In this work, we systematically investigated the use of
smaller and lighter networks combined with Knowl-
edge Distillation strategies—specifically output-level,
feature-level, and their combination—to accelerate
3D hand mesh reconstruction. Our experiments re-
vealed key insights into the relationship between
model size, architectural complexity, and the ef-
fectiveness of teacher-student supervision. We re-
placed HaMeR’s original ViT-H backbone with more
efficient alternatives such as MobileViT and Con-
vNeXt, and evaluated the impact of different distilla-
tion strategies. Our results show that output-level dis-
tillation consistently yields strong performance across
student models, while feature-level distillation pro-
vides benefits primarily for higher-capacity networks.
Overall, this work demonstrates the potential of KD to
enable fast and accurate hand reconstruction suitable
for real-time applications on resource-constrained de-
vices. Our approach offers a practical alternative to
large transformer-based models without a significant
sacrifice in accuracy.

Future research can explore and investigate more
expressive ways of enhancing feature-level distilla-
tion, such as using attention-based distillation, spa-
tial or channel-wise distillation, or relational knowl-
edge distillation. These approaches may better help
the student networks to learn the complex feature rep-
resentation of the teacher network.
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