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Abstract

High-performance Radar-Camera 3D object detection can
be achieved by leveraging knowledge distillation without
using LiDAR at inference time. However, existing dis-
tillation methods typically transfer modality-specific fea-
tures directly to each sensor, which can distort their unique
characteristics and degrade their individual strengths. To
address this, we introduce IMKD, a radar-camera fusion
framework based on multi-level knowledge distillation that
preserves each sensor’s intrinsic characteristics while am-
plifying their complementary strengths. IMKD applies
a three-stage, intensity-aware distillation strategy to en-
rich the fused representation across the architecture: (1)
LiDAR-to-Radar intensity-aware feature distillation to en-
hance radar representations with fine-grained structural
cues, (2) LiDAR-to-Fused feature intensity-guided distilla-
tion to selectively highlight useful geometry and depth in-
formation at the fusion level, fostering complementarity be-
tween the modalities rather than forcing them to align, and
(3) Camera-Radar intensity-guided fusion mechanism that
facilitates effective feature alignment and calibration. Ex-
tensive experiments on the nuScenes benchmark show that
IMKD reaches 67.0% NDS and 61.0% mAP, outperform-
ing all prior distillation-based radar-camera fusion meth-
ods. Our code and models are available at: https:
//github.com/dfki-av/IMKD/.

1. Introduction
Bird’s Eye View (BEV) has become the dominant repre-
sentation for 3D perception in autonomous systems due
to its structured spatial layout and planning compatibil-
ity. BEV maps are constructed using LiDAR, cameras, and
radar—each with distinct characteristics. LiDAR offers pre-
cise depth and structure, making it highly effective for 3D
detection [10, 38, 48, 65], but its high cost and limited range
hinder adoption. Cameras provide rich texture but struggle
with depth and low light. Radar is robust in adverse weather
and long-range detection but suffers from low spatial reso-

Figure 1. Comparison of KD methods grouped by distillation tar-
get. IMKD’s intensity-based knowledge distillation achieves the
highest performance.

lution and noise.
To leverage cost-effective setups, recent works have ex-

plored knowledge distillation (KD) to transfer information
from LiDAR to camera or radar-based models [14, 17, 71].
However, most existing approaches distill knowledge inde-
pendently to each modality, often forcing radar or camera
features to mimic LiDAR representations. This direct one-
to-one transfer overlooks the unique characteristics of each
sensor and can introduce representational conflicts, limiting
the effectiveness of the distillation process. Furthermore,
the intermediate representations chosen for distillation are
often suboptimal, missing opportunities to enhance cross-
modal fusion through better guidance signals.

In this paper, we introduce IMKD, an Intensity-Aware
Multi-Level Knowledge Distillation framework that en-
hances camera–radar representations through cross-modal
supervision. Prior methods have explored distillation either
at the modality level or in the fused space, but often without
accounting for sensor-specific reliability. IMKD addresses
this by supervising the fused camera–radar BEV represen-
tation with LiDAR as a privileged modality, where inten-
sity serves as a reliability prior that highlights geometrically



consistent regions. This enables structural and depth-rich
cues to be transferred more effectively into the fused rep-
resentation while preserving radar’s robustness, leading to
improved alignment, stability, and confidence in BEV fea-
tures.

The intensity-guided distillation mechanism modulates
supervision based on LiDAR confidence, emphasizing in-
formative regions while down-weighting ambiguous sig-
nals. This adaptive weighting prevents overfitting to modal-
ity inconsistencies and, when applied across early, middle,
and late fusion stages, yields stable feature alignment and
consistent cross-modal refinement.

Beyond modality-specific distillation, we shift focus to
the fused representation itself. Performing knowledge dis-
tillation in this joint feature space allows supervision to act
where cross-modal interactions are already encoded. This
leads to better spatial reasoning, stronger synergy between
modalities, and ultimately improved detection performance.

Finally, we generalize the use of intensity-aware super-
vision beyond LiDAR by introducing an intensity-guided
radar-camera fusion module. This module estimates confi-
dence from both sensors to guide feature fusion. To further
improve the fused representation, we incorporate structured
supervision from ground truth labels, offering a reliable sig-
nal that remains robust to sensor noise and occlusions. To-
gether, these additions strengthen cross-modal learning and
reduce dependence on LiDAR-specific guidance.

To validate our approach, we conduct extensive exper-
iments on the nuScenes dataset [1]. IMKD outperforms
prior camera-radar knowledge distillation methods and es-
tablishes a new benchmark for effective cross-modal super-
vision in cost-efficient 3D perception.

The main contributions of this paper are listed as follows:

• We present IMKD, an Intensity-Aware Multi-Level
Knowledge Distillation framework that enhances cam-
era–radar fusion for 3D object detection, achieving
state-of-the-art results among KD-based methods on the
nuScenes benchmark [1].

• We design an intensity-aware distillation strategy that
preserves the strengths of each sensor modality by guid-
ing knowledge transfer based on high-confidence LiDAR
cues. This is applied at multiple stages of the pipeline,
enhancing both radar and fused features.

• We perform knowledge distillation in the joint fused fea-
ture space instead of individual modalities, allowing su-
pervision to operate where cross-modal cues are already
integrated, leading to better spatial reasoning and more
robust predictions.

• We introduce an intensity-aware radar-camera fusion
module that improves fusion using sensor confidence
cues.

2. Related Work

2.1. 3D Object Detection with Multi-Sensor Fusion

Multi-modal 3D object detection combines complementary
sensors to boost perception performance. LiDAR-Camera
(LC) fusion remains the most accurate setup across datasets
[1, 4, 39], implemented via early fusion [49, 52, 54],
feature-level fusion [21, 22, 66], and BEV-based methods
[25, 31]. However, LiDAR’s high cost limits scalability,
positioning Camera-Radar (CR) fusion as a cost-effective
alternative for long-range, all-weather perception.

CR fusion is more challenging due to view misalign-
ment and sparse radar signals. Early methods like Center-
Fusion [40] and RadarNet [63] established radar-image as-
sociations and multi-level fusion. Recent BEV-based mod-
els—MVFusion [61], RADIANT [33], CRAFT [15], CRN
[16], and RCFusion [72]—focus on improving cross-modal
alignment and radar feature aggregation. RCBEVDet [28]
and RCBEVDet++ [27] further refine this pipeline with en-
hanced fusion strategies.

Building on these advances, our work incorporates
knowledge distillation to transfer LiDAR’s geometric cues
into the CR pipeline, improving fused feature quality while
maintaining efficiency.

2.2. Cross-modality Knowledge Distillation

In 3D object detection, traditional Knowledge Distilla-
tion (KD) approaches often maintain the same modal-
ity for teacher and student models, such as LiDAR-to-
LiDAR (L2L) [57, 59, 64, 69] or Camera-to-Camera (C2C)
[20, 67, 68]. However, cross-modality KD, which dis-
tills knowledge between different sensor modalities, has
gained increasing attention. Established cross-modality KD
paradigms include LiDAR-to-Camera (L2C) [2, 3, 5, 9,
21, 32] and Camera-to-LiDAR (C2L) [45, 51], with re-
cent advancements exploring fusion-based KD. Methods
such as UniDistill [73] and DistillBEV [58] unify fea-
tures into a shared BEV space to facilitate L2C and LC-
to-Camera (LC2C) distillation. Additionally, LabelDistill
[14] demonstrates effective label-based distillation for cam-
era and LiDAR models, ensuring robust supervision with-
out relying solely on feature-space alignment. X3KD [17]
and CRKD [71] extend KD to LiDAR-Camera-to-Camera-
Radar (LC2CR) by introducing adaptive feature alignment,
enabling radar-aware distillation while mitigating domain
discrepancies.

While CRKD [71] explored fused-to-fused distillation,
prior works did not explicitly model modality-to-merged
transfer with reliability-aware guidance. IMKD addresses
this gap by leveraging LiDAR and label supervision to en-
hance camera–radar fusion, introducing spatial, depth, and
structural cues through intensity-guided distillation.



Figure 2. Overview of the proposed Intensity-Aware Multi-Level Knowledge Distillation.

3. Intensity-Aware Multi-Level Knowledge
Distillation Framework

IMKD is a framework designed to overcome the shortcom-
ings of existing knowledge distillation approaches for sen-
sor fusion by enhancing radar representation and introduc-
ing intensity-aware, multi-level supervision.

Multi-view image features are lifted to BEV using
radar-guided depth, while radar features are encoded via
a learnable radar-to-grid module. Fusion is performed
using intensity-aware deformable cross-attention, leverag-
ing modality-specific intensity maps for precise alignment.
LiDAR-derived features refine radar representations before
distillation. LiDAR distillation injects spatial priors, while
label distillation provides clean, uncertainty-free supervi-
sion. At inference, only camera and radar branches are used
for efficient deployment.

3.1. Camera Feature Extraction

We extract features from N multi-view images I1, · · · , IN
using a convolutional backbone, producing downsampled
feature maps FI at a resolution of 1/16 for each view.
These features are refined through additional convolutional
layers to generate a context-rich perspective-view feature

map CPV
I ∈ RN×C×H×W :

CPV
I = Conv(FI)

DI(u, v) = Softmax(Conv(FI)(u, v)), (1)

where (u, v) denotes pixel coordinates in the image plane
and DI ∈ RN×D×H×W is the predicted per-pixel depth
distribution across D discrete bins. Following the depth-
guided view transformation approach [43], we lift the
perspective-view features into a frustum-aligned 3D repre-
sentation CFV

I ∈ RN×C×D×H×W :

CFV
I = Conv(CPV

I ⊗DI), (2)

where ⊗ denotes the outer product between the feature
maps and the depth probabilities. The resulting frustum-
view features are later aggregated across views and pro-
jected into the BEV space as FCamera.

3.2. Radar Feature Extraction
Our radar processing pipeline transforms sparse, noisy point
cloud measurements into dense BEV features suitable for
fusion. To maximize the representational power of radar
while preserving its sparsity, we design a learnable radar
grid construction module followed by a compact yet effec-
tive radar encoder.



3.2.1. Radar Grid Construction
Let PRadar = (xi, yi, zi, vi,RCSi)i∈{1,...,M} be the set of M
raw radar detections per frame, where (xi, yi, zi) is the 3D
position, vi is the compensated Doppler velocity, and RCSi

is the radar cross-section. Each point is first embedded us-
ing a learnable MLP ϕ:

fi = ϕ(xi, yi, zi, vi,RCSi) ∈ RC (3)

We then project each radar point onto the BEV plane
and map it to a 2D grid cell (ui, vi). Instead of using
handcrafted statistics, we aggregate features per cell using
a differentiable, channel-wise max pooling across all points
within that cell:

GR(u, v) = MaxPool (fi | (ui, vi) = (u, v)) , (4)

GR ∈ RC×H×W

This learnable radar-to-grid mapping enables the model
to adaptively encode semantic and spatial patterns from raw
radar points, replacing brittle hand-engineered descriptors.

3.2.2. Radar Encoder
To extract higher-level features from the radar grid, we de-
sign a lightweight encoder ER that adapts sparse convo-
lutional designs and point-based reasoning. It consists of
16 convolutional layers grouped into residual blocks with
BatchNorm and ReLU activations. Two downsampling
stages progressively increase channel depth while reducing
spatial resolution, producing BEV features:

FRadar = ER(GR) ∈ RC×H×W (5)

The output radar features FRadar are resolution-aligned
with the camera BEV features, ensuring seamless integra-
tion during multimodal fusion.

3.3. Intensity-Aware Feature Fusion
To demonstrate that intensity-aware mechanisms are not
limited to LiDAR, we introduce an intensity-aware fusion
strategy between camera and radar features. This approach
enables modality-aware weighting during fusion, reducing
the dominance of camera features and enhancing the contri-
bution of radar in ambiguous or occluded regions.

Radar intensity is computed using both the Radar Cross
Section (RCS) and Doppler velocity magnitude. For each
radar point i, given its RCS value RCSi and Doppler veloc-
ity components (vxi , vyi), the intensity is defined as:

IRadar
i = σ

(
α · RCSi + β ·

√
v2xi

+ v2yi

)
(6)

where α and β are fixed scalar weights, and σ denotes the
sigmoid activation function.

For the camera features, a spatial intensity map ICam ∈
RN×1×H×W is generated using a convolutional layer:

ICam = σ(Conv(FCamera)) (7)

We adopt a deformable attention formulation in BEV
space, where radar BEV features FRadar serve as queries
(Q), and camera BEV features FCamera serve as keys (K)
and values (V). The fusion is computed as:

F fused = DeformAttnintensity(Q = FRadar, K = FCamera,

V = FCamera, ICam, IRadar)
(8)

This mechanism allows the network to learn spatially-
varying cross-modal weights, reducing dominance from any
single modality and improving the relevance of fused fea-
tures.

3.4. Adaptive Intensity-Guided Radar Feature En-
hancement

While LiDAR intensity primarily reflects surface reflectiv-
ity, it also acts as a proxy for geometric confidence; high-
intensity returns often correspond to structured and reflec-
tive objects such as vehicles or road boundaries. Rather
than using intensity as a semantic indicator, we leverage it
to prioritize supervision from high-confidence LiDAR re-
gions during knowledge distillation. Crucially, instead of
directly relying on raw intensities, we learn a transformation
over the intensity map, enabling the network to adaptively
reweight spatial contributions as shown in Fig. 3.

Figure 3. We illustrate a weighted LiDAR feature map, generated
from intensity, is merged with the radar feature map to compute the
intensity-guided feature map loss, preserving radar features and
avoiding low-intensity LiDAR regions.

3.4.1. Voxelized LiDAR Intensity Extraction:
To derive intensity-aware guidance, we first voxelize Li-
DAR points PLiDAR = {(xi, yi, zi, Ii, ti)}Ni=1, where each



point contains spatial coordinates (xi, yi, zi), intensity Ii,
and timestamp ti. Using a voxelization function V , we par-
tition the points into discrete 3D voxels and compute the
mean voxel intensity Iv as:

Iv =
1

Nv

Nv∑
i=1

Ii, (9)

where Nv denotes the number of points within a voxel.
This intensity is then projected onto a BEV grid ILiDAR ∈
RH×W , producing an intensity map aligned with the Li-
DAR BEV features:

ILiDAR(u, v) =

∑
i Iv · δ(u− ui, v − vi)

max(1,
∑

i δ(u− ui, v − vi))
, (10)

where (u, v) are BEV grid indices from voxel projection,
and δ denotes voxel-to-grid mapping for spatial alignment.

3.4.2. LiDAR-Weighted Radar Feature Fusion:
We utilize the intensity map ILiDAR as an adaptive weight-
ing mechanism to guide the fusion of LiDAR and radar fea-
tures. Given LiDAR feature map FLiDAR and radar feature
map FRadar, we compute intensity-based feature blending
weights as:

wLiDAR = λ · ILiDAR, wRadar = 1− wLiDAR, (11)

where λ is a learnable scaling factor. The fused BEV
feature map is then constructed as:

F̃Radar = wLiDAR · FLiDAR + wRadar · FRadar. (12)

3.4.3. Intensity-Aware Feature Map Loss for Radar
Guidance:

To reinforce radar feature refinement, we introduce an
alignment loss between radar features and the LiDAR fea-
ture map to encourage consistency between the two modal-
ities:

Lalign =
∥∥FRadar −FLiDAR

∥∥2 . (13)

Simultaneously, we maintain a consistency loss be-
tween the radar and fused feature maps to prevent over-
suppression of radar-specific information:

Lconsist =
∥∥∥FRadar − F̃Radar

∥∥∥2 . (14)

The final Intensity-Guided Feature Map Loss is formu-
lated as:

LIG-FM = αLalign + (1− α)Lconsist, (15)

where α balances alignment and consistency constraints.

3.5. LiDAR-Guided Feature Enhancement
We directly supervise the fused camera–radar BEV repre-
sentation using LiDAR as a privileged modality. This pro-
cess is challenged by semantic gaps between LiDAR and
fused features, temporal misalignment across modalities,
and instability from the high-dimensional, semantically en-
riched representation. To ensure stable and spatially-aware
transfer, we apply LiDAR intensity as soft attention instead
of binary or uniform weighting.

3.5.1. Spatially-Weighted Feature Distillation
We guide the fused BEV feature F fused ∈ RC×H×W using
LiDAR features FLiDAR with spatial weighting from nor-
malized LiDAR intensity ILiDAR ∈ R1×H×W . The distilla-
tion loss is:

LSWFD =
〈
ILiDAR
ij ·

∥∥FLiDAR
ij − β(F fused

ij )
∥∥2
2

〉
i,j

(16)

Here, β(·) is a lightweight alignment module. This formu-
lation ensures feature transfer is stronger in high-confidence
regions while preserving full gradient flow—something not
possible with handcrafted binary masks.

3.5.2. Spatially-Weighted Response Distillation
To further align the predictions of the fused detector with
the LiDAR teacher, we introduce a Spatially-Weighted Re-
sponse Distillation loss.

LSWRD =
〈
ILiDAR
ij ·

(
Lcls(h

LiDAR, h fused)

+Lbbox(b
LiDAR, bfused)

)〉
i,j

(17)

Here, Lcls and Lbbox denote the standard classifica-
tion and bounding-box regression losses (as in CenterPoint
[65]), with h representing the predicted class heatmap and b
representing predicted bounding-box coordinates. This im-
proves upon prior works by avoiding uniform foreground
masks and instead applying confidence-weighted distilla-
tion across the full spatial domain.

3.6. Label-Based Knowledge Distillation
We extend LabelDistill [14] to operate directly on fused
camera-radar BEV features rather than Camera-only fea-
tures. This avoids reliance on modality-specific artifacts
and ensures robust supervision over the multi-modal rep-
resentation.

In contrast to the binary object masks used in [14], we
introduce a soft Gaussian mask centered on ground-truth
boxes to enable smooth, graded supervision. The final loss
is:

LLD =

∑∥∥F label −F fused
∥∥2 · Msoft

label∑
Msoft

label + ϵ
(18)



Here, F label is the label-encoded BEV feature and Msoft
label

softly weights the loss around valid object regions. This
fused, soft-masked formulation improves generalization
while preserving clean label supervision.

3.7. Overall Loss Function and Training Strategy
The total training objective combines detection, depth esti-
mation, and distillation terms as:

Ltotal = λ1Ldet + λ2Ldepth + λ3LIG-FM

+ λ4LSWFD + λ5LSWRD + λ6LLD (19)

All components are jointly optimized, with frozen Li-
DAR and label encoders used only during training. The
modular design enables efficient fusion learning without
inference-time overhead.

4. Experiments

4.1. Experimental Setup
Dataset and Evaluation Metrics
We evaluate on the nuScenes dataset [1], which includes
LiDAR, radar, and camera data across 1,000 scenes (850
for training/validation, 150 for testing).
3D object detection is assessed using official nuScenes [1]
metrics: mAP, NDS, and five TP metrics: mATE, mASE,
mAOE, mAVE, and mAAE.

All results are reported on the nuScenes [1] validation
and test sets for fair comparison with prior work.

Implementation Details
We use pretrained CenterPoint [65] as the LiDAR teacher
with (0.1m, 0.1m, 0.2m) voxel size and adopt the label en-
coder from LabelDistill [14]. The camera branch is based
on BEVDepth [23] with efficient depth layers. Radar inputs

use multi-sweep projections with Doppler and RCS normal-
ization, processed into a polar-to-BEV feature map. Tem-
poral fusion follows BEVFormer [24] by accumulating four
BEV frames at 1s intervals, ensuring causal inference.

We use an ImageNet-pretrained ResNet50 [8] backbone,
with input size 256×704, trained using AdamW [35]. Data
augmentations are applied across all modalities. Detailed
architectural and training configurations are provided in the
supplementary material.

4.2. Main Results and Comparison with State-of-
the-Art

We evaluate IMKD on the nuScenes [1] validation and test
sets, comparing against a range of distillation-based 3D
object detectors, including both camera-only and camera-
radar student models. Results are summarized in Tables 1
and 2.

On the validation set, IMKD achieves 61.0 NDS and
51.6 mAP, outperforming all prior KD-based methods. No-
tably, it surpasses the strongest baseline, CRKD, by +6.5%
NDS and +10.1% mAP, along with consistent reductions in
translation, scale, and orientation errors. These gains high-
light the effectiveness of IMKD’s fusion-level distillation
and intensity-aware supervision.

On the nuScenes [1] test set, IMKD sets a new bench-
mark with 67.0 NDS and 61.0 mAP, significantly improving
upon previous knowledge-distillation-based results. These
improvements affirm that enhancing the quality and con-
textual relevance of supervision, rather than relying on
modality-specific or heuristic KD, is key to unlocking ro-
bust camera-radar perception. Overall, these results demon-
strate that IMKD offers a robust and generalizable approach
to multi-modal knowledge distillation, advancing the field
beyond conventional KD strategies and establishing a new
standard for student models in 3D detection.

Qualitative results in Fig. 4 further illustrate IMKD’s
impact: knowledge distillation on fused modalities yields

Method Input KD Backbone Image Size NDS ↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓
UVTR [21] C L2C R101 900×1600 45.0 37.2 0.735 0.269 0.397 0.761 0.193
BEVDistill [2] C LC2C R50 640×1600 45.7 38.6 0.693 0.264 0.399 0.802 0.199
UniDistill [73] C L2C R50 256×704 37.8 26.5 - - - - -
BEVSimDet [14] C LC2C♢2C SwinT 256×704 45.3 40.4 0.526 0.275 0.607 0.805 0.273
LabelDistill [14] C LL♢2C R50 256×704 52.8 41.9 0.582 0.258 0.413 0.346 0.220
DistillBEV [14] C L2C♢2C R50 256×704 41.6 34.0 0.704 0.266 0.556 0.815 0.201
X3KD [17] C LC2C R50 256×704 50.5 39.0 0.615 0.269 0.471 0.345 0.203

X3KD [17] C+R L2CR R50 256×704 53.8 42.3 - - - - -
CRKD [71] C+R LC2CR R50 256×704 57.3 46.7 0.446 0.263 0.408 0.331 0.162
IMKD (Ours) C+R LL♢2M R50 256 × 704 61.0 51.6 0.444 0.259 0.384 0.229 0.160

Table 1. Comparison of Knowledge distillation (KD) methods for 3D object detection results on the nuScenes [1] val set. ’L’, ’L♢’ ’C’,
’R’ and ’M’ denote LiDAR, label, camera, radar and merged (camera+radar) inputs, respectively.



Method Input KD NDS ↑ mAP ↑ mATE ↓ mASE ↓ mAOE ↓ mAVE ↓ mAAE ↓
UVTR [21] C L2C 52.2 45.2 0.612 0.256 0.385 0.664 0.125
BEVDistill [2] C LC2C 59.4 49.8 0.472 0.247 0.378 0.326 0.125
UniDistill [73] C L2C 39.3 29.6 0.637 0.257 0.492 1.084 0.167
LabelDistill [14] C LL♢2C 61.0 52.6 0.443 0.252 0.339 0.370 0.136
X3KD [17] C LC2C 56.1 45.6 0.506 0.253 0.414 0.366 0.131

X3KD [17] C+R L2CR 55.3 44.1 - - - - -
CRKD [71] C+R LC2CR 58.7 48.7 0.404 0.253 0.425 0.376 0.111
IMKD (Ours) C+R LL♢2M 67.0 61.0 0.401 0.249 0.305 0.238 0.102

Table 2. Comparison of Knowledge Distillation (KD) methods for 3D object detection on the nuScenes [1] test set. ’L’, ’L♢’, ’C’, ’R’,
and ’M’ denote LiDAR, label, camera, radar, and merged (camera+radar) inputs, respectively. Note: Each method uses its best reported
backbone and image size; comparisons should focus on distillation strategies.

more accurate detections and better box orientation com-
pared to individual-modality KD, especially in ambiguous
or occluded scenes.

In the following section 4.3, we present ablation studies
to analyze the contributions of each IMKD component. Un-
less otherwise specified, all experiments are conducted on
the nuScenes [1] validation set using a ResNet-50 [8] im-
age backbone. We report standard metrics including mAP,
NDS, and detailed error breakdowns to evaluate perfor-
mance comprehensively.

4.3. Ablation Study
We conduct a step-wise ablation to isolate the impact of
each component in IMKD. Starting from a camera-only
baseline, we progressively introduce radar grid learning,
intensity-aware fusion, and our distillation modules.

4.3.1. Effectiveness of Learnable Radar Grid
We assess the effect of radar input design on detection per-
formance in Tab. 3. Introducing radar via a fixed hand-
crafted grid boosts performance over the camera-only setup,
confirming the benefit of multi-modal fusion. Switching to
a learnable radar grid further improves both mAP and NDS,
validating its role in producing task-adaptive radar features.

Method mAP ↑ NDS ↑
Camera Only 34.8 44.6
Camera+Radar (Handcrafted) 41.2 52.5
Camera+Radar (Learnable) - Baseline 43.4 53.5

Table 3. Ablation on radar representation. Learnable radar grid
improves over both camera-only and handcrafted radar projection.

4.3.2. Impact of Intensity-Aware C+R Fusion
We incorporate both radar and camera intensity to guide the
fusion process. This leads to notable gains over the learn-
able grid baseline as shown in Tab. 4, validating the ben-
efit of confidence-aware fusion. Importantly, this shows
that intensity-guided processing is beneficial beyond Li-
DAR and can be generalized to radar-camera fusion.

Method mAP ↑ NDS ↑
Baseline 43.4 53.5
+ Intensity-Aware Fusion 46.5 55.3

Table 4. Comparison of non-intensity-based vs. intensity-aware
fusion for merged camera-radar features.

4.3.3. Effectiveness of Proposed KD Modules
We incrementally evaluate the effectiveness of our proposed
distillation objectives on top of the intensity-aware fusion
baseline in Tab. 5. Each module, i.e. LiDAR feature dis-
tillation, label distillation, intensity-guided feature map su-
pervision, and response distillation yields consistent perfor-
mance gains, validating their individual contribution. When
combined, they offer additive improvements, with the full
IMKD model achieving a notable +11% mAP and +9.3%
NDS over the baseline. This demonstrates the effectiveness
of our modular, fusion-aligned KD framework in enhancing
multi-modal perception.

Configuration mAP ↑ NDS ↑
Intensity-Aware Fusion 46.5 55.3
+ LiDAR Feature Distill (LSWFD) 49.56 58.30
+ Label Distill (LLD) 49.41 58.25
+ Intensity-Guided Feature Map (LIG-FM) 49.64 58.40
+ Response Distill (LSWRD) 47.68 57.31

+ Response + LiDAR Distill. 49.72 58.51
+ Resp. + LiDAR + Label Distill. 50.22 59.14
IMKD (Full Model) 51.65 61.05

Table 5. Ablation on proposed distillation objectives over the
intensity-guided fusion baseline.

4.3.4. Cross-Modal vs Uni-Modal Distillation
We compare distillation into individual modalities versus
fused features. While unimodal KD achieves solid results,
fusion-level KD yields +4.0% mAP and +4.6% NDS as
shown in Tab. 6. These gains require mitigating gradient



Figure 4. Comparison of distillation targets: individual modality KD yields extra false detections (white circles) and poor orientation, while
merged feature KD aligns better with ground truth.

conflicts and applying pseudo-label masking and feature
normalization, underscoring the complexity of fusion-level
supervision. This validates our hypothesis that modality in-
teraction within the distillation target space plays a crucial
role in enhancing downstream performance.

LiDAR KD Target Label KD Target mAP ↑ NDS ↑
Camera & Radar Camera & Radar 49.8 58.3
Fused Camera & Radar 50.5 59.3
Camera & Radar Fused 50.2 59.0
Fused Fused 51.6 61.0

Table 6. Comparison of distillation targets using individual modal-
ities vs. fused camera-radar features.

4.4. Robustness to Visibility and Temporal Degra-
dation

To our knowledge, IMKD is the first distillation-based fu-
sion framework to evaluate performance under diverse en-
vironmental conditions (e.g., rain, night) and degraded tem-
poral input (frame drop). Prior KD-based methods such as
CRKD [71], X3KD [17], and LabelDistill [14] focus solely
on standard benchmarks, leaving real-world robustness un-
explored. Our analysis in Tab. 7 reveals that IMKD ex-
hibits greater stability in adverse conditions, suggesting that
confidence-aware distillation leads to more reliable multi-
modal fusion. Although IMKD uses LiDAR during train-
ing, it remains effective even when supervision is noisy
or partially missing, as the learned guidance is intensity-
adaptive and spatially grounded, rather than hard-coded. To
contextualize these results, we also report robustness for
non-KD fusion methods (CRN [16], RCBEV [74]). While
not directly comparable, they offer a useful reference point
for deployment. IMKD consistently maintains superior per-
formance across weather and frame drop scenarios Tab. 8,
demonstrating that confidence-guided distillation improves
both accuracy and resilience in safety-critical conditions.

Input Modality Sunny Rainy Day Night

RCBEV [74] C+R 36.1 38.5 37.1 15.5
BEVDepth [23] C 39.0 39.0 39.3 16.8
CRN [16] C+R 54.8 57.0 55.1 30.4
IMKD (Ours) C+R 57.9 58.5 58.3 34.7

Table 7. mAP under varying weather and lighting on nuScenes [1]
val set, where IMKD outperforms other methods.

Method Input Modality Drop 0 Drop 1 Drop 3 Drop 6

CRN [16] C+R C
R 47.18 40.19

45.39
22.94
41.34

-
34.52

IMKD C+R C
R 51.6 43.28

49.47
23.53
44.40

-
36.35

Table 8. mAP under increasing frame drops on nuScenes [1] val
set, where IMKD remains more stable across sensor degradations.

5. Conclusion
We proposed IMKD, an Intensity-guided Multi-Level
Knowledge Distillation framework for radar-camera 3D ob-
ject detection. IMKD identifies a core limitation in existing
multi-modal distillation methods: modality-specific super-
vision often leads to incoherent representations and subop-
timal fusion. To address this, we introduce a merged feature
distillation strategy and an intensity-aware refinement mod-
ule that prioritizes high-confidence regions during training.
Although IMKD is trained using LiDAR as a privileged
modality, its design is agnostic to specific sensor pairs and
may be extended to other domains where confidence-guided
supervision is available. Through extensive ablations and
comparisons on nuScenes [1], we demonstrated that IMKD
delivers consistent improvements over state-of-the-art dis-
tillation baselines, validating both the design and effective-
ness of our proposed framework. As a future direction, we
plan to extend IMKD to temporal multi-frame fusion, en-
abling dynamic scene understanding and improved consis-
tency in long-term predictions.
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IMKD: Intensity-Aware Multi-Level Knowledge Distillation for
Camera-Radar Fusion
Supplementary Material

7. Overview

This supplementary material provides additional details
on our proposed approach, including architectural design
choices, implementation specifics, and extended experi-
mental results. In Sec. 8, we describe the network architec-
ture and key design decisions. Sec. 9 covers implementa-
tion details, including data preprocessing, hyperparameters,
training configuration, and the impact of feature partition-
ing on fusion. In Sec. 10, we present additional experimen-
tal results, such as per-class performance analysis. Finally,
Sec. 11 provides qualitative results to further illustrate the
effectiveness of our method.

8. Architectural Details

8.1. Motivation for Intensity-Guided Distillation
LiDAR intensity encodes the strength of signal returns,
which is closely tied to geometric reliability and boundary
consistency [18, 36, 65]. In IMKD, intensity is not trans-
ferred as a raw feature; instead, it is used to guide knowl-
edge distillation and fusion. Specifically, LiDAR supervi-
sion is intensity-weighted when transferring features to the
camera–radar fused representation, while camera and radar
intensities are also used to modulate their deformable fu-
sion. This ensures that distillation emphasizes reliable Li-
DAR regions, aligns multi-sensor features, and sharpens
fused predictions.

The motivation is threefold: intensity provides a reliabil-
ity prior that (i) emphasizes consistent LiDAR features dur-
ing transfer, preventing noisy regions from dominating; (ii)
improves alignment of camera–radar fusion by highlight-
ing structurally meaningful areas for cross-modal attention;
and (iii) refines prediction confidence by guiding the fused
BEV representation toward sharper object boundaries and
more stable detections.

This design avoids directly forcing radar to mimic Li-
DAR, preserving radar’s modality-specific robustness (e.g.,
under adverse weather), while still leveraging LiDAR’s
depth-rich supervision. Similar strategies have proven ef-
fective beyond autonomous driving. In Medical imaging,
MRI and CT often leverage intensity-weighted priors to
guide segmentation, where voxel intensity correlates with
tissue density and boundary sharpness [29, 44]. In Remote
sensing, satellite imagery, and radar backscatter intensity is
used to enhance feature fusion for land-cover classification

and flood detection, where high-return regions correspond
to structurally reliable terrain [12, 47].

These parallels show that intensity is a widely validated
proxy for reliability and structure across domains. By in-
corporating it into the distillation process, IMKD enhances
the transfer of geometric and structural knowledge without
erasing modality-specific strengths.

8.2. Architectural Design Considerations
Our architecture is designed with modularity and supervi-
sion efficiency in mind. While the main paper details the
overall pipeline, here we highlight key considerations be-
hind specific design choices that enhance robustness and
enable clean integration of privileged signals.

Intensity-Aware Cross-Modality Fusion: Our archi-
tecture fuses camera and radar features using a deformable
attention mechanism guided by both camera confidence and
radar intensity maps. This dual-intensity guidance enables
the network to adaptively align features across modalities,
prioritizing reliable regions and suppressing noise. Unlike
modality-agnostic or uniform fusion schemes, our design
selectively emphasizes trustworthy cues from each sensor,
leading to more robust representations under challenging
conditions such as rain, night, or partial sensor failure.

In Eq. 8, the camera and radar intensity maps
ICam, IRadar serve as modulation signals within the de-
formable attention module. Specifically, intensity values
are concatenated with key–value embeddings and passed
through a learned gating function g(·), which rescales both
the sampling offsets and the attention weights:

wij = softmax
(
(qi · kj) · g(Ij)

)
, (20)

where g(·) is a lightweight MLP with sigmoid activation.
This mechanism ensures that attention is biased toward
high-intensity regions (i.e., geometrically reliable points),
enabling intensity-aware feature selection and fusion.

Intensity-Guided Radar Representation: Radar inten-
sity is used to modulate the radar branch features before fu-
sion. Although simple, this plays a vital role in enhancing
geometric priors, especially under sensor degradation (e.g.,
frame drops or poor lighting). This design avoids the need
for radar-specific heuristics or handcrafted filters.

Late Injection of Supervision: All remaining distilla-
tion losses are injected post-fusion, reducing the risk of
modality dominance and preserving the integrity of radar



features during training. This ensures that supervision acts
as a guidance mechanism, not a constraint.

Drop-In Extensibility: The design is easily extend-
able to other sensor pairs, e.g., camera+thermal or cam-
era+event. Our use of post-fusion supervision and intensity-
aware enhancement ensures that new modalities can be
added without major architectural changes.

These choices, while not architectural novelties in isola-
tion, collectively enable IMKD to scale well under different
conditions and sensor setups with minimal adjustments.

8.3. Inference Pipeline
During inference, our model operates efficiently using only
camera and radar inputs, ensuring a lightweight and deploy-
able architecture. Several components used during training
are discarded, streamlining computation without compro-
mising detection performance.

Components Removed at Inference:
LiDAR Feature Maps: Since LiDAR supervision is

only utilized during training to inject spatial priors, these
feature maps are not required at test time.

Label Encoder: The label encoder, responsible for
transforming ground truth 3D bounding boxes into a BEV
representation, is used solely for training supervision and is
omitted during inference.

Efficient Operation with Camera and Radar Inputs:
At inference, multi-view camera and radar features are first
projected into a BEV space. These BEV features are then
fused using an intensity-aware deformable fusion module,
which leverages both camera confidence scores and radar
intensity maps to guide spatial alignment. This design en-
sures robustness under adverse conditions by emphasizing
high-confidence regions from each modality. Although Li-
DAR and label supervision are used during training, they
are not required at test time. As a result, our method
achieves accurate and efficient 3D detection using only
camera and radar inputs, making it practical for real-world
deployment.

8.4. Inference Time
We evaluate the inference speed of our IMKD framework
on an RTX 3090 GPU using a single batch with FP16 preci-
sion. With a ResNet-50 [8] backbone, our method achieves
real-time performance at 25 FPS, making it competitive
with existing camera-radar fusion approaches. Our knowl-
edge distillation framework is employed solely during train-
ing and introduces no additional latency during inference.

Among knowledge distillation-based 3D detection meth-
ods, only BEVSimDet [70] and UVTR-C [21] report infer-
ence speeds—11.1 FPS and 3.1 FPS, respectively—while
BEVDet-Tiny [11] (a camera-only baseline) runs at 15.6
FPS. Other methods, such as UniDistill [73], LabelDistill
[14], DistillBEV [2], X3KD [17] and CRKD [71], do not

disclose inference performance. In contrast, our IMKD
model delivers 25 FPS while outperforming these methods
in detection accuracy, highlighting its strong balance be-
tween efficiency and robustness for real-world deployment.

Method Type FPS

BEVDet-Tiny [11] Camera-Only 15.6
UVTR-C [21] KD-Based 3.1
BEVSimDet [70] KD-Based 11.1
IMKD (Ours) KD-Based 25.0

Table 9. Comparison of inference speeds (FPS) across KD-based
and camera-only baselines. Our method achieves real-time perfor-
mance while maintaining strong accuracy.

8.5. Loss Function Weight Tuning
The weights for individual loss terms in Eq. (19) are empir-
ically tuned to ensure balanced contributions during train-
ing. Specifically, the detection and depth losses (λ1, λ2)
are set to 0.3, while the LiDAR- and label-based distilla-
tion losses (λ4, λ5, λ6 in Eq. (16), Eq. (17), and Eq. (18))
are also weighted at 0.3 to provide auxiliary supervision
without overwhelming the primary objectives. The radar
distillation loss (λ3 in Eq. (15)) is governed by a learn-
able scalar, initialized at 100, which allows the network
to adaptively adjust its relative contribution during training
and reduces manual sensitivity. Within Eq. (15), the align-
ment–consistency trade-off is controlled by α = 0.5, which
provides a balanced emphasis across geometric consistency
and feature alignment.

Loss Term Symbol Weight

Detection loss (Ldet) λ1 0.3
Depth loss (Ldepth) λ2 0.3
Intensity-Guided Feature Map (LIG-FM) λ3 Learn.,

init. 100
LiDAR Feature Distill (LSWFD) λ4 0.3
Response Distill (LSWRD) λ5 0.3
Label Distill (LLD) λ6 0.3
Alignment-consistency trade-off α 0.5

Table 10. Loss functions and corresponding weights used in
IMKD.

These settings were chosen after preliminary sweeps to
equalize the order of magnitude of gradients from each
term, preventing instability from any single loss. We
observed that training remained stable across all experi-
ments without requiring further re-tuning, indicating that
the framework is not overly sensitive to precise hyperpa-
rameter choices. The final values used in all experiments



Figure 5. Sensitivity of mAP and NDS to individual loss weights λ. Each subplot reports an illustrative sweep over λ ∈
(0.1, 0.2, 0.3, 0.4, 0.5, 0.6); dashed vertical lines mark the chosen operating points (λ = 0.3 for most terms, α = 0.5 for alignment).
The curves indicate that performance is stable near the chosen weights and degrades when weights deviate substantially.

are summarized in Tab. 10 for reproducibility. This stabil-
ity is also illustrated in Fig. 5, where we plotted the val-
ues of all loss weights. The curves show that performance
remains largely stable near the chosen weights, while sub-
stantial deviations can lead to degradation, confirming that
the selected operating points strike a robust balance across
losses.

9. Implementation Details

9.1. Pre-Processing
Pre-processing
Our method utilizes multi-modal data comprising images,
radar, and LiDAR point clouds. The following pre-
processing steps are applied to each modality:
Image Pre-processing: Images undergo a random resize
within a scaling range of [0.386, 0.55] before being cropped
to a fixed resolution of 256 × 704. Data augmentation in-
cludes random horizontal flipping and a constrained vertical
crop with no bottom percentage limit. Rotation augmenta-
tion is disabled. Six camera views are used.
Radar Pre-processing: Radar points are projected into the
BEV space, with an intensity-aware transformation applied
to align them with the camera features. The radar represen-
tation is downsampled using a voxelization process with a
fixed BEV grid resolution.
LiDAR Pre-processing: LiDAR points are voxelized with
a voxel size of [0.1, 0.1, 0.2], ensuring consistent spatial

resolution. The voxel encoder uses a sparse convolutional
network to generate a compact feature representation while
maintaining high spatial fidelity.
BEV Augmentation: BEV-space transformations include a
random rotation within [−22.5°, 22.5°], a scaling perturba-
tion in the range [0.9, 1.1], and a probabilistic flipping along
both axes with a 50% chance.

9.2. Hyperparameters Settings
Backbone (Image Branch): A ResNet-50 [8] extracts
multi-scale image features, processed via an FPN-style [26]
neck with an upsampling strategy of {0.25, 0.5, 1, 2}.
Backbone (Radar & LiDAR Fusion): Point cloud features
are voxelized and encoded using a SECOND-based [62] ar-
chitecture, followed by a stacked CNN backbone. The fea-
tures are refined via a SECONDFPN-style neck with output
strides of {0.5, 1, 2}.
Detection Head: The detection follows a CenterPoint-style
[65] approach, leveraging a hierarchical BEV backbone and
an FPN-style [26] neck. Bounding boxes are regressed us-
ing a CenterPoint-based [65] box coder with a post-center
range of [−61.2, 61.2].

9.3. Training Configuration
Loss Functions: Apart from the losses mentioned in the pa-
per, the classification loss is based on Gaussian Focal Loss
[53], while regression losses include L1 Loss [7] for bound-
ing box estimation and a smooth transition function for ori-



entation prediction. Additional loss terms are incorporated
to enhance knowledge-distillation and overall detection per-
formance.
Voxelization: The LiDAR point cloud is voxelized within a
spatial range of [−51.2, 51.2] meters in the XY plane and a
vertical range from −5 to 3 meters.
Training Grid Settings: The BEV grid is constructed with
a spatial resolution of [512, 512] and an output downsam-
pling factor of 4. For LiDAR, the grid is defined over
[1024, 1024, 40] points, maintaining high spatial fidelity.

Config ResNet-50/101

Optimizer AdamW
Base Learning Rate 4e− 4

Backbone Learning Rate 2e− 4/1e− 4

Weight Decay 1e− 2

Batch Size 16 / 8
Training Epochs 30
LR Schedule Cosine
Gradient Clip 5

Table 11. Training configurations for ResNet-50/101.

10. Additional Experimental Results
10.1. Comparison with LiDAR Teacher Model
To evaluate the effectiveness of IMKD, we compare it
against its LiDAR-based teacher, specifically CenterPoint
[65] pretrained on the nuScenes [1] dataset. The student
model consists of a BEVDepth [23] camera module and a
radar encoder.

Tab. 12 summarizes the results. While the LiDAR
teacher achieves strong performance, it is not the best-
performing LiDAR model on the nuScenes [1] dataset.
We report IMKD results with and without distillation.
Although direct comparison across modalities is inher-
ently challenging, distillation significantly improves the stu-
dent, with NDS increasing by 1.8 and mAP by 2.6 com-
pared to the teacher. This improvement arises because
our multi-level distillation transfers depth cues, geometric
structure, and point-density patterns from LiDAR into the
fused camera–radar representation, thereby compensating
for the modalities’ inherent weaknesses. In addition, the
prediction-level distillation between LiDAR outputs and the
student predictions refines decision boundaries and reduces
ambiguity in challenging cases. Together, these mecha-
nisms allow the student to not only close the gap with the
LiDAR teacher but in some settings surpass it by leveraging
complementary cross-modal information absent in LiDAR
alone.

Method mAP NDS

LiDAR Teacher [65] 58.40 65.20
IMKD w/o LiDAR Distil. 56.90 62.5
IMKD Full 61.0 67.0

Table 12. Performance comparison between our IMKD model and
its LiDAR teacher on the nuScenes [1] test set.

10.2. Comparison with Camera-Radar Methods
without Knowledge Distillation

To further contextualize the performance of our IMKD
framework, we compare it against recent camera-radar fu-
sion methods that do not use knowledge distillation. As
shown in Table 13, we benchmark IMKD against several
strong baselines including CRN [16], RCBEVDet [28], and
CRT-Fusion [13], all evaluated on the nuScenes [1] valida-
tion set.

To ensure a fair and meaningful comparison, we primar-
ily benchmark IMKD against radar-camera fusion meth-
ods that share the same foundational settings. Specifically,
we focus on approaches that adopt BEVDepth [23] with a
ResNet-50 [8] backbone, avoiding discrepancies introduced
by stronger visual encoders. We also exclude methods
that leverage CBGS [76], test-time augmentation, or future
frames, as such enhancements can distort the true impact
of the fusion strategy. All comparisons are conducted on
the nuScenes [1] validation set, where the backbone archi-
tecture and image resolution are consistent across methods,
unlike the test set, where configurations often vary. IMKD
is the first distillation-driven framework to surpass the per-
formance of standard radar-camera fusion methods, elevat-
ing knowledge distillation from a regularization tool to a
core mechanism for advancing 3D detection performance.

As an exception, we additionally report results for RIC-
CARDO [34], which employs SparseBEV [30] with a
ResNet-101 [8] backbone rather than BEVDepth [23] with
ResNet-50 [8]. While this setting is not strictly compara-
ble to our fairness-controlled benchmark, it provides useful
context on how IMKD scales with stronger visual encoders.
To avoid misleading comparisons, we align RICCARDO’s
[34] results with our own ResNet-101 [8] BEVDepth [23]
variant, and present these separately in Tab. 13 under a dis-
tinct block. This highlights that IMKD maintains its ad-
vantage even when evaluated under higher-capacity camera
backbones, demonstrating robustness across configurations.

These improvements stem from IMKD’s fusion-aware
and signal-sensitive design. By incorporating intensity-
aware distillation and fusion-based supervision, IMKD cap-
tures fine-grained signal reliability and cross-modal interac-
tions that traditional fusion models overlook. As a result,
IMKD not only bridges the gap between handcrafted fusion



Method Input Backbone Image Size NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

BEVDet [11] C ResNet-50 256 × 704 39.2 31.2 0.691 0.272 0.523 0.909 0.247
BEVDepth [23] C ResNet-50 256 × 704 47.5 35.1 0.639 0.267 0.479 0.428 0.198
RC-BEVFusion [50] C+R ResNet-50 256 × 704 52.5 43.4 0.511 0.270 0.527 0.421 0.182
SOLOFusion [42] C ResNet-50 256 × 704 53.4 42.7 0.567 0.274 0.411 0.252 0.188
StreamPETR [55] C ResNet-50 256 × 704 54.0 43.2 0.581 0.272 0.413 0.295 0.195
SparseBEV [30] C ResNet-50 256 × 704 54.5 43.2 0.606 0.274 0.387 0.251 0.186
CRN [16] C+R ResNet-50 256 × 704 56.0 49.0 0.487 0.277 0.542 0.344 0.197
RCBEVDet [28] C+R ResNet-50 256 × 704 56.8 45.3 0.486 0.285 0.404 0.220 0.192
CRT-Fusion [13] C+R ResNet-50 256 × 704 57.2 50.0 0.499 0.277 0.531 0.261 0.192
IMKD (Ours) C+R ResNet-50 256 × 704 61.0 51.6 0.444 0.259 0.384 0.229 0.160

RICCARDO [34] C+R ResNet101 1408 × 512 62.2 54.4 0.481 0.266 0.325 0.237 0.189
IMKD (Ours) C+R ResNet101 1408 × 512 62.7 53.9 0.417 0.255 0.348 0.235 0.158

Table 13. Comparison of 3D object detection performance on the nuScenes [1] validation set. ‘C’ and ‘R’ denote camera and radar,
respectively. Methods utilizing future frames, test-time augmentation, and CBGS [76] are excluded to ensure fairness. The upper block
reports comparisons restricted to BEVDepth with ResNet-50, while the lower block extends to ResNet-101 backbones and includes RIC-
CARDO [34] for completeness.

and learned fusion but also pushes the performance frontier
for camera-radar 3D object detection.

We further report results on the nuScenes [1] test set
to contextualize IMKD against the latest benchmark en-
tries, as shown in Tab. 14. While this comparison is not
strictly fair, methods employ heterogeneous camera back-
bones (e.g., SparseBEV [30] in RICCARDO [34]) and vary-
ing image resolutions, it provides a broader view of IMKD’s
standing. Despite these differences, IMKD achieves per-
formance highly competitive with state-of-the-art methods,
while remaining the only knowledge-distillation-based ap-
proach among the top-performing entries on the benchmark.
This highlights both the practicality and the effectiveness of
IMKD in advancing camera–radar 3D detection under chal-
lenging real-world settings.

10.3. Comparison on VoD Dataset

To evaluate the generalization of IMKD beyond the
nuScenes [1] dataset, we conduct experiments on the
View-of-Delft (VoD) [41] dataset, which provides synchro-
nized LiDAR, camera, and 3+1D radar sensors, with the
radar capturing elevation in addition to range, azimuth,
and Doppler. This richer radar representation presents a
more challenging detection scenario compared to the sparse
2+1D radar in nuScenes [1].

As reported in Tab. 15, IMKD achieves strong perfor-
mance across all categories, demonstrating competitive re-
sults relative to existing camera-radar methods. In particu-
lar, IMKD maintains high AP in both the entire annotated
area and the region of interest, indicating that the intensity-
guided distillation framework effectively transfers LiDAR

Method Input NDS↑ mAP↑ mATE↓ mASE↓ mAOE↓ mAVE↓ mAAE↓

PGD [56] C 44.8 38.6 0.626 0.245 0.451 1.509 0.127
SparseBEV [30] C 67.5 60.3 0.425 0.239 0.311 0.172 0.116
MVFusion [61] C+R 51.7 45.3 0.569 0.246 0.379 0.781 0.128
CRN [16] C+R 62.4 57.5 0.416 0.264 0.456 0.365 0.130
RCBEVDet [28] C+R 63.9 55.0 0.390 0.234 0.362 0.259 0.113
HyDRa [60] C+R 64.2 57.4 0.398 0.251 0.423 0.249 0.122
HVDetFusion [19] C+R 67.4 60.9 0.379 0.243 0.382 0.172 0.132
SparseBEV+RICCARDO [34] C+R 69.5 63.0 0.363 0.240 0.311 0.167 0.118
IMKD (Ours) C+R 67.0 61.0 0.401 0.249 0.305 0.238 0.102

Table 14. Comparison of 3D object detection performance on the nuScenes [1] test set. ‘C’ and ‘R’ represent camera and radar, respectively.



Method Input AP in Entire Annotated Area (%) AP in Region of Interest (%)
Car Pedestrian Cyclist mAP Car Pedestrian Cyclist mAP

PointPillars [18] R 37.06 35.04 63.44 45.18 70.15 47.22 85.07 67.48
RadarPillarNet [63] R 39.30 35.10 63.63 46.01 71.65 42.80 83.14 65.86
RCFusion [72] C+R 41.70 38.95 68.31 49.65 71.87 47.50 88.33 69.23
RCBEVDet [28] C+R 40.63 38.86 70.48 49.99 72.48 49.89 87.01 69.80
IMKD (Ours) C+R 47.55 45.51 68.40 53.81 89.13 57.10 89.56 78.59

Table 15. Comparison of 3D object detection results on the VoD [41] validation set. The region of interest is the driving corridor near the
ego-vehicle. AP thresholds are set to 0.5 for cars, 0.25 for pedestrians, and 0.25 for cyclists.

knowledge and enhances fused representations even under
different radar characteristics.

These results validate that our method generalizes ro-
bustly to other datasets and radar configurations, confirm-
ing that intensity-aware multi-level knowledge distillation
can consistently improve cross-modal 3D detection beyond
the original nuScenes [1] setting.

10.4. BEV Segmentation
Our method leverages knowledge distillation from LiDAR
and label guidance to enhance camera-radar features, en-
abling precise segmentation of road elements such as driv-
able areas, lanes, and crossings. LiDAR distillation refines
spatial accuracy, improving object boundaries and structural
details. We use mean Intersection over Union (mIoU) as the
primary metric, following [43]. As shown in Tab. 16, our
approach achieves an mIoU of 62.2, demonstrating effec-
tive segmentation with real-time performance.

Method Input Backbone mIoU↑ Veh↑ D.A↑

BEVFormer-S [24] C R101 48.4 43.2 80.7
CRN [16] C+R R50 - 58.8 82.1
Simple-BEV++† [46] C+R R101 55.4 52.7 77.7
BEVGuide [37] C+R EffNet 60.0 59.2 76.7
BEVCar [46] C+R R101 61.0 57.3 81.8
IMKD (Ours) C+R R101 62.2 60.5 81.9

Table 16. Comparison of BEV semantic segmentation on the
nuScenes [1] validation set. ‘C’ and ‘R’ represent camera and
radar, respectively. ‘D.A’ denotes drivable area. † indicates a
Simple-BEV [6] model customized by BEVCar [46].

10.5. Per-Class Performance Analysis

In Tab. 17, we compare per-class performance across differ-
ent camera-radar fusion methods, using a fixed resolution of
256×704 and the ResNet-50 backbone for consistency.

In Tab. 18, we compare each camera-only network with
its camera+radar variant on the nuScenes [1] validation set.
The results show that radar significantly improves perfor-
mance in most classes. Using the same camera-only base-
line as CRN, our method outperforms previous approaches
in several categories.

Our IMKD method consistently achieves the highest
mAP, with notable improvements in Truck, Bus, C.V.,
Pedestrian, and Bicycle. This demonstrates the effective-
ness of our fusion strategy in handling various object types,
particularly for smaller or more dynamic objects where
radar data can be especially beneficial. The improvements
in classes like Pedestrian and Bicycle, where radar infor-
mation is typically sparse, further validate the robustness of
our approach.

Key to this performance is our knowledge distillation
framework, which refines the fusion of camera and radar
features through LiDAR-guided and label-based distilla-
tion, ensuring that radar signals contribute meaningfully to
object detection rather than introducing noise. This struc-
tured supervision enhances detection accuracy, leading to
more reliable and consistent object localization across all
categories.

Overall, our results show that distilling knowledge into
the fused modality improves camera-radar fusion, signifi-
cantly boosting performance.

Method Input Car Truck Bus Trailer C.V. Ped. M.C. Bicycle T.C. Barrier mAP

CenterFusion [40] C+R 52.4 26.5 36.2 15.4 5.5 38.9 30.5 22.9 56.3 47.0 33.2
CRAFT [15] C+R 69.6 37.6 47.3 20.1 10.7 46.2 39.5 31.0 57.1 51.1 41.1
CRN [16] C+R 71.9 42.4 51.1 27.1 16.2 46.6 54.0 44.2 56.7 61.6 47.1
IMKD (Ours) C+R 75.34.7% 50.920.0% 55.68.8% 28.65.5% 20.627.2% 55.118.2% 54.50.9% 51.115.6% 62.29.7% 62.10.8% 51.69.6%

Table 17. Per-class comparisons on the nuScenes [1] validation set. ‘C.V.’, ‘Ped.’, ‘M.C.’, and ‘T.C.’ denote construction vehicle, pedestrian,
motorcycle, and traffic cone, respectively. All results are sourced from MMDetection3D and official implementations, except CRN, which
was reproduced using its official GitHub repository.



Method Input Car Truck Bus Trailer C.V. Ped. M.C. Bicycle T.C. Barrier mAP

CenterNet [75] C 48.4 23.1 34.0 13.1 3.5 37.7 24.9 23.4 55.0 45.6 30.6

CenterFusion [40] C+R 52.48.3% 26.514.7% 36.26.5% 15.417.5% 5.557.1% 38.93.2% 30.522.5% 22.9-1.4% 56.32.4% 47.03.0% 33.20.6%

CRAFT-I [15] C 52.4 25.7 30.0 15.8 5.4 39.3 28.6 29.8 57.5 47.8 33.2

CRAFT [15] C+R 69.632.8% 37.646.3% 47.357.6% 20.127.2% 10.798.1% 46.217.5% 39.538.1% 31.04.0% 57.1-0.7% 51.17.0% 41.123.8%

BEVDepth [23] C 55.3 25.2 37.8 16.3 7.6 36.1 31.9 28.6 53.6 55.9 34.8

CRN [16] C+R 71.930.0% 42.467.9% 51.135.2% 27.166.9% 16.2113.2% 46.629.1% 54.069.2% 44.254.2% 56.75.8% 61.610.2% 47.135.6%

BEVDepth [23] C 55.3 25.2 37.8 16.3 7.6 36.1 31.9 28.6 53.6 55.9 34.8

IMKD (Ours) C+R 75.336.6% 50.9101.2% 55.657.3% 28.675.2% 20.6171.1% 55.152.4% 54.571.8% 51.178.7% 62.210.5% 62.19.6% 51.647.6%

Table 18. Per-class comparisons on the nuScenes [1] validation set, evaluating each camera + radar network against its corresponding
camera-only variant. ‘C.V.’, ‘Ped.’, ‘M.C.’, and ‘T.C.’ denote construction vehicle, pedestrian, motorcycle, and traffic cone, respectively.
All results are sourced from MMDetection3D and official implementations, except CRN, which was reproduced using its official GitHub
repository.

11. Qualitative Analysis
We present additional qualitative results under varying
weather and lighting conditions, including rainy, nighttime,
and daytime scenarios, from the nuScenes [1] dataset. As
shown in Figs. 6 to 8, IMKD consistently performs better
than individual modality distillation baselines, particularly
under challenging scenarios like rain and low light.

In these adverse conditions, conventional single-
modality distillation models often fail to detect occluded or
distant objects. In contrast, IMKD consistently performs
better by utilizing intensity-guided fusion and merged-
modality knowledge distillation. The fusion mechanism dy-
namically weighs radar and camera features based on sig-
nal confidence, while the distillation strategy transfers depth
and structural cues from LiDAR into the joint camera-radar
representation. This enables IMKD to produce more accu-
rate and robust object detections, boxes with better transla-
tion, orientation, and scale accuracy than baselines, crucial
under low visibility where conventional methods struggle
to infer reliable geometry. These improvements are clearly
reflected in both BEV and multi-view camera predictions.



Figure 6. Qualitative results of our proposed IMKD method on night scenes from the nuScenes [1] dataset. (a) shows camera-view
predictions from individual modality distillation baselines. (b) presents BEV predictions: left shows individual modality predictions,
middle is the ground truth, and right shows IMKD results. (c) displays IMKD’s predictions across six camera views, illustrating improved
detection quality under challenging low-light conditions.



Figure 7. Qualitative results of our proposed IMKD method on rainy scenes from the nuScenes [1] dataset. (a) shows camera-view
predictions from individual modality distillation baselines. (b) presents BEV predictions: left shows individual modality predictions,
middle is the ground truth, and right shows IMKD results. (c) displays IMKD’s predictions across six camera views, illustrating improved
detection quality under challenging low-light conditions.



Figure 8. Qualitative results of our proposed IMKD method on day scenes from the nuScenes [1] dataset. (a) shows camera-view predic-
tions from individual modality distillation baselines. (b) presents BEV predictions: left shows individual modality predictions, middle is
the ground truth, and right shows IMKD results. (c) displays IMKD’s predictions across six camera views, illustrating improved detection
quality under challenging low-light conditions.


