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Abstract—This work introduces a hybrid quantum-classical
method to correlation clustering, a graph-based unsupervised
learning task that seeks to partition the nodes in a graph based
on pairwise agreement and disagreement. In particular, we adapt
GCS-Q [1], a quantum-assisted solver originally designed for
coalition structure generation, to maximize intra-cluster agree-
ment in signed graphs through recursive divisive partitioning.
The proposed method encodes each bipartitioning step as a
quadratic unconstrained binary optimization problem, solved via
quantum annealing. This integration of quantum optimization
within a hierarchical clustering framework enables handling of
graphs with arbitrary correlation structures, including negative
edges, without relying on metric assumptions or a predefined
number of clusters. Empirical evaluations on synthetic signed
graphs and real-world hyperspectral imaging data demonstrate
that, when adapted for correlation clustering, GCS-Q outper-
forms classical algorithms in robustness and clustering quality
on real-world data and in scenarios with cluster size imbalance.
Our results highlight the promise of hybrid quantum-classical
optimization for advancing scalable and structurally-aware clus-
tering techniques in graph-based unsupervised learning.

Index Terms—Correlation Clustering, Quantum Annealing,
Graph Partitioning, Unsupervised Learning

I. INTRODUCTION

Correlation clustering (CC) [2] is a graph-based paradigm
that extends traditional clustering methods by directly model-
ing pairwise relationships. Unlike approaches such as k-means
or hierarchical clustering, which require data to be embedded
in a metric space and rely on geometric proximity, CC operates
on a weighted graph where edges represent real-valued affini-
ties. Importantly, these weights can be negative, capturing dis-
similarities and more general forms of conflict or disagreement
between data points. As a result, it can naturally capture non-
metric, asymmetric, or context-dependent relations between
objects, making it more flexible in modeling diverse types
of data, including those where distances are ill-defined or
unavailable. In social network analysis [3], CC enables the
detection of communities by grouping individuals based on
patterns of affinity or antagonism. In recommendation systems
[4], it supports collaborative filtering by accounting for both
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agreement and disagreement in user preferences. Applications
also span natural language processing [2], where CC helps
group texts based on semantic relationships such as synonymy
and antonymy, as well as in bioinformatics [5], where it has
been used to identify groups of genes with similar patterns of
variation in gene expression data, distinguishing co-expressed
from anti-correlated gene profiles. Notably, CC plays a role in
Earth Observation (EO), particularly in the analysis of high-
dimensional hyperspectral imagery, where it helps identify
clusters within subspaces that are not necessarily aligned with
the coordinate axes [6]. In this case, CC can detect redundant
spectral bands, reducing dimensionality and improving inter-
pretability without relying on strict axis-aligned projections.

Classical methods for CC typically rely on heuristics and
assumptions about the underlying data structure to achieve
computational efficiency [2], [7]. These assumptions, such
as spherical clusters in k-means or connectivity in spectral
clustering, guide the algorithm’s behavior but may not hold in
all real-world scenarios. As a result, there is often a trade-off
between the quality of the clustering solution and the efficiency
of the heuristic used to obtain it. While these approximations
allow algorithms to scale to large datasets, they may also
lead to suboptimal or biased partitions when the true data
distribution deviates from the assumed model.

To overcome these limitations, it is useful to revisit CC
from a more general, graph-theoretic perspective—one that
naturally connects to the problem of coalition structure gen-
eration (CSG) in induced subgraph games (ISGs) [8]. In
ISGs, each node corresponds to an agent, and the value of
a coalition is defined as the sum of the weights of the edges
within the subgraph it induces. When correlation clustering
is applied to a signed or weighted graph to maximize intra-
cluster agreement—namely, the total weight of edges within
clusters—the problem becomes equivalent to identifying an
optimal coalition structure in an ISG. This formulation also
aligns with the broader task of community detection [9], [10].
Both frameworks aim to partition the graph to maximize
internal cohesion, and an optimal solution in one domain
translates directly to the other.

However, the equivalence holds only under specific con-
ditions. CC becomes distinct from CSG in ISGs when the
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objective is to minimize disagreement rather than maximize
agreement, when edge weights are limited to binary labels
without magnitude, or when the context lacks game-theoretic
considerations such as strategic behavior or fairness. In con-
trast, CSG in ISGs focuses on identifying partitions that max-
imize total value (social welfare) and negotiating stable and
fair payoff allocations among rational agents. These stability
considerations are formalized through solution concepts such
as the Core, the Shapley value, and the Kernel [11].

In this paper, we adapt GCS-Q [!], a hybrid quantum
annealing-based solver originally developed for CSG in ISGs,
to address the task of correlation clustering on weighted
graphs. By leveraging GCS-Q’s ability to maximize intra-
cluster edge weights, we reinterpret the coalition value max-
imization objective as an agreement-based correlation clus-
tering criterion. We benchmark the adapted algorithm against
several classical clustering methods, including k-means, Par-
titioning Around Medoids (PAM), Hierarchical, and Spectral
clustering (for a comprehensive description of all clustering
methods see [12]), across a wide range of settings. First,
evaluating performance on simulated graph-based datasets
with varying cluster size distributions to enable a rigorous
assessment of each method’s ability to recover meaningful par-
titions, particularly in the presence of substantial imbalance.
Cluster size variation is quantified using the Gini index, which
captures configurations from nearly uniform to highly skewed.
Complementary experiments on EO datasets are conducted to
demonstrate the stability and effectiveness of the approach
compared to classical methods on real-world data.

II. RELATED WORKS

The problem of Correlation Clustering focuses on parti-
tioning a dataset based on pairwise relationships between
data points, whether they are similar (positively correlated)
or dissimilar (negatively correlated), without requiring an ex-
plicit geometric embedding or metric assumptions. This stands
in contrast to traditional distance-based clustering methods,
which rely on predefined distance functions and often fail
to distinguish between different types of correlations [7],
[12]-[14]. The CC problem is known to be NP-hard [I5],
and among classical approaches, spectral clustering [16] has
emerged as the most effective method for correlation-based
tasks [17]-[19]. By constructing a similarity graph and ana-
lyzing the spectral properties (eigenvalues and eigenvectors) of
its Laplacian, spectral clustering captures the global structure
of the data, including indirect relationships that are often
critical in correlation graphs. This enables the identification
of coherent groups of positively correlated points, even when
they are not spatially adjacent in the original feature space.

A significant limitation shared by most classical clustering
methods is the need to specify the number of clusters & in
advance. This imposes a reliance on model selection heuristics
or costly cross-validation procedures, where multiple values of
k must be evaluated to identify the optimal partitioning. Such
trial-and-error approaches hinder scalability and interpretabil-

ity, especially in exploratory settings where the true number
of clusters is unknown.

Recently, quantum approaches have been proposed to im-
prove clustering by offloading specific computational rou-
tines to quantum hardware. In particular, gate-based quan-
tum algorithms [20]-[22] offer theoretical speedups in fault-
tolerant settings, but empirical evaluations are limited to very
small datasets and depend heavily on classical pre- and post-
processing. Furthermore, these methods do not introduce fun-
damentally new clustering strategies, but focus on accelerating
existing algorithms. Quantum annealing-based approaches to
graph partitioning typically reformulate the entire clustering
problem as a quadratic unconstrained binary optimization
(QUBO) tailored to specific applications [23], but are not
scalable and generalizable.

III. METHODOLOGY

Our proposed method follows the principles of hierarchical
divisive clustering [1], [14], a top-down approach that starts
with a single cluster containing all nodes and recursively
partitions it into smaller, more coherent clusters. Unlike ag-
glomerative strategies that rely on local distances and pairwise
merges, divisive methods operate by globally optimizing a
splitting criterion at each step. This framework is particularly
well-suited for correlation clustering, where the objective is
to group similar nodes and separate dissimilar ones, based on
edge weights representing pairwise agreement/disagreement.
The GCS-Q algorithm [1], originally developed for coalition
structure generation in induced subgraph games, naturally fits
this paradigm. We adapt it here for correlation clustering by
reinterpreting its coalition value maximization objective as the
task of maximizing intra-cluster agreement.

Given a weighted undirected graph G = (V, E, w), where
w;; € R reflects the affinity between nodes ¢ and j, the goal
is to find a partition C = {C4, ..., C)} that maximizes:

max Z wyj - Iz = x5 (D)

Here, xz; € {0,1} is a binary variable indicating the clus-
ter assignment of node . For a weighted graph with both
positive and negative edge weights w;;, Eq. (1) corresponds
to the maximize-agreement variant of CC and is equivalent
to minimizing the total weight of edges cut across clusters.
Therefore, the goal is to maximize intra-cluster agreement,
where positively weighted edges connect nodes within the
same cluster, and negatively weighted edges span different
clusters. To formalize this, we note that the indicator function
for agreement between node labels can be expressed as:

H[.’L‘l = xj] =1- (J}i + x5 — Qxixj), 2)

which evaluates to 1 when x; = x;, and 0 otherwise. Using
this identity, the agreement maximization objective becomes:

max w;i (1 —x; —x; + 2x;x5). 3)
xE{O,l}"L; i( J 5)



Dropping the constant term (which does not affect the
optimization), this formulation is fully compatible with QUBO
solvers and equivalent in objective value to the disagreement
minimization version used in GCS-Q. It provides a clear
and implementable pathway for optimization on quantum an-
nealing to perform correlation clustering based on agreement
maximization.

Importantly, a key distinction between GCS-Q [I] and
classical hierarchical divisive clustering lies in the splitting
strategy. Traditional divisive methods typically rely on heuris-
tic or local distance-based criteria (e.g., edge betweenness or
spectral cuts), which may fail to identify globally optimal par-
titions. Moreover, these classical approaches generally assume
metric properties and non-negative similarities, making them
ill-suited for settings involving signed relationships or negative
correlations. In contrast, the adaptation of GCS-Q inherits
the advantages of the original formulation [!] and explicitly
optimizes a global objective over the current subgraph at
each iteration using combinatorial search guided by quantum
annealing. This enables GCS-Q to evaluate all possible binary
bipartitions simultaneously, thereby avoiding the suboptimal
greedy decisions often made by classical methods. As a
result, GCS-Q is expected to outperform classical divisive
approaches, particularly when applied to graphs with both
positive and negative edge weights. Moreover, since GCS-
Q does not rely on an explicit notion of distance, it is
also expected to outperform its classical counterpart when
clustering is driven by general correlation structures rather than
spatial proximity.

The complete procedure is summarized in Algorithm 1,
where the original game-theoretic stopping criterion in [1] is
replaced by one based on intra-cluster agreement.

Algorithm 1 GCS-Q for Correlation Clustering

Require: Weighted graph G = (V, E, w)
Ensure: Clustering C = {C1,Ca,...,Ck}
1: C+ 0, Queue <+ {V}
2: while Queue is not empty do
3: S < Queue.pop(), Gg <+ subgraph of S

4: Solve QUBO: max ), g wij - I[x; = z;]
55 C«{ieS|z; =1}, C+S\C

6: ifcut(C,C) <0or C =0 or C =0 then
7: C«+CU{S}

8: else

9: Queue < Queue U {C,C}

10: end if

11: end while
12: return C

IV. EXPERIMENTS

To evaluate the effectiveness and robustness of our proposed
GCS-Q-based correlation clustering approach, we conduct a
comprehensive set of experiments on both synthetic and real-
world datasets. The experimental design aims to assess per-
formance relative to classical methods under diverse structural

conditions, including varying cluster size distributions and
real-world configurations, using both internal (modularity) and
external (Normalized Mutual Information) evaluation metrics
where applicable.

A. Settings

1) Datasets: In this work, we evaluate clustering perfor-
mance using two types of datasets: synthetically generated
signed graphs with known clustering labels and four real-world
hyperspectral image datasets.

a) Synthetic Signed Graph Dataset: We generated three
classes of synthetic signed graphs varying structural and dis-
tributional conditions. Each class is represented as a weighted
adjacency matrix (Fig. 2), where edge weights denote pairwise
correlation coefficients between nodes. The graphs differ in
the clarity of their block structure, reflecting the degree of
separation and the relative sizes of the underlying clusters.
To simulate varying levels of cluster size disparity, we sys-
tematically adjusted the Gini index across the three types of
datasets. The Gini index, ranging from 0 (perfectly uniform
cluster sizes) to 1 (complete inequality), provides a quantitative
measure of imbalance in cluster membership. This variation
enables a controlled assessment of how different clustering
algorithms respond to increasingly skewed distributions. All
generated graphs are balanced [24] in the sense that their
vertices can be divided into two clusters such that all intra-
cluster edges are positive and all inter-cluster edges are
negative. Our synthetic data generalizes this notion to mul-
tiple clusters, maintaining internal coherence through positive
correlations and ensuring negative separation across clusters.
This guarantees that clusters are well-separated, allowing for
a clean evaluation of clustering performance under ideal yet
structurally diverse conditions. The three matrices shown in
Fig. 2 are examples of generated graphs with 170 nodes, which
represents the practical upper limit for fully connected graphs
that can currently be embedded on available quantum anneal-
ing hardware. However, it is important to note that assuming a
certain degree of sparsity in the graph structure allows QUBO
formulations to scale to larger problem instances [25].
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Fig. 2: Correlation matrices of three synthetic signed graphs
used in our experiments. The examples correspond to a setting
with 5 clusters. Warmer colors indicate strong positive corre-
lations (intra-cluster), while cooler tones represent negative
correlations (inter-cluster). The corresponding Gini index and
Cluster Size Ratio for each matrix are reported in Table I.
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Fig. 1: The ground truth clusters and the outputs of various algorithms for a balanced graph with 10 nodes and edge weights
in the range [—1, 1] representing correlations. Red dashed edges highlight inconsistent assignments: a red edge between nodes
in the same cluster indicates a negative correlation, while a red edge between nodes in different clusters indicates a positive
correlation. In other words, red dashed lines mark violations of clustering agreement. All other edges are shown in grey, either
because they are neutral or consistent with the clustering. These inconsistencies are usually minimized by GCS-Q and are

more frequent in classical methods.

Metric High Skewed Moderately Skewed Uniform
Gini Index 0.05 0.70 0.80
Cluster Size Ratio 166.00 3.95 1.00

TABLE I: Gini index and cluster size ratio (largest cluster size
divided by smallest) for the three synthetic graphs in Fig. 2.
The low Gini index case shows extreme cluster size disparity,
with most nodes concentrated in a single cluster.

b) Hyperspectral Image Dataset: We also test our meth-
ods on real-world data drawn from publicly available hyper-
spectral remote sensing scenes provided by the Universidad
del Pafs Vasco repository'. In this experiment, we perform
correlation clustering on hyperspectral datasets (Indian Pines,
Salinas, Pavia University, and Kennedy Space Center (KSC))
to identify redundant spectral bands [6], [26]. The data consists
of hundreds of narrow, continuous spectral bands capturing
detailed information across the electromagnetic spectrum. We
calculate the Pearson correlation coefficients between bands,
forming a correlation matrix, and use this matrix to perform
clustering, grouping bands with high correlation to reduce data
redundancy for further analysis [18], [27].

2) Methods: To evaluate the performance of GCS-Q, we
compare several representative clustering methods. k-means
is a classical distance-based algorithm that partitions data
by minimizing intra-cluster variance, assuming a Euclidean
embedding. PAM is a more robust alternative to k-means
that selects actual data points as cluster centers, making it
less sensitive to outliers and more effective for non-spherical
clusters. Spectral clustering leverages the eigenstructure of
a similarity graph to detect globally coherent clusters and
is particularly suited for correlation-based tasks. Hierarchical
clustering builds a nested tree of clusters based on pairwise
similarities; in our study, we employ both agglomerative
(bottom-up) and divisive (top-down, DIANA) variants to cap-
ture different structural perspectives.

3) Evaluation Metrics: To assess the quality of the clus-
tering results, we employ two complementary metrics aiming

Uhttps://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_
Sensing_Scenes

at capturing different aspects of clustering performance and
providing a more comprehensive evaluation.

a) Normalized Mutual Information (NMI): This is an
external validation metric that quantifies the similarity between
the clustering output and a known ground-truth partition. It
measures the mutual dependence between the predicted labels
and the true labels. NMI is normalized to lie in the range [0, 1],
where 0 indicates no mutual information (i.e., independent
assignments), and 1 indicates a perfect match between the
cluster assignments and the ground truth.

b) Modularity: In practical situations, clustering algo-
rithms are often applied to data for which the true cluster labels
are unknown. In this context, the modularity metric [28] is es-
sential for assessing the quality of clustering by comparing the
observed fraction of intra-cluster edge weights to the expected
fraction under a null model of random edge assignment. Given
a division of a graph into clusters, modularity is defined as

Q= Z(eu‘ —a3),

where e;; is the fraction of edge weight connecting nodes
within cluster ¢, and a; is the fraction of all edge weights
connected to nodes in cluster i. A higher value of () indicates
that the clustering captures significant structure in the graph,
i.e., nodes are more positively connected within clusters than
between them. In correlation clustering, this helps assess
whether the clustering correctly groups positively correlated
points while separating negatively correlated ones.

4)

B. Results

Figure 3 illustrates the performance of several clustering
algorithms in terms of NMI across different distributional
settings—namely, highly skewed, moderately skewed, and
uniform distributions—and for varying cluster counts (k =
5,10, 20). Importantly, we provide the correct number of
clusters to the classical methods to ensure a fair comparison,
even though this information is typically unavailable in real-
world scenarios.

Among the evaluated methods, GCS-Q consistently
achieves strong performance, maintaining high NMI scores
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Fig. 3: NMI scores across synthetic signed graphs with in-
creasing cluster size disparity.

across all scenarios. While minor drops are observed in mod-
erately skewed and uniform cases, GCS-Q remains competitive
and exhibits remarkable stability compared to classical alterna-
tives. In highly skewed scenarios, DIANA and GCS-Q produce
comparable results, which is expected: when k£ — 1 clusters
contain singletons, DIANA’s greedy strategy of isolating one
point per iteration aligns well with the underlying structure.
However, in all other conditions, GCS-Q clearly outperforms
DIANA, owing to its more comprehensive strategy that evalu-
ates all possible bipartitions at each recursive step, as opposed
to DIANA’s limited single-point exclusions.

Spectral clustering, though a state-of-the-art method for
correlation clustering under balanced conditions, struggles
with strong cluster size imbalances. In contrast, only GCS-Q
and DIANA exhibit resilience under such distortions. Interest-
ingly, in moderately skewed distributions with small k (e.g.,
k = 5,10), spectral clustering performs well and often matches
GCS-Q’s results. However, as k increases (e.g., £ = 20), GCS-
Q decisively outperforms all classical baselines, including
spectral clustering. Finally, in uniform distributions, GCS-Q
continues to perform competitively. Although other methods
improve in this more balanced setting, GCS-Q remains one of
the most robust performers across all configurations, reinforc-
ing its versatility and generalization capabilities.

Overall, these results confirm that GCS-Q offers a ro-
bust and high-performing alternative to classical clustering
algorithms, particularly in challenging tasks involving signed
graphs with significant cluster size disparity. Importantly,
GCS-Q does not require the number of clusters k to be
provided in advance, as it automatically stops when no fur-
ther bipartition increases intra-cluster agreement. Its ability
to maintain high NMI across diverse structural conditions
underscores its suitability for practical applications involving
complex graph data.

To evaluate the performance of clustering methods in real-
world scenarios, we apply correlation clustering to four hyper-
spectral remote sensing datasets—Indian Pines, Salinas, Pavia
University, and KSC—sourced from the Universidad del Pais
Vasco repository. A preliminary analysis was performed to
estimate the appropriate number of clusters for the classical
methods. Specifically, the spectral gap criterion [29] was used
for spectral clustering, while the silhouette score [30] was
applied to the other methods.

Figure 4 presents the modularity scores achieved by each
method across the four hyperspectral datasets. GCS-Q con-
sistently obtains the highest modularity values, demonstrating
its ability to identify strongly coherent spectral clusters. This
advantage is particularly pronounced on the KSC, PaviaU and
Salinas datasets, which are characterized by higher spectral
complexity. Among classical methods, DIANA performs com-
petitively and shows stable performance across all datasets,
occasionally approaching GCS-Q’s performance. In contrast,
other classical approaches such as PAM, k-means, and agglom-
erative hierarchical clustering tend to yield lower modularity
scores, indicating less effective partitioning of the spectral
correlation structure.
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Fig. 4: Modularity scores for clustering hyperspectral bands
across four real-world remote sensing datasets. GCS-Q consis-
tently achieves superior modularity, indicating more coherent
grouping of highly correlated spectral bands.

V. CONCLUSION

In this work, we proposed a novel adaptation of GCS-Q,
a quantum-assisted solver originally developed for coalition
structure generation, to address the problem of correlation
clustering on signed graphs. By formulating the clustering task
as a maximize-agreement objective over a weighted graph, we
leveraged the power of quantum annealing to solve a sequence
of QUBO problems that recursively identify meaningful par-
titions. Our method follows a divisive hierarchical strategy,
avoiding the need to predefine the number of clusters and
improving global optimization at each step.

Through extensive experiments on both synthetic signed
graphs and real hyperspectral datasets, we demonstrated the
robustness and superior clustering quality of GCS-Q, espe-
cially under challenging conditions such as high cluster size
disparity. On synthetic data, GCS-Q achieved competitive
NMI scores across varying Gini index levels, demonstrating



superior performance and robustness to skewed cluster size
distributions. On real hyperspectral EO data, GCS-Q consis-
tently outperformed classical baselines in terms of modularity,
indicating better separation of correlated spectral bands.

These results confirm the viability of hybrid quantum-
classical optimization for graph-based optimization, even when
using noisy quantum annealing devices such as the D-Wave
Advantage employed in this study. This encourages further
exploration of quantum-assisted algorithms for unsupervised
learning tasks. Future work includes expanding the experi-
mental evaluation of GCS-Q, exploring alternative gate-based
quantum solvers [31], [32], and applying the method to
moderately sparse, large-scale real-world graph data beyond
the remote sensing domain.
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