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Abstract The most promising standard machine learning

methods can deliver highly accurate classification results,

often outperforming standard white-box methods. How-

ever, it is hardly possible for humans to fully understand

the rationale behind the black-box results, and thus, these

powerful methods hamper the creation of new knowledge

on the part of humans and the broader acceptance of this

technology. Explainable Artificial Intelligence attempts to

overcome this problem by making the results more inter-

pretable, while Interactive Machine Learning integrates

humans into the process of insight discovery. The paper

builds on recent successes in combining these two cutting-

edge technologies and proposes how Explanatory Interac-

tive Machine Learning (XIL) is embedded in a generaliz-

able Action Design Research (ADR) process – called XIL-

ADR. This approach can be used to analyze data, inspect

models, and iteratively improve them. The paper shows the

application of this process using the diagnosis of viral

pneumonia, e.g., Covid-19, as an illustrative example. By

these means, the paper also illustrates how XIL-ADR can

help identify shortcomings of standard machine learning

projects, gain new insights on the part of the human user,

and thereby can help to unlock the full potential of AI-

based systems for organizations and research.

Keywords Action design research � Data science �
Explainable artificial intelligence � Interactive machine

learning � Pneumonia � Corona virus

1 Introduction

Increasingly, it is becoming apparent that Interactive

Machine Learning (IML), i.e., the integration of user

feedback into a Machine Learning (ML) process to modify

an ML model (e.g., Amershi et al. 2015), may play a

leading role in shaping Artificial Intelligence (AI) and in

particular ML-based systems for effective use in organi-

zations. To realize their full potential, AI systems must

become capable of communicating and collaborating with,

learning from, and teaching their users. Finding the right

ways to induce learning in human-machine interaction is

required to unlock many scientific and commercial

opportunities in AI (Teso and Hinz 2020).

Challenges to thorough understanding, potential learn-

ing from AI-based Systems, and effective organizational

use result from the lack of system transparency (e.g., Rai

2020), which is often accompanied by the uncertainty of

whether a system is biased. In the past five years, various

scholars have shown the potential adverse effects of algo-

rithmic biases on human decision-making (e.g., Lambrecht

and Tucker 2019). Outcries demanding transparency and
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accountability have become louder and, as such, have

found their way into legislation (e.g., Casey et al. 2019).

Hence, there is an urgent need in many industries to fulfill

such regulatory requirements for AI-based Systems (e.g.,

Sorantin et al. 2022; Casey et al. 2019). By now, many

organizations are aware of this problem yet face a chal-

lenge in finding appropriate ways to deal with biases and

erroneous systems (e.g., Holstein et al. 2019).

Researchers and practitioners have proposed various

software engineering approaches that offer best practices

for data science projects (e.g., Amershi et al. 2019; Wang

et al. 2019). Many of these methods propose not a linear

development process but a process that includes recursions

to previous stages when necessary. Especially during

model evaluation, data scientists need to reflect on the

intermediate results of their work by, e.g., inspecting

metrics and predictions and possibly rearranging their

analytical workflow and data (e.g., Amershi et al. 2019). In

this regard, research on data science collaboration (e.g.,

Zhang et al. 2020) suggests that – rather than having only

data scientists working on their own – the inclusion of

various kinds of users in the development process is ben-

eficial to reducing algorithmic biases and increasing

domain correctness.

Human-in-the-loop concepts (e.g., Grønsund and

Aanestad 2020) and especially IML (e.g., Amershi et al.

2015; Abdel-Karim et al. 2020) constitute one possibility to

include non-technical users in a data science process.

Although human-in-the-loop methods have proven suc-

cessful in improving various systems (e.g., Amershi et al.

2015) by including different kinds of users (e.g., Kulesza

et al. 2015), users often are lost without appropriate

explanations and thus do not know how to interpret and

alter a system’s result appropriately (e.g., Dudley and

Kristensson 2018, p. 24).

Schramowski et al. (2020) address this problem by

including domain experts in a generic explanatory inter-

active machine learning (XIL) (Teso and Kersting 2019)

process. While data scientists are usually aware of appar-

ently wrong system attributions and can fix them on their

own, XIL and the input of the domain expert can help

identify and even correct predictors which only appear to

be highly performant but are based on incorrect inferences.

There is an ongoing discussion on how interpretability,

explainability, and transparency are related to each other

and whether explanations (see Gregor and Benbasat 1999)

help to better understand AI-based systems (e.g., Rudin

2019; Linardatos et al. 2020). Although both explainable

and interpretable AI aim to bring more transparency to the

application of ML, usually the former aims to do so by

employing additional models (e.g., Ribeiro et al. 2016) that

explain the ML model in focus (e.g., Deep Learning

models, LeCun et al. 2015), while interpretable AI aims to

use more lightweight, inherently interpretable ML models

(e.g., GANs, Caruana et al. 2015). Rudin (2019) presents

arguments that explanations of black-box models cannot

provide the necessary insights to fully understand how such

models arrive at their predictions (but have other benefits).

This separates inherently interpretable models from ‘ex-

plained’ black-box models, which, on the one hand, offer

benefits by usually providing greater modeling capacities,

while the use of interpretable models, on the other hand,

often requires less expertise (Rudin 2019, p. 206,

pp. 208–210). Nevertheless, although the two streams

appear to be in conflict, both share the common goal of

providing insight into ML models. Hence, we use a more

universal term of explainability for this work, as explana-

tions provide insights that increase transparency and user

acceptance of a system and help with the transfer of

knowledge (Gregor and Benbasat 1999). Explanations

support an analytical interpretation of black-box model

results (despite them not being inherently interpretable).

Because XIL is a powerful yet flexible approach to

interpreting and rectifying even systems with strong black-

box characteristics, it may be a promising basis to leverage

the full potential of AI-based systems for organizations.

However, to do so, XIL needs to be embedded in a more

generalizable approach to ease its applicability for machine

learning projects in organizations and research alike.

Senior scholars have already recognized the need to

extend existing methodologies such as action research

(e.g., Maass et al. 2018) and see the potential of such

extensions and improvements as valuable ‘‘contributions to

the IS community’’ (Baskerville et al. 2018, p. 365). Fur-

thermore, scholars theorizing on future problems caused by

biased ML systems demand that IS should tackle the

challenge of mitigating biases in ML systems (e.g., Kane

et al. 2021, p. 375). In their investigation of the pitfalls of

the strong reliance on ground truth values in AI, Lebovitz

et al. (2021) emphasize the need to pay respect to ‘know-

how’ measures (i.e., expert knowledge and knowledge that

explains how an AI makes its decisions). It is, therefore,

not sufficient to only rely on seemingly objective ‘know-

what’ measures (i.e., ground-truth, performance metrics

such as accuracy) (Lebovitz et al. 2021, pp. 1516–1517).

These works imply the need for dedicated methods that

enable a participatory, interactive, and explanatory work-

flow, honing problematic areas with great attention, dili-

gence, and human expertise. The current paucity of

applicable Information Systems Development Methods

(ISDM) with foci on participatory feedback of users and

the elimination of potential bias within machine learning

projects thus suggests that we need to engineer suit-

able methods for this case.

We engage in situational method engineering (e.g.,

Goldkuhl and Karlsson 2020) and propose an ISDM that
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embeds cutting-edge technology, namely Explainable

Artificial Intelligence (XAI) and Interactive Machine

Learning (IML), referred to as Explainable Interactive

Machine Learning (XIL) in the established framework of

Action Design Research (ADR) (e.g., Mullarkey and

Hevner 2019). The resulting XIL-ADR methodology

positions itself as an implementation-centered ADR

methodology along the elaborated ADR process that puts

humans and machines into a loop which aims to remedy

potential biases in an AI-based system and to generate

novel insights on the side of the human user.

The proposed cyclic XIL-ADR process is generic and

transferrable to other domains. In particular, it provides a

development-focused organizational frame that is not

limited to certain data types, specific algorithms for the

explanations, ML methods, or the IML part. XIL-ADR

certainly touches a truly interdisciplinary research field

with connections to Computer Science, Learning and

Knowledge Discovery on the human side, and domain

knowledge from the application area.

To highlight the benefits of XIL-ADR, this paper uses a

healthcare setting and presents an illustrative study con-

ducted with medical experts from a leading university

hospital. We exemplify our proposed approach in this

healthcare scenario and show how XIL-ADR can help

build an innovative computer vision system to efficiently

(in terms of model performance) predict viral pneumonia.

In particular, we will outline how XIL-ADR can help arrive

at more meaningful models and, at the same time, help

identify interesting patterns in the data that radiologists and

pneumologists should pay attention to. The illustrative case

study also reveals problems that, using standard approaches

without participatory human-machine feedback, would be

recognized much later, i.e., when the developed AI-based

system fails in practice. Thus, the approach has two

advantages: (1) it helps to create more dependable models,

as it enables users to recognize intricate data and archi-

tecture problems early in the project, and (2) it simulta-

neously allows experts to reflect on the existing knowledge

base by opening the otherwise black-box process of many

Deep Learning (DL) algorithms and by this means may

arrive at new insights and learning.

This paper proceeds as follows: First, we will introduce

and conceptualize an ideal XIL-ADR process. We will do

so by first outlining relevant research on IML, referencing

XIL, embedding XIL in ADR, and then presenting how to

structure ML projects for XIL-ADR. Next, we will briefly

introduce our illustrative case of an AI-based diagnosis

system for viral pneumonia, through which we aim to

highlight how to apply XIL-ADR. We first introduce the

reader to the problem to solve, previous research in com-

puter vision, Covid-19, and the technical methods. This

introduction also informs the first stage (Diagnosis) in our

XIL-ADR project. For stage two (Design), we will give a

brief overview of the technological methods we used, i.e.,

DL, XAI, the loss function for the penalization of the

model, and the method for XAI visualization. What follows

is the evaluation of the Implementation stage using the

XIL-ADR methodology: A detailed description of the case

study conducted together with pneumologists, radiologists,

computer scientists, and information systems researchers is

presented, which describes every step and intermediate

artifact of the cyclic XIL-ADR implementation process in

three subsequent cycles. Lastly, we discuss XIL-ADR

considering the presented case and outline directions for

future research and practice.

2 Conceptualizing XIL-ADR

In this section, we engage in method engineering (e.g.,

Goldkuhl and Karlsson 2020) and embed XIL into the

ADR framework. For this, we follow the ‘‘Method Engi-

neering as Design Science’’ (ME-DS) process by Goldkuhl

and Karlsson (2020) and develop a ‘‘Category 4’’ Infor-

mation Systems Development Method (a ‘‘Scholar gener-

ated ISDM targeted for business practice & scholars’’)

(Goldkuhl and Karlsson 2020, pp. 1245–1246). The first

activity is identifying the problem and motivating the

development of XIL-ADR, which has already been dealt

with in the previous section. The next step, theorizing the

ISDM and engineering the method, follows now by briefly

introducing the reader to relevant work on combining XAI

and IML as well as to XIL itself. We describe how we can

integrate XIL into the elaborated ADR process (Mullarkey

and Hevner 2019) to engineer a novel methodology called

XIL-ADR and point out the differences from classical

ADR. We complete this method engineering activity by

describing the different activities of the XIL-ADR cycle

and how machine-learning projects may benefit from

conducting XIL-ADR. For the last two activities of the

ME-DS process, which are demonstrating and evaluating

the proposed ISDM, we use our healthcare case presented

in the subsequent sections. Hence, this paper aims at the

demonstration and ‘communication’ (in terms of Design

Science) of XIL-ADR (Goldkuhl and Karlsson 2020,

p. 1250; Hevner et al. 2004).

2.1 Related Research on Interactive Machine Learning

(IML)

Scholars discovered the benefits of including non-technical

users in IML approaches a while ago (e.g., Ware et al.

2001). Since these first steps in the domain of IML,

research and interest in IML have increased exponentially

(e.g., Dudley and Kristensson 2018). Amershi et al. (2015)
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emphasized the benefits of IML over Active Learning

(AL), namely, that the user adopts an active role in the IML

process, in contrast to the passive role of the ‘‘Oracle’’ in

AL (Amershi et al. 2015, p. 109). As different authors note,

however, non-technical users may not always be able to

reason from system outputs and thus may have difficulties

altering AI models for the better (e.g., Dudley and Kris-

tensson 2018, p. 24). In the quest for greater user inter-

pretability, various scholars concluded that equipping IML

systems with an XAI component leads to not only an

enriching experience but also better systems (e.g., Amershi

et al. 2015, p. 111). For example, Kulesza et al. (2015)

propose ‘‘Explanatory Debugging’’ as an effective

methodology for empowering end users to not only inter-

pret the results of ML-based systems through explanations

but also give them the means to improve them

interactively.

Teso and Kersting (2019), however, criticize prior

approaches that have tried to combine XAI and IML as

these considered the black-box characteristics of typical

ML-based systems insufficiently by centering their

methodologies too much around white-box methods. As an

answer to the pressing problem of enriching not only

white-box models but also black-box models with XAI and

IML, they introduced their generalizable ‘‘Explanatory

Interactive Machine Learning’’ (XIL) methodology, which

was for the first time effectively instantiated by Schra-

mowski et al. (2020) for DL models.

2.2 Explanatory Interactive Machine Learning (XIL)

To close existing gaps and remedy the frequently insuffi-

cient connection of XAI and IML, XIL augments the

iterative nature of IML with XAI such that the user inter-

acts with the algorithmic explanations during the iterative

training loops (see Fig. 1). In their paper, Schramowski

et al. define XIL as follows (Schramowski et al. 2020,

p. 478):

‘‘In XIL, a learner can interactively query the user

(or some other information source) to obtain the

desired outputs of the data points. The interaction

takes the following form. At each step, the learner

considers a data point (labeled or unlabeled), pre-

dicts a label, and provides explanations of its pre-

diction. The user responds by correcting the learner

if necessary, providing a slightly improved – but not

necessarily optimal – feedback to the learner.’’

This process not only vividly combines the methods of

XAI and IML but also allows the user to adjust labels in the

training process. Figure 1 illustrates that based on the data

and learned predictions, the Machine, i.e., the learner,

produces and visualizes explanations that get presented to

the Human, i.e., the user, who might then correct

predictions and influence the machine’s learning process

by annotating data, e.g., by pointing the machine toward

features in the data to look at. Beyond this, by analyzing

the explanations, the user can uncover incorrect algorith-

mic behavior if the XAI indicates a wrong explanation for a

correct prediction. This fact provides the potential for

uncovering and rectifying exceptionally intricate problems

of ML through XIL (e.g., Schramowski et al. 2020,

pp. 477–478). On the human side, this process also

facilitates learning, e.g., regarding the data or model’s

reasoning.

Though Teso and Kersting (2019) are proposing a XIL

algorithm called ‘CAIPI’ (Teso and Kersting 2019, p. 241;

Schramowski et al. 2020, p. 478) for pursuing explainable

interactive machine learning, which we will also use in our

medical evaluation case, this method is a generic process

and therefore not restricted to specific methods for XAI or

types of machine learning models. Instead, with XIL,

various models are possible, i.e., black box and white box

models (Schramowski et al. 2020, pp. 478–479), and

explanations can and should be specifically selected for the

ML task and type of users (e.g., Evans et al. 2022) involved

in the XIL process (e.g., Holzinger and Müller 2021; Teso

and Kersting 2019).

2.3 Embedding XIL in the Elaborated ADR Process

Recent research on Machine Learning Systems finds that

industry practitioners are yearning for structured method-

ologies for assessing systems regarding potential biases and

how to fix them subsequently (e.g., Holstein et al. 2019).

Various methodologies for combining IML with XAI have

emerged (e.g., Kulesza et al. 2015), yet little emphasis has
Fig. 1 Explanatory interactive machine learning cycle
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been put on how these promising methodologies could be

integrated into organizational settings.

ADR has always seen the practical evaluation of IT-

based phenomena as substantial to generating theoretical,

methodological, technical, and organizational insights

(e.g., Mullarkey and Hevner 2019). In an analysis of ADR

in practice, Haj-Bolouri et al. (2018) criticize that most

activities in classical ADR (i.e., Sein et al. 2011) termi-

nology may be found in the building stages, less so in the

intervention and evaluation stages, and least in the reflec-

tion and learning stages. As especially the evaluation of

ML-based systems needs to be handled with care and

requires attention, this finding is problematic for conduct-

ing ML projects with classical ADR approaches (e.g., Sein

et al. 2011; Mullarkey and Hevner 2019). This problem

leads to the need to adapt ADR for explainable interactive

machine learning. From the IS lens, much speaks for XIL

to be integrated into ADR as an ‘‘IT-Dominant’’ (Sein et al.

2011, p. 42) ADR approach focusing on the Implementa-

tion (e.g., Mullarkey and Hevner 2019) (see stages in

Fig. 2).

Starting from the elaborated ADR Process by Mullarkey

and Hevner (2019), XIL-ADR incorporates changes to the

Implementation stage. Figure 2 shows that the Diagnosis,

Design, Evolution stages of the process stay untouched,

while the cyclic process within the Implementation stage is

adapted by XIL-ADR to better suit the requirements and

specialties of machine learning projects along the lines of

XIL. Each of these stages consists of five activities (P, A,

E, R, L) (Mullarkey and Hevner 2019, pp. 3–4). Overall,

also with XIL-ADR embedded into ADR, the stages’ goals

stay the same: The Diagnosis stage focuses on identifying

the business problem and helps the researcher comprehend

the project domain and the practitioner, i.e., model breaker

or user, get an overview of the state-of-the-art (Mullarkey

and Hevner 2019, p. 4) of, for example, the ML methods

applicable. Within the Design stage, design principles are

developed to tackle the identified problem, and the

Implementation stage is prepared. Next, the Implementa-

tion creates the artifact.

‘‘Typical artefacts abstracted and evaluated in the

ADR Implementation cycle include systems, algo-

rithms, programmes, databases, and processes’’

(Mullarkey and Hevner 2019, p. 5); in our case, the process

of using XIL to come to an AI-based solution to the

problem. The main difference with XIL-ADR concerns the

activities of the Implementation stage, which are elaborated

in the following subsection. Finally, the Evolution stage

allows for continuous adaptation of the artifact, i.e., the AI

system, to the environment as it progresses. This stage

becomes necessary with technology, data, or model-

specific characteristics changing over time. Here, depend-

ing on the type of evolution, cycles with XIL-ADR-specific

activities (from the implementation stage) or with regular

ADR activities may or may not be desired. In ADR as well

Fig. 2 Integration of XIL in the elaborated ADR Process as XIL-ADR, adapted from Mullarkey and Hevner (2019)
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as in XIL-ADR, forward and backward jumps between

these stages are possible and contribute to the flexibility of

these approaches (note the arrows in Fig. 2) (e.g.,

Mullarkey and Hevner 2019, p. 5).

With the focus of XIL-ADR on the Implementation

stage, two main differences between classical ADR (i.e.,

Sein et al. 2011; Mullarkey and Hevner 2019) for imple-

mentations and XIL-ADR emerge. First, in classical ADR,

the BIE (Building-Intervention-Evaluation)-stage is a cen-

tral module for achieving organizational innovation,

change, and success of the ADR project (Sein et al. 2011).

Interventions can be anything that addresses the organiza-

tional problem of concern, i.e., design principles or a full-

blown technical artifact (e.g., Sein et al. 2011, p. 42). As

such, we can see interventions in classical ADR directed

toward the organizational context. XIL-ADR provides a

different perspective toward interventions (called XIL

Strategies) in that it focuses on technical interventions that

lead to direct effects on the AI-based system, based on the

evaluations. Following this view, XIL-ADR should instead

resemble a Building-Evaluation-Intervention (BEI) process

scheme, as opposed to the standard BIE scheme of classical

ADR approaches (e.g., Sein et al. 2011, p. 42) (refer to the

following subsection). More importantly, the Building

stage in XIL-ADR (called Refine Data & Retrain Model

activity) can be viewed as an operationalization of the

interventions taking place in XIL-ADR: It is merely an

action based on the novel engineering strategies that

emerged from the solid evaluations and reflections of

previous design cycles. In emphasizing the importance of

interventions in XIL-ADR, we are thus in line with the

propositions of Mullarkey and Hevner (2019, p. 8).

One of the more intricate differences between classical

ADR (i.e., Sein et al. 2011; Mullarkey and Hevner 2019)

and XIL-ADR is that XIL-ADR also introduces the concept

of cyclic renewal of the artifact’s basis. While in stan-

dardized ADR projects with classical IT tools, system

prototypes can be built based on defined design guidelines,

system syntax, and rulesets, projects involving ML-based

systems face fundamentally different circumstances (e.g.,

Teodorescu et al. 2021, p. 1494). Because modern ML-

based systems, such as DL systems, learn from data and

build a model based on selected statistical and often non-

linear methods, they provide promising solutions to fuzzy

sets of problems (e.g., LeCun et al. 2015). Due to this very

feature, developers and system users can often hardly

recognize intricate data and architecture problems in the

pilot stages of development (e.g., Schramowski et al.

2020). Nevertheless, when ML models fail due to the data

foundation (e.g., false ground-truth labels, confounders in

training data, cascading data errors, see Sambasivan et al.

2021) or due to unfitness of the model’s basic architecture,

appropriate responses must be made. As such, XIL-ADR

integrates this potential for a cyclic renewal of the artifact’s

basis into its method (which, without this, required a jump

to the Design stage).

In summary, XIL-ADR provides an iterative process

aimed at improving ML-based systems and at eliminating

potential errors and biases. In contrast to conventional

IML, the integration of explanations and visualizations

enables participants to interpret, reflect on and learn from

the system’s reasoning about the results. Up to this point,

IS research has not contributed much to illuminate the

benefits of IML (e.g., Grønsund and Aanestad 2020) for

data science in organizational settings, yet it emphasizes

the importance of system explanations for human-in-the-

loop configurations. In this regard, XIL-ADR can enable

the engineering of high-performance, less biased, and

insightful ML models for practice and presents the

opportunity for more profound insights into human-ma-

chine collaborations (see also Fig. 1).

2.4 Implementing Machine Learning Projects

with XIL-ADR

To enable research and practice to adopt XIL-ADR for

machine learning projects, we present it in a generalized

manner (see Fig. 3). In classical ADR (i.e., Sein et al.

2011; Mullarkey and Hevner 2019), we find two main

parties that reciprocally shape and mutually influence a

development cycle and each other (e.g., Mullarkey and

Hevner 2019; Sein et al. 2011). Also, in XIL-ADR, on a

high level, we find two groups of actors: Data scientists,

who provide a technical perspective on the matter of

development, and domain experts, who provide a non-

technical but domain perspective. Together they are called

the development team. As Zhang et al. (2020) put forward,

including various kinds of users directly in the develop-

ment of ML projects not only opens up the potential for

closer domain fit but can also result in less biased systems

(Zhang et al. 2020, p. 11). We recommend including dif-

ferent kinds of users and thus a highly diversified team in

XIL-ADR processes, since we believe that the orthogonal

picture that may form in group-discussions could greatly

benefit the emergence of better models in machine learning

projects (e.g., Lave and Wenger 1991). Especially valuable

in this regard are so-called ‘‘model breakers’’ (Hong et al.

2020, p. 8), who may contribute strongly to improving the

model by means of critical inspection and the application

of their domain knowledge. Such ‘‘model breakers’’ may

come in the form of domain experts, auditors, or product

managers (Hong et al. 2020, p. 8). For example, depending

on their background, model breakers may uncover

semantic problems from a knowledge domain perspective

(domain experts) in addition to unfulfilled regulatory or

legal requirements (auditors).
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The cyclic process of XIL-ADR consists of five activi-

ties executed in cycles. In the elaborated ADR process,

Mullarkey and Hevner (2019) call these activities ‘‘Prob-

lem Formulation/Action Planning (P)’’, ‘‘Artifact Creation

(A)’’, ‘‘Evaluation (E)’’, ‘‘Reflection (R)’’, and ‘‘Formal-

ization of Learning (L)’’ (Mullarkey and Hevner 2019,

pp. 3–4). To better fit the Implementation process for AI

systems and guide the application of the proposed process,

in XIL-ADR, the activities have different purposes and

require different actions. Also, the activities’ naming is

adapted to be more descriptive regarding the performed

actions (see the letters in Fig. 3 for an idea about how the

activities were renamed).

A first prototype is needed to enter the XIL-ADR cycle.

Hence, the process starts with an Initial Instantiation of a

model. Commonly, engineering knowledge largely informs

the Initial Instantiation, and it is thus missing potentially

important pieces of domain knowledge. As such, the data

and model will be primarily prepared along known soft-

ware engineering processes (e.g., Amershi et al. 2019) and

will provide an ingenious starting point for the upcoming

XIL-ADR cycles.

Following Fig. 3, the next activity in XIL-ADR focuses

on actions around Explaining, Visualizing and Inspecting.

In this step, transparency-based evaluation criteria are

needed to come to a transparency-based evaluation report

as the intermediate artifact of this activity. Therefore, the

team conducts performance tests along known metrics

(e.g., Accuracy, Precision, Recall) to get an overall feeling

about the model’s performance. However, these metrics

must be accompanied by XAI (either through metrics or

visualizations) that contextualize model performance either

by explaining the prediction (local XAI), overall model

workings (global XAI), or ideally both (Bauer et al. 2021).

As Hong et al. (2020) contend, it is crucial to design XAI

features according to the different users’ needs, such that

these users can effectively engage in the model inspection.

With this, they are in line with the results of Evans et al.

(2022), who compared different XAI techniques in a

pathology case (Evans et al. 2022, p. 293).

A pivotal step in the XIL-ADR cycle is the Reflect

activity. Data scientists often focus on technical rationality

(e.g., Neumann 2000, pp. 404–406) and overlook missing

domain logic and potential domain-specific implementa-

tion requirements, which may frequently only be realized

at the reflection step (Sambasivan et al. 2021). Thus, the

team has to critically reflect on the fit between the model

and the problem while considering the domain and busi-

ness context. For the reflection activity, the team consisting

of data scientists and domain experts must also deliberate

on the model’s performance in light of the explanations.

Additionally, this step includes a critical reflection of the

Fig. 3 Activities of the XIL-ADR Implementation cycle embedded in the elaborated ADR Process, adapted from Mullarkey and Hevner (2019)
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underlying data, as well as a reflection of training and

testing strategies. Following the investigations of Lebovitz

et al. (2021), project teams should use the available XAI as

an opportunity to thoroughly scrutinize the AI model, even

questioning the validity of its ground truth data. This way,

there is a higher potential for uncovering model flaws

pertaining to the data (e.g., low model performance, wrong

features prioritized, data not providing the necessary

information, or insufficient and inconsistent quality).

The realization of Insights follows after the group

reflections. Such insights may be of an engineering nature,

i.e., the realization of novel implementation requirements.

Besides, especially with growing model maturity, there is

also the potential for an extension of the knowledge base

by insights generated through the inspection of explana-

tions (e.g., Teso and Hinz 2020). In this activity, it is

important to view the models as malleable and not solely

focus on technical performance metrics since each partic-

ipant may value these metrics differently, which can hinder

the progress in the iterative model development (e.g., Passi

and Jackson 2018, p. 13). Furthermore, in line with Passi

and Jackson (2018, p. 13), the Insights activity needs to

discursively balance situations in which insights warrant

new implementation requirements or insights pose poten-

tial extensions to the body of knowledge. This activity is

also the point of each cycle where the development team

has to decide about possibly exiting the design cycle.

Details on this decision process follow after completing the

description of the XIL-ADR cycle.

As the last activity in XIL-ADR, Define XIL Strategies

formalizes previously captured implementation require-

ments into strategies for data manipulation, algorithm

adjustment, data annotation, and XAI visualizations. Apart

from distinctions that must be made in data and algorithm

work based on the machine learning task, the data anno-

tation strategy requires special attention. In general,

annotations may critically improve and speed up model

work (e.g., Amershi et al. 2015). Nevertheless, there is a

risk that annotations for large datasets may be costly when

created by experts or may not warrant the expected quality

of results when created by citizen scientists (e.g., Wein-

hardt et al. 2020, p. 275) or crowd workers. Depending on

the type of ML task or data and annotation task, hybrid

approaches where just parts of the data get annotated may

be possible. Usually, after the XIL Strategies have been

defined, XIL-ADR continues to iterate with a new cycle.

XIL-ADR may also spawn sub-cycles if the definition of

strategies proposes to do so (this will be shown in loops 3a

and 3b of our case study). After the Define XIL Strategies

activity, the strategies will be implemented in the first

activity of the next loop (i.e., Refine Data & Refine Model).

A subsequent new XIL-ADR cycle starts with the Refine

Data & Refine Model activity which is performed instead

of the Initial Instantiation. In this activity, the development

team implements the previously defined strategies. This

involves work on the data basis and the AI model itself.

Actions directed to the data include handling ill-labeled

data, reshaping or reengineering data, and annotating data.

The activity may also require the team to find domain

experts or citizens for the possible annotation of the data.

Actions directed to the model include adjusting the algo-

rithm and implementing (new) XAI features to enable the

team to better understand the model’s reasoning. After the

Refine Data & Refine Model activity, the cycle continues as

described and as Fig. 3 suggests with Explaining, Visual-

izing and Inspecting.

XIL-ADR has the limitation that the current cycle may

only be exited after the Insights activity. Therefore, the

development team has to decide how to proceed at the end of

the Insight activity. In general, there are three distinct pos-

sibilities of outcomes of this decision process: (1) ‘Continue

and Refine Strategy’, (2) ‘Abort and Realign Strategy’, and

(3) ‘Verify, Monitor, Deliver and Improve’. Outcomes (2)

and (3) lead to a Performant or Failed Model in Fig. 3.

For the first outcome, i.e., (1) Continue and Refine

Strategy, the XIL-ADR cycle continues as usual with the

Define XIL Strategies activity, and a new cycle starts

subsequently. For this outcome, Insights must not reveal

severe problems regarding the model or the data. The team

must be satisfied with the model, which includes sufficient

satisfaction from the domain experts’ side (face validity)

and the performance measures looking promising. Addi-

tionally, there still needs to be the potential for improve-

ments, with some doubts or open strategies remaining,

requiring a subsequent Implementation cycle. When the

Insight activity reports serious problems with the data or

the AI model, the outcome will be (2) Abort and Realign

Strategy. Criteria for this outcome are either low perfor-

mance measures or the majority of domain experts reject-

ing the model. In this case, the team stops the process and

has to make substantial considerations about how to pro-

ceed. Jumps to preceding stages, i.e., Diagnosis or Design,

present potential solutions to this problem, but the devel-

opment team must also consider the process’s complete

cancellation – especially under economic constraints.

Finally, the outcome can be (3) Verify, Monitor, Deliver

and Improve. Indications for this include the model being

effective in solving the problem, based on the performance

measures, and the domain experts uniformly approving the

system (face validity). The potential for further improve-

ments has to appear very low, so that a continuation of the

Implementation does not make sense from an economic or

business perspective. In this case, the iterative XIL-ADR

process may be promoted to further quality assessments,

testing, and subsequent deployment cycles in practice, i.e.,

by continuing with the Evolution stage (see Fig. 2).
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3 Evaluation Case Overview

Guided by the ‘‘Method Engineering as Design Science’’

(Goldkuhl and Karlsson 2020) process, the following two

sections serve as the demonstration and evaluation of the

proposed ISDM method. To illustrate how we envision the

application of XIL-ADR in research and practice (Gold-

kuhl and Karlsson 2020), we conducted an exemplary ADR

case study. In the following, we provide an overview of our

case study situated in healthcare. This case description also

guides the reader along the first two of four stages in ADR

as put forward by Mullarkey and Hevner (2019), i.e., the

Diagnosis and Design stages (refer to the section

‘‘Embedding XIL in the Elaborated ADR Process’’ for an

overview of the purposes of these stages). While the

developments of current research on Computer Vision in

Health IT informed the domain experts and the domain-

specific research on Covid-19 informed the researchers in

the Diagnosis stage, discussions with clinical personnel

(i.e., pneumologists) on the application of ML-based sys-

tems in healthcare largely affected the Design stage. For

the Design stage, we also introduce the data basis and the

technical methods to prepare for the XIL-ADR-based

Implementation stage in the subsequent section. The sub-

section on technical methods also includes (technical)

insights from the Implementation cycles, e.g., about the

XAI visualizations used. We chose this presentation

approach to separate the technical results from the evalu-

ation of the XIL-ADR method, which takes place in

Sect. 4, ‘‘Evaluation Case Study’’.

3.1 Diagnosis Stage: Background of the Application

Domain and Data

Pneumonia is an inflammatory condition of the lung and

can be caused by bacteria, a virus, or, less commonly, by

other microorganisms. Each year, pneumonia affects about

450 million people globally and results in about four mil-

lion deaths (Ruuskanen et al. 2011). With the advent of the

novel corona virus (SARS-CoV-2), we observe a surge in

viral pneumonia cases worldwide. While the WHO has

been reporting up to millions of new cases each day for the

past two years, governments worldwide have taken drastic

measures to relieve the strain the pandemic has on our

health systems and medical staff (Lai et al. 2020; McCall

2020). Although the policy measures to ‘‘flatten the curve’’

have shown some effect (Gibney 2020), the race between

scientific research to treat and contain the disease and the

growing discontent of the population with the perceived

limitations is still ongoing.

Pinpointing exact symptoms in contrast to conventional

viral pneumonia and the correct treatment at each stage of

the disease (Chen et al. 2020a) now appears to be more

critical than ever. Nevertheless, several factors limit the

efficiency of hospitals and medical practices and place a

heavy burden on staff. Firstly, high medical expertise is

often a scarce resource. Second, inexperienced specialists

may have difficulty recognizing novel and unusual disease

patterns in coronavirus-affected patients (e.g., Schubert

et al. 2013). Thirdly, even with high expertise, medical

doctors are (even in everyday situations) put under high

time pressure, which challenges the extremely precise and

quick decision-making required (e.g., ALQahtani et al.

2018; Tsiga et al. 2013), which may be necessary for

adequate treatment and allocation of medical resources for

viral pneumonia cases.

Therefore, primary concern in a pandemic is the effi-

cient use of available personnel. Trained medical experts

cannot easily be scaled to growing demand. Radiological

imaging has been used as a primary screening tool in some

countries and has proven essential for detecting, ruling out,

and monitoring pulmonary infections with SARS-COV-2.

Researchers have suggested automatic detection methods

for several reasons: providing decision support, providing a

quantitative measure for diagnostic purposes, and provid-

ing a predictive tool. Further, automatic detection and

diagnostic assistance tools can help substitute for trained

personnel in a region with low availability of medical

human resources.

To make viral pneumonia easier to detect and relieve

and to assist physicians in diagnosing and treating the

disease, scholars have tried to create effective ML-based

expert systems that can predict positive cases of Covid-19-

infected patients from radiography (e.g., Shi et al. 2021).

Several of these systems achieve high accuracy on the data

available to the researchers (e.g., Wang et al. 2021).

However, we should consider the actual usefulness of these

systems in reality with the limitation in mind that the image

data that these systems use might not provide a perfect,

comparable, and uniform data basis, and therefore, the

accuracy of these models may not hold in practical use (Shi

et al. 2021, pp. 11–12). Furthermore, only very few of

these systems (e.g., Wang et al. 2020) currently offer

plausible explanations for their predictions, which, on the

one hand, is a critical factor for the usefulness of such

systems in practice and as a driver for trust in these sys-

tems. On the other hand, there is evidence that being able

to interactively modify a system further increases trust,

satisfaction, and thus efficient use of these systems (e.g.,

Dietvorst et al. 2018). Finally, in the case of clinicians or

radiologists reading chest radiographs (CXR), this reader

would be able to check and intervene quickly, adding a

layer of safety to the diagnosis. With these aspects in mind,

we expect that a system developed with the help of XIL-

ADR that receives sufficient evaluation and adjustment by

medical experts through an IML process and provides fine-
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granular explanations through XAI could not only be more

useful in practice but may also lead to differentiated

insights regarding patterns that may be indicative for

Covid-19.

3.2 Diagnosis Stage: Related Work in Computer

Vision and Radiology

Typically, after first anamnesis and determining abnor-

malities within clinical metrics, one possible further

examination is to have patients with suspected lung disease

screened via radiography. A radiologist would then analyze

CXR or CT images and provide a diagnosis based on the

patterns shown by the medical images.

Unfortunately, in many regions, there are too few radi-

ologists per hospital and even per country (Ekpo et al.

2015), such that not only the large throughput of CXR

images causes enormous amounts of stress (McDonald

et al. 2015), but also a large backlog of CXR images and

diagnoses arises (Yates et al. 2018). For this reason, many

countries have implemented the red dot or asterisk system

(Berman et al. 1985), which allows radiographers with

additional specialization and training to give a first tech-

nical assessment if an image contains abnormalities.

Therefore, the clinicians requesting radiography receive

indications of abnormalities faster than before. Different

studies (e.g., Brealey et al. 2006; Ekpo et al. 2015) illus-

trate the value of red dot systems in speeding up diag-

nostics and patient treatment without significant sacrifices

in accuracy.

Since the advent of DL, scholars in the area of computer

vision and radiology alike have shown increased interest in

developing ML-based approaches to red dot systems. Such

systems may not only assist clinicians by speeding up

diagnosis and treatment but also by facilitating repeata-

bility and potential reproducibility of decisions and auto-

mated processing of substantial amounts of comparable

datasets in case of case registries. Mei et al. (2020), for

example, show that AI-based systems continuously

improve and reach similar levels of sensitivity and speci-

ficity compared to specialists in their field.

In the area of viral pneumonia, many scholars have tried

to create effective and efficient ML-based expert systems

that can predict positive cases in patients from radiography

(e.g., Shi et al. 2021). While many of these studies lack

interaction with clinicians and only present engineering

approaches, some studies that include an assessment of the

system through interaction with clinicians have already

shown promising results. Chen et al. (2020b), for example,

implemented a Convolutional Neural Network (CNN),

which was able to classify control patients with other dis-

eases and patients with viral pneumonia caused by Covid-

19 from computed tomography (CT) scans. In an

experiment with an expert radiologist, they found that the

radiologist required significantly less time reading CT

images and detecting a patient with viral pneumonia (i.e.,

Covid-19-based pneumonia in this study) when receiving

diagnostic aid by the CNN compared to reading the CT

images only on his own.

As evidence shows and discussed by Kundu et al. (2020)

and McCall (2020), these systems may speed up the

diagnosis process for many diseases enormously when

employed correctly. Currently, there is also some discus-

sion on whether CXR or CT provides a better foundation

for AI-assisted diagnosis. Nevertheless, many clinicians

agree that especially portable X-ray generators are helpful

for a faster and less complicated screening process (Jacobi

et al. 2020).

We use the case of building a diagnosis system based

on CXR, i.e., X-ray images with lower resolution than CT

scans, as an illustrative example to implement the pro-

posed XIL-ADR methodology. For this purpose, we

integrate radiologists and pneumologists from a leading

European university hospital into the XIL-ADR process.

A primary goal of this process is to arrive at a system that

(1) can deliver more differentiated results than a tradi-

tional ‘red-dot-system’-like AI-based system (i.e., not

only flagging images with potential abnormalities (Yates

et al. 2018), e.g., by providing some kind of confidence

measure), (2) that is able to deliver explanations regarding

its predictions, and (3) that delivers more reliable results

than conventional, non-XIL trained AI-based systems, due

to the fact that with XIL expert knowledge directly

influences the results. By applying XIL-ADR, we show

how we unravel problems with data and develop and shift

XIL strategies to get closer to this goal with each

development cycle.

3.3 Design Stage: Data Basis

The development of such a system requires not only

abundant computational resources but also suitable data.

Fortunately, since the pandemic started, not only enormous

amounts of studies have been conducted that focused on a

better understanding of the disease and on finding thera-

peutic methods, drugs or vaccines, but also many initiatives

have tried to improve the networking and exchange of data

sources to facilitate the development of technical solutions

to overcome the pandemic.1

We started developing our system based on the

‘‘COVID-19 Radiography Database’’ provided by

1 For example, see https://www.covid19dataportal.org/ or https://

www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.

Last Checked: 10.01.2023.
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Chowdhury et al. (2020).2 This publicly available database

comprises radiographs of patients with suspected lung

diseases caused by pathogens from various sources (e.g.,

Cohen et al. 2020) and won the Kaggle Dataset award. To

date, many researchers reference or use this dataset for

their studies (e.g., Apostolopoulos et al. 2020; Apos-

tolopoulos and Mpesiana 2020; Ucar and Korkmaz 2020;

Yamaç et al. 2021).

The X-ray images included in this database were ini-

tially taken during examinations and marked with the final

diagnosis so that labels corresponding to the diagnosis are

available for the radiographs. This process resulted in a

database with labels for (1) healthy patients, (2) cases of

pneumonia caused by Covid-19, and (3) cases of pneu-

monia caused by conventional viral pathogens. This

foundation (see Table 1 for more details and sample data)

enables us to build a classifier that may be able to distin-

guish efficiently between these three classes.

3.4 Design to Implementation Stage: Technical

Methods

As we mentioned in the theoretical background, we

instantiate XIL-ADR in the development-centered Imple-

mentation stage of ADR (stage three, see Fig. 2). This

section provides some insights into the technical methods

needed for the specific XIL-ADR process (Design stage)

and technical insights from the Implementation stage.

The proposed cyclic XIL-ADR process consists of

innovative approaches from computer science. Deep

Learning lays the foundation for the process. We open the

black-box by using methods coming from the area of XAI.

To allow humans to bring their expertise into the process,

we use IML employing the CAIPI algorithm (Schramowski

et al. 2020, p. 478) and then start the Deep Learning pro-

cess again afterward. By combining these different

approaches, it is possible to remedy the most pressing

problems in ML. We will later exemplify the process and

will share a few insights from the area of medical imaging.

3.4.1 Deep Learning

We decide to train a CNN on the X-ray dataset. CNNs are a

category of models of DL. We use the AlexNet version in

the PyTorch library from Facebook (Paszke et al. 2019)

that has been pre-trained on ImageNet data (Deng et al.

2009). The decision to use the AlexNet architecture results

from numerous preliminary studies with different network

architectures, such as ResNet, SqueezeNet, and DenseNet.

The AlexNet architecture is based on the work of Kriz-

hevsky et al. (2012). In CNN literature, this well-known

model has demonstrated its capability in the field of image

classification.

This CNN model has eight weighted layers, consisting of

five convolutional layers followed by three fully connected

layers (Krizhevsky et al. 2012). We transformed the X-ray

images to AlexNet input size and thus fed them into the

Table 1 Covid-19 Radiography Database provided by Chowdhury et al. (2020)

Types (1) Normal (2) Covid-19 (3) Viral Pneumonia

Count 1341 219 1345

Examples

2 An updated version of the dataset is available on: https://www.

kaggle.com/tawsifurrahman/covid19-radiography-database. We

retrieved the version of the database in March 2020. Last checked:

10.01.2023.
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network with a resolution of 224 9 224 pixels. In the

context of our AlexNet parameterization, we use a global

learning rate of 0.0001 for all layers. We implement

RMSProp as the optimizer with an alpha of 0.99, epsilon of

1 9 10-8, a weight decay factor of 0, and a momentum of

0.09. Based on the PyTorch DL framework, we divide our

dataset into a train, a validation, and a test set. We utilize the

validation set for hyper-parameter tuning and the test set to

determine the neural network’s performance. The test set

contains unique X-rays sampled from the raw dataset,

which are not in the train or validation dataset (Chowdhury

et al. 2020). We use a random fraction of 50% from the

source dataset for the training dataset. For the test and

validation datasets, we randomly split the remaining set of

X-rays again in fractions of 50%. We randomly rotated each

image in the training set between - 15� and 15� relative to
its stored position from the source dataset and randomly

cropped and flipped it horizontally and vertically. We use

the labels for each class label provided in the source dataset

as ground truth. To improve image quality in the context of

training, we make use of classical image normalization.

3.4.2 Explainable AI

As already mentioned, ML methods have a growing impact

in more and more areas and applications, especially

grounded in the latest advances in Deep Learning. Domain

experts usually do not explicitly implement the decision

process of such models. Instead, the machine itself learns it

from the provided data. The result is that the user or

domain expert loses the influence on how and why a

machine is making its decisions. XAI tackles the latter one.

Within XAI, one must distinguish between white-box

machine learning algorithms that are inherently explainable

(e.g., decision trees and Bayesian classifiers) and black-box

models. Deep Learning models are commonly used black-

box models. XAI methods (e.g., Lundberg and Lee 2017;

Ribeiro et al. 2016; Selvaraju et al. 2017; Simonyan et al.

2014) are trying to open these black-box models to explain

the learned decision process. On the other hand, inter-

pretable models not only provide explainability and

understandability but do this inherently, offering these

benefits with the downside of giving up flexibility in the

model choice (i.e., difficulties using DL) and increased

effort in development (e.g., Rudin 2019, pp. 208–210).

Here, an interesting approach is the design of inter-

pretable Deep Learning architectures (Chen et al. 2019),

which create an intermediate interpretable layer within the

DL algorithm. The user can use this layer to understand the

classification. With XAI, the resulting explanation can

have different modalities; often, however, visual feature

importance maps are provided, e.g., in the form of heat-

maps. For medical images, like in our example case, they

are well suited as easy-to-understand visual explanations

that reflect the way of thinking of pneumologists and

especially radiologists (Evans et al. 2022, pp. 282, 293) and

serve an understanding of the underlying model, which is

crucial for the use of XAI in XIL.

3.4.3 XIL

The algorithmic methodology applied in the context of

XIL, i.e., CAIPI, can be regarded as model agnostic (e.g.,

Teso and Kersting 2019, p. 239). As outlined in Fig. 3 in

the section ‘‘Implementing Machine Learning Projects with

XIL-ADR’’, we employ the XIL optimizer (i.e., CAIPI

algorithm with ‘‘right-for-the-right-reasons loss’’ (RRR))

as proposed by Schramowski et al. (2020) as part of our

strategy for algorithm adjustment. In this regard, the opti-

mization function of XIL uses annotations (i.e., a binary

mask generated from human-created annotations) to

penalize the model using parts of an image that lie outside

the annotations. In doing so, the XIL optimization function,

i.e., CAIPI, is proposed in the paper of Schramowski et al.

(2020) (see pp. 478–479 for more details on the underlying

theorem) and adjusted from Ross et al. (2017). It helps the

ML model to focus better on relevant regions by penalizing

attributions outside annotated areas, i.e., the model learns

to base its predictions on annotated regions while paying

less attention to penalized areas.

Figure 4 shows an exemplary depiction of how the XIL

optimizer uses annotations for an image to influence

algorithmic attribution. The picture on the right shows the

same picture as on the left, with different annotated areas

(highlighted for exemplary purposes in bright grey).

Everything (i.e., every gradient/pixel) that lies outside

these annotation masks is subject to penalization. This way,

our model is directed toward attributing the relevant image

features.

3.4.4 XAI Visualization

To visualize the explanations of the used neural network

classifiers, we used two separate XAI methods with vary-

ing colormaps. For coarse image explanations, we applied

the Grad-CAM method (Selvaraju et al. 2017), representing

a trade-off between spatial information and higher-level

visual constructs. Grad-CAMs are, however, too coarse for

detailed medical explanations based on our CXR data. For

this reason, we additionally applied the VarGrad method of

Adebayo et al. (2018) for more fine-grained explanations.3

According to Hooker et al. (2019), VarGrad shows more

3 As a foundation for the basic Grad-CAM and VarGrad method, we

used the Python Captum Package: https://captum.ai. Last checked:

10.01.2023.
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faithful results than many other gradient-based XAI

methods which the authors had compared to.

Apart from using a one-dimensional standard colormap

to present the model’s explanations (e.g., as usually used

with VarGrad), we extend the standard approach and pro-

pose a two-dimensional colormap (2Dcolormap) which

linearly encodes the importance map returned by the

specific XAI method with the pixel intensity of the original

input image. This approach adds information on whether an

indicated important image area corresponds to a dark or

light region of the original image.

Figure 5 presents the coding of this colormap and Fig. 8

shows example explanations using this colormap. This

extension ensures that one picture compiles all necessary

information, and the user does not need to switch back and

forth between examining the interpretation and the original

X-ray (e.g., compare Evans et al. 2022).

4 Evaluation Case Study: Generating Insights

and Improving Models with XIL-ADR

Figure 3 shows that XIL-ADR can result in several

loops/cycles, and each loop can generate new insights. This

case study will describe the different loops we conducted in

the Implementation stage of our medical case using XIL-

ADR with experienced pneumologists and radiologists and

how the result of one loop shaped the next loop. In effect,

while this section describes the implementation phase of

the medical case (conducted with XIL-ADR), it primarily

serves as an exemplary evaluation case of our XIL-ADR

method. As such, this description of the implementation

does not focus on the results of each loop but on the

developmental journey using XIL-ADR. The following

subsections describe the XIL-ADR loops we conducted in

the course of this implementation following the activities

of the XIL-ADR cycles (see Fig. 3). In this context, we will

also describe the intermediate artifacts (e.g., lessons

learned, design requirements) that emerged from each

activity. At the beginning of the XIL-ADR process, we

describe the Instantiation of the model prototype (subse-

quent cycles start with Refine Data and Retrain Model).

Next, we describe the activity of Explaining, Visualizing

Fig. 4 An exemplary depiction of how our XIL optimization strategy

uses the annotations. The original image is on the left, and the same

image is on the right with different annotation regions (highlighted in

bright colors). Based on the optimization strategy, dark areas denote

image regions, which the model should not focus on to make its

predictions and lead to penalization in case it does (color

figure online)

Fig. 5 2D Colormap to visualize explanations, which linearly

combines pixel importance predicted by the XAI Method (vertical

axis) with pixel intensities of the input image (horizontal axis) (color

figure online)
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and Inspecting the model and its performance. This step

forms the basis of the subsequent Reflection on the model

explanations and performance, which leads to the genera-

tion of Insights. Finally, each loop results in the Definition

of XIL Strategies for the subsequent loops. For an overview

of the four conducted XIL-ADR cycles, the data basis, and

their intermediate artifacts, refer to Table 2 at the end of

this section.

4.1 Loop 1

4.1.1 Model Instantiation

We first train the classifier as outlined in the last chap-

ter and use the complete information on the X-ray for

classification. This procedure is the standard approach, and

the resulting classifier is (too) often the endpoint of a

standard ML process. The disadvantages will become

evident when we analyze the results with XAI and then

continue with the IML part in the next loop.

4.1.2 Explain, Visualize and Inspect

Overall, the performance metrics indicate a particularly

good model, with the model correctly predicting 98% of

Normal, 83% of Viral Pneumonia, and 96% of Covid-19

cases. This result indicates that our model can distinguish

lungs with pulmonary infiltrations from lungs without

infiltrations (the patients can still be sick for other reasons)

and can even distinguish standard viral pneumonia (with-

out Covid-19 pneumonia) from the new Covid-19 pneu-

monia with extremely high accuracy. The model’s

accuracy is 91.06%, precision is 93.64%, and recall is

92.53%. Such results would be highly beneficial, and a

number of papers have shown similarly encouraging results

on the basis of the same dataset.

4.1.3 Reflect

However, such a simple approach that is widely used in

practice and research tends to overlook potential con-

founders. In addition, our loop 1 prototype suffers from

such a potential problem as a detailed analysis of the

explanation reveals: Fig. 6 presents a typical confounder

on an X-ray of a Covid-19 patient. The visualization shows

that the AI has detected predictive value in the ‘R’ on the

left upper side and heavily uses it to predict the class of

Covid-19 cases.

4.1.4 Insight

The ‘R’ on an X-ray typically marks the patient’s right

side, but it cannot be found on all X-rays in our sample as it

might have been left out or cropped, and the fonts used can

also vary. Potentially newer X-ray machines include this

marking more often, or hospitals/radiologists from a par-

ticular region hit hard by Covid-19 use machines that

include this marking technique automatically. Furthermore,

patients with Covid-19 often lie face down, which was

found to improve lung recruitability4 (Pan et al. 2020), and

hence it is more practical to place the ‘R’ on the detector

(opposite to placing it on standing patients).

4.1.5 Define XIL Strategies

In the presence of such a bias in the data, the classification

would work well on our test dataset, but it would fail to

deliver satisfactory results on X-rays from out of sample,

e.g., other regions that would not have the same bias.

Therefore, forcing the AI to focus on regions that should be

used for classification is mandatory. Indeed, it is possible to

pre-process pictures accordingly, but it needs expertise to

think about potential confounders. Furthermore, often the

strenuous and unwelcome data work leads to incomplete-

ness in this respect and thus also to corresponding cas-

cading errors in the development process (Sambasivan

et al. 2021).

Usually, the confounding effects are more challenging

to detect than our illustrative example in Fig. 6 suggests, a

problem we will exemplify in loop 2. To solve these

problems, XIL-ADR and appropriate annotation tools

allow experts to exclude problematic regions and can

thereby force the algorithm to focus on different regions

throughout the different replications of the process cycle.

This fact would also allow us to evaluate whether certain

other regions, like the heart, would create excellent

predictors.

4.2 Loop 2

4.2.1 Refine Data and Retrain Model

To exclude obvious confounders, we compiled an instruc-

tion video and hired crowdworkers to annotate the dataset

of nearly 3000 images. Figure 7 shows a tool based on the

COCO Annotator (Brooks 2019) that we customized for

our study. Based on the recommendation of our medical

colleagues, we thereby instructed the crowdworkers to

annotate three different regions: Torso, lungs, and throat,

and merge them to create a fourth class which we call

‘‘Full’’.

In loop 2, we trained another classifier that uses the

annotation described in our technical methods

4 I.e., reopening collapsed areas of the lung. For more detailed

explanations, please refer to Santos et al. (2015).
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section. Again, the model exhibits a superb goodness-of-fit

(correctly predicted 99% of Normal, 91% of Viral Pneu-

monia, and 89% of Covid-19 cases). The accuracy of this

model is 94.50%, precision is 96.30%, and recall is

92.93%.

4.2.2 Explain, Visualize and Inspect

The results seemed to be very promising, and in a joint

(virtual) session of three computer scientists, three infor-

mation systems researchers, and four physicians (i.e.,

radiologists and pneumologists), we inspected the expla-

nations, some of which are visualized in Fig. 8.

4.2.3 Reflect

Even for non-experts, it becomes evident through the XAI

explanations that typical patterns on the X-rays lead to the

classification. If non-experts can recognize these high-

lighted patterns on X-rays and then diagnose new diseases

reliably, this would constitute a significant breakthrough.

In this loop, we observe blue areas between the ribs for

physiological subjects, indicating that these areas are

important and that they are dark areas on the original X-ray

image.

In contrast, we observe that patients with classical viral

pneumonia have many red areas, indicating that bright

areas on the original X-ray are of importance. In contrast to

these two groups, we can identify Covid-19 cases by a

cloud of blue and sometimes reddish points in the lung

area.

4.2.4 Insight

While these results are promising for further inspection

from the physicians, the explanations revealed another

critical aspect that non-domain experts would not recog-

nize so easily. Also, in our case, only the medical experts

wondered about specific patterns. In some XAI images, we

recognized that the algorithm marked areas around the

shoulder as important. On closer inspection, these changes

correspond with the developing skeletal features that are

distinct for individual skeletal maturity stages of children

and differentiate these images from adults. The closing of

epiphyses, such as the humerus head epiphysis highlighted

in Fig. 6, are examples of these fundamental anatomic

differences between age groups. These predictors do not

relate to the classification task or do not correlate with the

ground truth indicating pneumonia or Covid-19-induced

pneumonia.

This insight caused a further inspection of the X-ray

image database, which revealed that the classes of viral

pneumonia and normal cases indeed entirely consist of

pediatric patients, i.e., children, while the Covid-19 cases

are mixed and mainly consist of older adults. Further

analysis of the data sources that contributed to the Kaggle

winning dataset (Chowdhury et al. 2020) revealed that the

XAI pointed to a hidden but very important confounder:

The ‘‘Normal’’ and ‘‘Viral Pneumonia’’ CXR categories

consist of images from the ‘‘Pediatric Bacterial and Viral

Pneumonia Data Set’’ by Kermany et al. (2018)5 while the

Covid-19 category consists of CXR of patients of various

ages, yet primarily adult patients. In principle, this boils

down to the classifier being able to distinguish between a

CXR of an adult and a child. At least this biased data

source partly explains the excellent classification of the

holdout sample. In search of related papers that recognized

this issue, we found only very few articles that address this

problem and adjust their data selection process accordingly

(e.g., Oh et al. 2020). Many other papers that rely on this

dataset did not recognize and/or address this problem. In

practice, we would observe another failed ML project

where the standard training/test approach would lead to

highly promising results but where the system would fail to

deliver on new datasets in practice. Garcia Santa Cruz et al.

(2021) also emphasize this issue in the available Covid-19

chest X-ray datasets and critique published papers blindly

using those datasets for training ML models without

accounting for potential sources of bias involved in the

data.

4.2.5 Define XIL Strategies

After discussing this problem, we decided to pursue two

different strategies. First, we excluded the Covid-19 cases

from our dataset to see whether our algorithm could detect

viral pneumonia in children. We describe this in loop 3a.

Second, we curated a new dataset that does not implicitly

lead to such biased results. We describe the insights about

this fourth classifier in loop 3b.

4.3 Loop 3a

4.3.1 Refine Data and Retrain Model

In this loop, we continue to work with the subsamples

‘‘Normal’’ and ‘‘Viral Pneumonia’’ of the Covid-19 data-

base (Chowdhury et al. 2020) that were initially compiled

by Kermany et al. (2018). It entirely consists of X-ray

images from pediatric patients, and we can thus rule out the

confounding problem from loop 2, and the identification of

5 Available on: https://www.kaggle.com/paultimothymooney/chest-

xray-pneumonia. Last checked: 10.01.2023.
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viral pneumonia in children alone is of importance. As of

January 2023, a joint report6 from the American Academy

of Pediatrics and the Children’s Hospital Association

reported 15.24 million Covid-19 cases for children in the

US registered from the onset of the pandemic. Further-

more, they reported in August 20217 that between 1.6 and

3.5% of the total cumulated hospitalizations (of twenty-

three states plus New York) due to Covid-19 were children.

4.3.2 Explain, Visualize and Inspect

Naturally, we use the created annotations to minimize the

influence of potential confounders outside the area of

interest. The accuracy of this model is 93.91%, precision is

94.13%, and recall is 93.91%.

4.3.3 Reflect

The algorithm detects healthy subjects in 98% of all cases

and correctly identifies patients with viral pneumonia in

90% of all cases. Looking at the colored explanations in

Fig. 9, we recognize some patterns from loop 2. The

classifier uses bright parts of the X-ray in the lung to

identify viral pneumonia. If these areas in the lung are

darker, the algorithm classifies the case as normal.

4.3.4 Insight

Loop 3a is a very illustrative example but not as chal-

lenging as distinguishing between Covid-19 and classical

viral pneumonia, and the results similar to loop 2 (cloud of

blueish and reddish points in the XAI images) seem to be

interesting. What may be problematic here, however, is

that since patient metadata on the images is missing,

patient leakage from the train into the test set may bias

these results. This problem would also be the case for the

Covid-19 dataset of loops 1 and 2.

4.3.5 Define XIL Strategies

We, therefore, started to curate a new dataset for training

and testing from the ‘‘ChestX-ray14 database’’ by Wang

et al. (2017), which involves a lot of work. We will analyze

this dataset in loop 3b. In our quest to reduce bias while

gaining an understanding of the model workings, we also

compiled an additional independent test set from the

database of the Hannover Medical School (Winther et al.

2020) for the Covid-19 class, which helps us to realize and

exemplify the importance of independent patient holdout-

testing.

4.4 Loop 3b

4.4.1 Refine Data and Retrain Model

We use the ‘‘ChestX-ray14 database’’8 by Wang et al.

(2017) in this branch. This extensive database contains

about 112,000 labeled CXR images of fourteen common

thorax diseases, as well as CXR images without a diagnosis

on any of the fourteen diseases, which are therefore labeled

as ‘‘No Finding’’. Due to the vast amount of CXR images

and the trustworthy seal of the ‘‘National Institutes of

Health’’8, this dataset has been used extensively in the past

Fig. 6 Loop 1 XAI. Original

image on the left, XAI showing

confounders with Grad-CAM

method (Selvaraju et al. 2017)

on an overlay of the edge-

filtered image on the right (color

figure online)

6 For details, see the ‘State Data Report’ Version 1/5/2023: https://

downloads.aap.org/AAP/PDF/AAP%20and%20CHA%20-%20Chil

dren%20and%20COVID-19%20State%20Data%20Report%201.5.

23%20FINAL.pdf. Last checked: 10.01.2023.
7 ‘State Data Report’ Version 8/12/21: https://downloads.aap.org/

AAP/PDF/AAP%20and%20CHA%20-%20Children%20and%

20COVID-19%20State%20Data%20Report%208.12%20FINAL.pdf.

Last checked: 10.01.2023.

8 Available on: https://nihcc.app.box.com/v/ChestXray-NIHCC. For

details on NIH, see https://www.nih.gov/. Retrieved in June 2020.

Both last checked: 10.01.2023.
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Fig. 7 The user interface of the customized COCO Annotator used by the crowdworkers to annotate the images. Using the tools on the left on

each X-ray, the areas for the throat, lungs, and torso were highlighted (color figure online)

Fig. 8 XAI showing Explanations for Classification in loop 2 (using our customized red-blue filter solution based on VarGrad (Adebayo et al.

2018)) (color figure online)
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three years in medical DL research and has enabled the

pursuit of many research projects.

From this dataset, we utilize two categories to imple-

ment a three-class classifier: (1) we use the ‘‘No Finding’’

class to establish a baseline, and (2) we use the ‘‘Pneu-

monia’’ disease class to be able to distinguish our ‘‘Covid-

19’’ class (from the Chowdhury et al. (2020) database)

from other Pneumonia cases.9 In a multi-stage data

preparation and selection process, we filter out (a) non-

frontal images, (b) heavily cropped images, (c) images with

poor resolution, (d) images with too prominent thoracic

foreign material, and (e) images with an inappropriate

windowing.10 We arrived at a higher-quality subset of the

dataset through this process.

4.4.2 Explain, Visualize and Inspect

First, we realized that the new dataset made the classifi-

cation much more challenging. It is easier for an algorithm

to distinguish adults from children based on X-rays, but

detecting patterns that explain diseases is harder. Based on

the two testing strategies, i.e., testing on the Covid-19

images with suspected test leakage (Chowdhury et al.

2020) (left) and the independent Covid-19 dataset (Winther

et al. 2020) (right), we arrive at the following confusion

matrices depicted in Fig. 10. The accuracy of this loop’s

model based on the original test set is 67.23%, precision is

72.27%, and recall is 67.23% (left). As the confusion

matrix on the right in Fig. 10 shows, testing for the Covid-

19 class with an independent test set revealed that the

classifier appears to be struggling to discern other variants

of Pneumonia from Covid-19-induced Pneumonia with

out-of-sample data.

4.4.3 Reflect

The results are weaker than the ones reported by Mei et al.

(2020) (75.9% sensitivity for the CNN), where CT images

have been used, which have a much better resolution (but

have other disadvantages) and where only two classes

(Covid-19 vs. normal) were examined. Interestingly, as

both confusion matrices indicate, most of the misclassifi-

cation rate for Covid-19 falls on false-positive classifica-

tions for Pneumonia but not on No Finding. From a

different perspective, this indicates that the classifier can

recognize Covid-19 patients as ill patients quite well. We

can also go one step further than Mei et al. (2020) and

inspect the model using the XAI part of our proposed

method. Again, the XAI often points to clouds of dots in

the lung that seem to be a predictor of Covid-19.

4.4.4 Insight

One insight generated in loop 3b are the mentioned dot

clouds. Potentially, these dot clouds could be indicators for

vascular changes that might occur with Covid-19 infection

(inflammatory, pulmonary reactions). Human experts usu-

ally find such details hard to detect by visually inspecting

the original X-ray. The XAI part of the cycle can thus help

humans by highlighting important areas.

At this point, a further curation of the dataset, training,

and testing strategies (e.g., acquiring more images of dis-

tinct patient cohorts for testing, see Irvin et al. 2019) is

necessary. Facing these major challenges, we therefore

follow the ‘Abort and Realign Strategy’. Nevertheless,

there may be potential in refining the model, as the con-

fusion matrices indicate, and also labeling strategies to help

the model find patterns that more effectively distinguish the

Fig. 9 XAI showing Explanations for Classification in loop 3a (using our customized red-blue filter solution based on VarGrad (Adebayo et al.

2018)) (color figure online)

9 In contrast to the dataset provided by Kermany et al. (2018), this

dataset includes CXR images of patients of different ages and not

only children. Furthermore, it must be noted that the ‘‘Pneumonia’’

disease category may not only contain viral pneumonia cases, but also

bacterial pneumonia cases. The dataset does however not provide

detailed information about the distribution of the cases that were

caused by bacterial and viral pathogens.
10 Images with inappropriate windowing or contrast stretching are

too dark or too bright compared to the standard level used in digital

imaging. Our radiologists suggested excluding such images because

of their low quality.
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Pneumonia class from the Covid-19 class. The future

development process will be discussed in the ‘‘Outlook’’

section. Nevertheless, it became evident that XIL-ADR

could help unveil confounding factors and thus contribute

to the improvement of implementation requirements, as

well as the generation of insights on the part of the human

user.

4.5 Outlook

After describing four loops of the XIL-ADR development

process for our illustrative medical case study, the process

ends here, as the challenges faced in this project require a

deliberate and elaborate realignment of the strategy. Hence,

the decision process at the end of the Insights activity

resulted in the ‘Abort and Realign Strategy’.

Nevertheless, the produced models and intermediate

artifacts have already contributed substantially to an

increase in the knowledge base, ostensibly from an engi-

neering perspective but also from a domain perspective;

this result showcases a unique strength of XIL-ADR. The

described loops have already revealed typical pitfalls and

potential confounders that can heavily influence the

resulting models in machine learning. Not only does the

black-box problem make the results less reliable, but this

problem also hampers scientific progress, although these

new methods are so powerful and promising. This medical

example shows simple, obvious confounding factors as

well as more hidden confounders that only domain experts

can recognize. The proposed process of XIL-ADR can

mitigate two problems: First, it allows for identifying and

removing potential confounders, and second, it allows us –

as humans – to recognize patterns more easily and thus

could potentially extend our knowledge base in the appli-

cation domain. In this case, researchers from different

disciplines will further engage in the human-machine-loop.

To ‘Realign’ the project with the defined goals, the next

apparent steps for loop 4 include curating more datasets

including metadata, which will help to ensure high-level

patient-level splits. These quality splits are necessary to

further test for systematic biases in system performance

with the help of XAI (e.g., bias toward gender, age groups,

or disease progression). Furthermore, we will annotate the

newly curated training images to arrive at more refined

results. In addition, data scientists can evaluate the true

potential of more complex and highly acclaimed models

with the help of XIL-ADR. For illustration purposes, we

conclude here with the description of the first four cycles

performed (see Table 2).

5 Discussion and Conclusion

This paper presented a novel situational ISDM called XIL-

ADR. In engineering the method, we followed the

approach of Goldkuhl and Karlsson (2020) by identifying

the problem, theorizing, and engineering the method,

before demonstrating and evaluating it in a healthcare

development case. XIL-ADR is generalizable to iterative

ML development-evaluation activities.

From an ADR perspective, XIL-ADR contributes to

extending ADR (e.g., Baskerville et al. 2018, p. 365) such

that research and organizational teams can use the

methodology to conduct ADR more tailored to data science

Fig. 10 Confusion Matrices of loop 3b with Chowdhury et al. (2020) on the left and Winther et al. (2020) on the right
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Table 2 Overview of the evaluation case with the four loops and their respective intermediate artifacts

Intermediate

Artifacts

Loop 1 Loop 2 Loop 3a Loop 3b

Initial dataset

(n per class)

Normal: 1341

Viral Pneumonia: 1345

Covid-19: 219

Normal: 1341

Viral Pneumonia: 1345

No finding�: 594
Pneumonia�: 512
Covid-19: 219

Test dataset

(n per class)

Normal: 336

Viral Pneumonia: 337

Covid-19: 54

Normal: 335

Viral Pneumonia: 337

No finding�: 141
Pneumonia�: 105
Covid-19: 47

Independent testing:

No finding�: 141
Pneumonia�: 105
Covid-19*: 243

(Refined)

Prototype

AlexNet Disease

Classifier (ternary)

AlexNet Disease Classifier

(ternary) with Annotations and

Penalization (RRR)

AlexNet Disease Classifier

(binary) with Annotations and

Penalization (RRR)

AlexNet Disease Classifier

(ternary)

Transparency-

based

evaluation

criteria

Grad-CAM/VarGrad VarGrad VarGrad VarGrad

Evaluation

report

• Seemingly good

performance

• R’-type

confounders found

• Seemingly good performance

• Domain expertise

confounders: Focus on

skeletal regions

• Seemingly good performance

• Possible train-test leakage may

influence performance

• Seemingly average

performance

• Additional test set reveals

generalization problems due

to train image leakage

Insights • ‘R’ typically

marks the right

side of a patient

• Patients often lie

face-down

• Systematic age differences in

data confound the ability to

learn

• Not as challenging as ternary

classification

• Abnormality in images is

detected quite well

• Struggle to discern Covid-19

from other Pneumonia

XIL Strategies • Penalize AI for

focusing

confounders

(RRR)

• Include citizen

annotators

• Definition of

annotation regions

• Teaching citizen

annotators via

video-instruction

• Annotation of the

whole dataset

• Curate new datasets • Curation of a new dataset

• Integration of radiologist

demands in the data selection

process (e.g., windowing)

• Collecting more patient data:

additional test sets

• Further curation through

annotations

The majority of cases are from the ‘‘COVID-19 Radiography Database’’ by Chowdhury et al. (2020). For loop 3b, alternative classes from the

‘‘ChestX-ray14 database’’ (Wang et al. 2017) are indicated by a circle (�). The numbers for Wang et al. (2017) already represent case numbers

after the multi-stage data preparation and selection process. The Covid-19 class for independently testing the model (Winther et al. 2020) is

indicated by an asterisk (*)
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projects. In doing so, it proposes to shift the focus from an

organizational BIE perspective (e.g., Sein et al. 2011)

toward a more technical BEI perspective with five XIL-

tailored activities and a focus on interventions toward the

ML artifact, which helps to account for the technical

intricacies of data science projects and especially ML-

based system development.

Especially the combination of XAI and IML reinforces

important parts of ADR (e.g., Mullarkey and Hevner 2019;

Sein et al. 2011) in the development cycles and allows the

participants to engage in Reflection and Insight activities,

resulting in well-informed strategies for reengineering. For

research, this may amount to better theoretical insights and

to artifacts that are more refined. For practice, this presents

the opportunity to achieve more efficient development

cycles, with a higher potential to eliminate biases in ML-

based IS, compared to other ISDM. Conclusively, XIL-

ADR not only presents a valuable guideline for practi-

tioners and researchers alike to uncover problematic issues

with underlying ML strategies and data but also serves the

purpose of more intriguingly supporting insight generation.

This article contributes in multiple ways: First, we show

how XIL-ADR can lead to more meaningful models and

help experts to validate existing recommendations and/or

generate new insights in their application domain. Inter-

activity allows experts to force the algorithm to focus on

specific areas in the data, and the algorithm can help the

expert to better understand the data at hand by highlighting

the patterns that determine its classification result. This

information can either be used to assess the recommenda-

tions made by human experts11 or – in the best case – allow

to identify new patterns that have not yet been recognized

by human experts before (e.g., Teso and Hinz 2020). In that

sense, the human-machine-loop can serve as a method to

arrive at novel scientific insights, just like classical statis-

tics helped us to better analyze and understand data in the

past decades. We especially believe that the Information

Systems discipline will play a crucial role in its develop-

ment, as this is where human factors and expertise meet

with technological developments. We used the example of

imaging in medicine because it is very illustrative, but the

methodology of XIL-ADR is, in general, also applicable to

other types of data and other domains.

Second, we show that a simple training approach for ML

models, which is currently widely used, can very often

suffer from confounding factors that can heavily influence

the results. In our illustrative case, confounders like tubes,

marks, or texts (e.g., timestamps) on the X-ray can serve as

predictors for classification, while this would not help us to

predict new, out-of-sample cases. This problem can partly

explain why so many AI classifiers with high accuracy on

holdout test sets later fail to deliver in the real world. In

tackling this problem and engineering XIL-ADR, we

empower IS to fulfill an important mission and work

against bias in ML systems (e.g., Kane et al. 2021, p. 375)

in an effective manner. Thus, XIL-ADR also contributes to

the stream of research on Human-AI Augmentation and

directs the AI toward favorable outcomes (e.g., Teodorescu

et al. 2021). As Lebovitz et al. (2021) state, many AI

models are built quickly and yet achieve high performance

metrics, but do so with lots of uncertainty about how these

models using the underlying data perform so well, and with

suspicions of flaws (e.g., regarding the data or model),

which ‘‘a diligent evaluation of such tools could have

surfaced’’ (Lebovitz et al. 2021, p. 1515). By combining

XAI and IML, we can not only iteratively uncover but also

eliminate such flaws and confounding effects, which

otherwise would require excessive manual labor or cost-

intensive processes. To combat confounders as part of one

XIL Strategy in our evaluation case, we resorted to

crowdsourcing guided by an instructional video, which

helped code nearly 3000 X-rays manually with a cus-

tomized annotation tool. For other use cases, depending on

the type and amount of data, this annotation strategy may

not warrant the expected results or may simply be too

costly. As an alternative strategy, automated tools offer the

chance to (semi-)automatically remove or mark con-

founders on images or other types of data. Furthermore,

research and practice should experiment with the inclusion

of diverse kinds of users in different roles, as well as dif-

ferent collaborative constellations to find effective and

efficient strategies for specific ML tasks. From the view-

point of data science, this is undoubtedly an important

research field that could help XIL-ADR to become

productive.

Third, we propose that task-specific visualization

approaches to XAI may improve the activities of Reflection

and Insight in XIL-ADR. Our approach, for example,

extends current state-of-the-art visualization by incorpo-

rating the special characteristics of X-rays, the application

domain medicine, and, in particular, radiology, which

helped to analyze the domain data better. An iterative

comparison to the constantly evolving stream of methods

in XAI (e.g., Evans et al. 2022) could generate further

extensions of such customized XAI solutions for the XIL-

ADR process (e.g., XRAI by Kapishnikov et al. (2019), or

Guided Integrated Gradients by Kapishnikov et al. (2021)).

Recent research also suggests that even ostensibly

insightful XAI methods should be subjected to vicious

inspection of their fidelity (e.g., Adebayo et al. 2020;

Tomsett et al. 2020). It would thus be recommended to try

and assess different XAI methods (e.g., Teso and Kersting

11 See e.g., recommendations by the German Radiological Society

for Covid-19: https://www.drg.de/de-DE/5995/covid-19/. Last

checked: 10.01.2023.
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2019) for the purpose of inspection, especially in the earlier

cycles of XIL-ADR, and to compare their results regarding

uncovering potential bias or confounding factors. For doing

so, research on and methods of the assessment of caus-

ability of XAI (i.e., effectiveness in explaining) can prove

of high value (Holzinger and Müller 2021).

Unlike CRISP-DM, XIL-ADR is embedded in a larger

development context and benefits from prior and posterior

defined activities in the ADR process, e.g., considering the

business problem and its domain in the Diagnosis stage.

Unlike other CRISP-DM adaptations, such as CRISP-ML

(e.g., Studer et al. 2021), XIL-ADR explicitly incorporates

XAI and IML methods and accounts for the data-driven

intricacies of ML projects. Lastly, XIL-ADR – in contrast

to traditional implementation phases in ADR – puts heavy

emphasis on technical and data aspects while simultane-

ously focusing development team efforts on defining

appropriate and effective strategies for subsequent ADR

cycles.

In this paper, we proposed the methodology of XIL-

ADR to enable research and practice to construct AI-based

systems that are more reliable. We outlined in which way

XIL-ADR presents an opportunity for improving machine-

learning projects. We showed that ML projects can largely

profit from the iterative XIL-ADR process by refining the

model and the underlying data, training, and testing

strategies, and also how such a process benefits from

including multiple kinds of users. Lastly, through this

iterative refinement of promising models, the full potential

of AI for organizational learning may be unleashed.

Although XIL-ADR comprises some destructive con-

structionism which can be painful at times, we should not

underestimate the potential of AI-based systems. Instead,

we believe XIL-ADR helps to carefully grind the rough

diamond of ML projects to arrive at actionable solutions

that efficiently support organizational goals eventually.

All in all, by creating a virtuous circle of human and

machine collaboration, we could not only make our sys-

tems smarter but also allow different kinds of users to

enhance their knowledge in the focal application domain.

This vision, however, requires potent AI systems that allow

for interactivity, explainability, accountability, and a better

understanding of this human-machine hybridity loop.
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