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Abstract The most promising standard machine learning
methods can deliver highly accurate classification results,
often outperforming standard white-box methods. How-
ever, it is hardly possible for humans to fully understand
the rationale behind the black-box results, and thus, these
powerful methods hamper the creation of new knowledge
on the part of humans and the broader acceptance of this
technology. Explainable Artificial Intelligence attempts to
overcome this problem by making the results more inter-
pretable, while Interactive Machine Learning integrates
humans into the process of insight discovery. The paper
builds on recent successes in combining these two cutting-
edge technologies and proposes how Explanatory Interac-
tive Machine Learning (XIL) is embedded in a generaliz-
able Action Design Research (ADR) process — called XIL-
ADR. This approach can be used to analyze data, inspect
models, and iteratively improve them. The paper shows the
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application of this process using the diagnosis of viral
pneumonia, e.g., Covid-19, as an illustrative example. By
these means, the paper also illustrates how XIL-ADR can
help identify shortcomings of standard machine learning
projects, gain new insights on the part of the human user,
and thereby can help to unlock the full potential of Al-
based systems for organizations and research.
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1 Introduction

Increasingly, it is becoming apparent that Interactive
Machine Learning (IML), i.e., the integration of user
feedback into a Machine Learning (ML) process to modify
an ML model (e.g., Amershi et al. 2015), may play a
leading role in shaping Artificial Intelligence (Al) and in
particular ML-based systems for effective use in organi-
zations. To realize their full potential, Al systems must
become capable of communicating and collaborating with,
learning from, and teaching their users. Finding the right
ways to induce learning in human-machine interaction is
required to unlock many scientific and commercial
opportunities in Al (Teso and Hinz 2020).

Challenges to thorough understanding, potential learn-
ing from Al-based Systems, and effective organizational
use result from the lack of system transparency (e.g., Rai
2020), which is often accompanied by the uncertainty of
whether a system is biased. In the past five years, various
scholars have shown the potential adverse effects of algo-
rithmic biases on human decision-making (e.g., Lambrecht
and Tucker 2019). Outcries demanding transparency and
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accountability have become louder and, as such, have
found their way into legislation (e.g., Casey et al. 2019).
Hence, there is an urgent need in many industries to fulfill
such regulatory requirements for Al-based Systems (e.g.,
Sorantin et al. 2022; Casey et al. 2019). By now, many
organizations are aware of this problem yet face a chal-
lenge in finding appropriate ways to deal with biases and
erroneous systems (e.g., Holstein et al. 2019).

Researchers and practitioners have proposed various
software engineering approaches that offer best practices
for data science projects (e.g., Amershi et al. 2019; Wang
et al. 2019). Many of these methods propose not a linear
development process but a process that includes recursions
to previous stages when necessary. Especially during
model evaluation, data scientists need to reflect on the
intermediate results of their work by, e.g., inspecting
metrics and predictions and possibly rearranging their
analytical workflow and data (e.g., Amershi et al. 2019). In
this regard, research on data science collaboration (e.g.,
Zhang et al. 2020) suggests that — rather than having only
data scientists working on their own — the inclusion of
various kinds of users in the development process is ben-
eficial to reducing algorithmic biases and increasing
domain correctness.

Human-in-the-loop concepts (e.g., Grgnsund and
Aanestad 2020) and especially IML (e.g., Amershi et al.
2015; Abdel-Karim et al. 2020) constitute one possibility to
include non-technical users in a data science process.
Although human-in-the-loop methods have proven suc-
cessful in improving various systems (e.g., Amershi et al.
2015) by including different kinds of users (e.g., Kulesza
et al. 2015), users often are lost without appropriate
explanations and thus do not know how to interpret and
alter a system’s result appropriately (e.g., Dudley and
Kristensson 2018, p. 24).

Schramowski et al. (2020) address this problem by
including domain experts in a generic explanatory inter-
active machine learning (XIL) (Teso and Kersting 2019)
process. While data scientists are usually aware of appar-
ently wrong system attributions and can fix them on their
own, XIL and the input of the domain expert can help
identify and even correct predictors which only appear to
be highly performant but are based on incorrect inferences.

There is an ongoing discussion on how interpretability,
explainability, and transparency are related to each other
and whether explanations (see Gregor and Benbasat 1999)
help to better understand Al-based systems (e.g., Rudin
2019; Linardatos et al. 2020). Although both explainable
and interpretable Al aim to bring more transparency to the
application of ML, usually the former aims to do so by
employing additional models (e.g., Ribeiro et al. 2016) that
explain the ML model in focus (e.g., Deep Learning
models, LeCun et al. 2015), while interpretable Al aims to
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use more lightweight, inherently interpretable ML models
(e.g., GANs, Caruana et al. 2015). Rudin (2019) presents
arguments that explanations of black-box models cannot
provide the necessary insights to fully understand how such
models arrive at their predictions (but have other benefits).
This separates inherently interpretable models from ‘ex-
plained’ black-box models, which, on the one hand, offer
benefits by usually providing greater modeling capacities,
while the use of interpretable models, on the other hand,
often requires less expertise (Rudin 2019, p. 206,
pp- 208-210). Nevertheless, although the two streams
appear to be in conflict, both share the common goal of
providing insight into ML models. Hence, we use a more
universal term of explainability for this work, as explana-
tions provide insights that increase transparency and user
acceptance of a system and help with the transfer of
knowledge (Gregor and Benbasat 1999). Explanations
support an analytical interpretation of black-box model
results (despite them not being inherently interpretable).

Because XIL is a powerful yet flexible approach to
interpreting and rectifying even systems with strong black-
box characteristics, it may be a promising basis to leverage
the full potential of Al-based systems for organizations.
However, to do so, XIL needs to be embedded in a more
generalizable approach to ease its applicability for machine
learning projects in organizations and research alike.

Senior scholars have already recognized the need to
extend existing methodologies such as action research
(e.g., Maass et al. 2018) and see the potential of such
extensions and improvements as valuable “contributions to
the IS community” (Baskerville et al. 2018, p. 365). Fur-
thermore, scholars theorizing on future problems caused by
biased ML systems demand that IS should tackle the
challenge of mitigating biases in ML systems (e.g., Kane
et al. 2021, p. 375). In their investigation of the pitfalls of
the strong reliance on ground truth values in Al, Lebovitz
et al. (2021) emphasize the need to pay respect to ‘know-
how’ measures (i.e., expert knowledge and knowledge that
explains how an Al makes its decisions). It is, therefore,
not sufficient to only rely on seemingly objective ‘know-
what” measures (i.e., ground-truth, performance metrics
such as accuracy) (Lebovitz et al. 2021, pp. 1516-1517).
These works imply the need for dedicated methods that
enable a participatory, interactive, and explanatory work-
flow, honing problematic areas with great attention, dili-
gence, and human expertise. The current paucity of
applicable Information Systems Development Methods
(ISDM) with foci on participatory feedback of users and
the elimination of potential bias within machine learning
projects thus suggests that we need to engineer suit-
able methods for this case.

We engage in situational method engineering (e.g.,
Goldkuhl and Karlsson 2020) and propose an ISDM that
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embeds cutting-edge technology, namely Explainable
Artificial Intelligence (XAI) and Interactive Machine
Learning (IML), referred to as Explainable Interactive
Machine Learning (XIL) in the established framework of
Action Design Research (ADR) (e.g., Mullarkey and
Hevner 2019). The resulting XIL-ADR methodology
positions itself as an implementation-centered ADR
methodology along the elaborated ADR process that puts
humans and machines into a loop which aims to remedy
potential biases in an Al-based system and to generate
novel insights on the side of the human user.

The proposed cyclic XIL-ADR process is generic and
transferrable to other domains. In particular, it provides a
development-focused organizational frame that is not
limited to certain data types, specific algorithms for the
explanations, ML methods, or the IML part. XIL-ADR
certainly touches a truly interdisciplinary research field
with connections to Computer Science, Learning and
Knowledge Discovery on the human side, and domain
knowledge from the application area.

To highlight the benefits of XIL-ADR, this paper uses a
healthcare setting and presents an illustrative study con-
ducted with medical experts from a leading university
hospital. We exemplify our proposed approach in this
healthcare scenario and show how XIL-ADR can help
build an innovative computer vision system to efficiently
(in terms of model performance) predict viral pneumonia.
In particular, we will outline how XIL-ADR can help arrive
at more meaningful models and, at the same time, help
identify interesting patterns in the data that radiologists and
pneumologists should pay attention to. The illustrative case
study also reveals problems that, using standard approaches
without participatory human-machine feedback, would be
recognized much later, i.e., when the developed Al-based
system fails in practice. Thus, the approach has two
advantages: (1) it helps to create more dependable models,
as it enables users to recognize intricate data and archi-
tecture problems early in the project, and (2) it simulta-
neously allows experts to reflect on the existing knowledge
base by opening the otherwise black-box process of many
Deep Learning (DL) algorithms and by this means may
arrive at new insights and learning.

This paper proceeds as follows: First, we will introduce
and conceptualize an ideal XIL-ADR process. We will do
so by first outlining relevant research on IML, referencing
XIL, embedding XIL in ADR, and then presenting how to
structure ML projects for XIL-ADR. Next, we will briefly
introduce our illustrative case of an Al-based diagnosis
system for viral pneumonia, through which we aim to
highlight how to apply XIL-ADR. We first introduce the
reader to the problem to solve, previous research in com-
puter vision, Covid-19, and the technical methods. This
introduction also informs the first stage (Diagnosis) in our

XIL-ADR project. For stage two (Design), we will give a
brief overview of the technological methods we used, i.e.,
DL, XAI, the loss function for the penalization of the
model, and the method for XAI visualization. What follows
is the evaluation of the Implementation stage using the
XIL-ADR methodology: A detailed description of the case
study conducted together with pneumologists, radiologists,
computer scientists, and information systems researchers is
presented, which describes every step and intermediate
artifact of the cyclic XIL-ADR implementation process in
three subsequent cycles. Lastly, we discuss XIL-ADR
considering the presented case and outline directions for
future research and practice.

2 Conceptualizing XIL-ADR

In this section, we engage in method engineering (e.g.,
Goldkuhl and Karlsson 2020) and embed XIL into the
ADR framework. For this, we follow the “Method Engi-
neering as Design Science” (ME-DS) process by Goldkuhl
and Karlsson (2020) and develop a “Category 4” Infor-
mation Systems Development Method (a “Scholar gener-
ated ISDM targeted for business practice & scholars”)
(Goldkuhl and Karlsson 2020, pp. 1245-1246). The first
activity is identifying the problem and motivating the
development of XIL-ADR, which has already been dealt
with in the previous section. The next step, theorizing the
ISDM and engineering the method, follows now by briefly
introducing the reader to relevant work on combining XAI
and IML as well as to XIL itself. We describe how we can
integrate XIL into the elaborated ADR process (Mullarkey
and Hevner 2019) to engineer a novel methodology called
XIL-ADR and point out the differences from classical
ADR. We complete this method engineering activity by
describing the different activities of the XIL-ADR cycle
and how machine-learning projects may benefit from
conducting XIL-ADR. For the last two activities of the
ME-DS process, which are demonstrating and evaluating
the proposed ISDM, we use our healthcare case presented
in the subsequent sections. Hence, this paper aims at the
demonstration and ‘communication’ (in terms of Design
Science) of XIL-ADR (Goldkuhl and Karlsson 2020,
p- 1250; Hevner et al. 2004).

2.1 Related Research on Interactive Machine Learning
(IML)

Scholars discovered the benefits of including non-technical
users in IML approaches a while ago (e.g., Ware et al.
2001). Since these first steps in the domain of IML,
research and interest in IML have increased exponentially
(e.g., Dudley and Kristensson 2018). Amershi et al. (2015)
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emphasized the benefits of IML over Active Learning
(AL), namely, that the user adopts an active role in the IML
process, in contrast to the passive role of the “Oracle” in
AL (Amershi et al. 2015, p. 109). As different authors note,
however, non-technical users may not always be able to
reason from system outputs and thus may have difficulties
altering Al models for the better (e.g., Dudley and Kris-
tensson 2018, p. 24). In the quest for greater user inter-
pretability, various scholars concluded that equipping IML
systems with an XAI component leads to not only an
enriching experience but also better systems (e.g., Amershi
et al. 2015, p. 111). For example, Kulesza et al. (2015)
propose  “Explanatory Debugging” as an effective
methodology for empowering end users to not only inter-
pret the results of ML-based systems through explanations
but also give them the means to improve them
interactively.

Teso and Kersting (2019), however, criticize prior
approaches that have tried to combine XAI and IML as
these considered the black-box characteristics of typical
ML-based systems insufficiently by centering their
methodologies too much around white-box methods. As an
answer to the pressing problem of enriching not only
white-box models but also black-box models with XAI and
IML, they introduced their generalizable “Explanatory
Interactive Machine Learning” (XIL) methodology, which
was for the first time effectively instantiated by Schra-
mowski et al. (2020) for DL models.

2.2 Explanatory Interactive Machine Learning (XIL)
To close existing gaps and remedy the frequently insuffi-
cient connection of XAI and IML, XIL augments the

iterative nature of IML with XAI such that the user inter-
acts with the algorithmic explanations during the iterative

Human
S

S

Machine

% 1182

|Visua|izes |<—{ Explains |o—| Learns

Fig. 1 Explanatory interactive machine learning cycle
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training loops (see Fig. 1). In their paper, Schramowski
et al. define XIL as follows (Schramowski et al. 2020,
p. 478):

“In XIL, a learner can interactively query the user
(or some other information source) to obtain the
desired outputs of the data points. The interaction
takes the following form. At each step, the learner
considers a data point (labeled or unlabeled), pre-
dicts a label, and provides explanations of its pre-
diction. The user responds by correcting the learner
if necessary, providing a slightly improved — but not
necessarily optimal — feedback to the learner.”

This process not only vividly combines the methods of
XAI and IML but also allows the user to adjust labels in the
training process. Figure 1 illustrates that based on the data
and learned predictions, the Machine, i.e., the learner,
produces and visualizes explanations that get presented to
the Human, i.e., the user, who might then correct
predictions and influence the machine’s learning process
by annotating data, e.g., by pointing the machine toward
features in the data to look at. Beyond this, by analyzing
the explanations, the user can uncover incorrect algorith-
mic behavior if the XAl indicates a wrong explanation for a
correct prediction. This fact provides the potential for
uncovering and rectifying exceptionally intricate problems
of ML through XIL (e.g., Schramowski et al. 2020,
pp. 477-478). On the human side, this process also
facilitates learning, e.g., regarding the data or model’s
reasoning.

Though Teso and Kersting (2019) are proposing a XIL
algorithm called ‘CAIPI’ (Teso and Kersting 2019, p. 241;
Schramowski et al. 2020, p. 478) for pursuing explainable
interactive machine learning, which we will also use in our
medical evaluation case, this method is a generic process
and therefore not restricted to specific methods for XAI or
types of machine learning models. Instead, with XIL,
various models are possible, i.e., black box and white box
models (Schramowski et al. 2020, pp. 478-479), and
explanations can and should be specifically selected for the
ML task and type of users (e.g., Evans et al. 2022) involved
in the XIL process (e.g., Holzinger and Miiller 2021; Teso
and Kersting 2019).

2.3 Embedding XIL in the Elaborated ADR Process

Recent research on Machine Learning Systems finds that
industry practitioners are yearning for structured method-
ologies for assessing systems regarding potential biases and
how to fix them subsequently (e.g., Holstein et al. 2019).
Various methodologies for combining IML with XAI have
emerged (e.g., Kulesza et al. 2015), yet little emphasis has
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been put on how these promising methodologies could be
integrated into organizational settings.

ADR has always seen the practical evaluation of IT-
based phenomena as substantial to generating theoretical,
methodological, technical, and organizational insights
(e.g., Mullarkey and Hevner 2019). In an analysis of ADR
in practice, Haj-Bolouri et al. (2018) criticize that most
activities in classical ADR (i.e., Sein et al. 2011) termi-
nology may be found in the building stages, less so in the
intervention and evaluation stages, and least in the reflec-
tion and learning stages. As especially the evaluation of
ML-based systems needs to be handled with care and
requires attention, this finding is problematic for conduct-
ing ML projects with classical ADR approaches (e.g., Sein
et al. 2011; Mullarkey and Hevner 2019). This problem
leads to the need to adapt ADR for explainable interactive
machine learning. From the IS lens, much speaks for XIL
to be integrated into ADR as an “IT-Dominant” (Sein et al.
2011, p. 42) ADR approach focusing on the Implementa-
tion (e.g., Mullarkey and Hevner 2019) (see stages in
Fig. 2).

Starting from the elaborated ADR Process by Mullarkey
and Hevner (2019), XIL-ADR incorporates changes to the
Implementation stage. Figure 2 shows that the Diagnosis,
Design, Evolution stages of the process stay untouched,
while the cyclic process within the Implementation stage is
adapted by XIL-ADR to better suit the requirements and
specialties of machine learning projects along the lines of

XIL. Each of these stages consists of five activities (P, A,
E, R, L) (Mullarkey and Hevner 2019, pp. 3—4). Overall,
also with XIL-ADR embedded into ADR, the stages’ goals
stay the same: The Diagnosis stage focuses on identifying
the business problem and helps the researcher comprehend
the project domain and the practitioner, i.e., model breaker
or user, get an overview of the state-of-the-art (Mullarkey
and Hevner 2019, p. 4) of, for example, the ML methods
applicable. Within the Design stage, design principles are
developed to tackle the identified problem, and the
Implementation stage is prepared. Next, the Implementa-
tion creates the artifact.

“Typical artefacts abstracted and evaluated in the
ADR Implementation cycle include systems, algo-
rithms, programmes, databases, and processes”

(Mullarkey and Hevner 2019, p. 5); in our case, the process
of using XIL to come to an Al-based solution to the
problem. The main difference with XIL-ADR concerns the
activities of the Implementation stage, which are elaborated
in the following subsection. Finally, the Evolution stage
allows for continuous adaptation of the artifact, i.e., the Al
system, to the environment as it progresses. This stage
becomes necessary with technology, data, or model-
specific characteristics changing over time. Here, depend-
ing on the type of evolution, cycles with XIL-ADR-specific
activities (from the implementation stage) or with regular
ADR activities may or may not be desired. In ADR as well

ADR Stages /
Design cycles

Problem Centered | | Objective Centered I

| Development Centered I

| Observation Centered |

ADR Entry Points

Fig. 2 Integration of XIL in the elaborated ADR Process as XIL-ADR, adapted from Mullarkey and Hevner (2019)

XIL-ADR Cycle

$

Activities
by Mullarkey & Hevner (2019)

Problem Formulation
/ Action Planning
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G Evaluation
e Reflection

Formalization of
Learning
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as in XIL-ADR, forward and backward jumps between
these stages are possible and contribute to the flexibility of
these approaches (note the arrows in Fig.2) (e.g,
Mullarkey and Hevner 2019, p. 5).

With the focus of XIL-ADR on the Implementation
stage, two main differences between classical ADR (i.e.,
Sein et al. 2011; Mullarkey and Hevner 2019) for imple-
mentations and XIL-ADR emerge. First, in classical ADR,
the BIE (Building-Intervention-Evaluation)-stage is a cen-
tral module for achieving organizational innovation,
change, and success of the ADR project (Sein et al. 2011).
Interventions can be anything that addresses the organiza-
tional problem of concern, i.e., design principles or a full-
blown technical artifact (e.g., Sein et al. 2011, p. 42). As
such, we can see interventions in classical ADR directed
toward the organizational context. XIL-ADR provides a
different perspective toward interventions (called XIL
Strategies) in that it focuses on technical interventions that
lead to direct effects on the Al-based system, based on the
evaluations. Following this view, XIL-ADR should instead
resemble a Building-Evaluation-Intervention (BEI) process
scheme, as opposed to the standard BIE scheme of classical
ADR approaches (e.g., Sein et al. 2011, p. 42) (refer to the
following subsection). More importantly, the Building
stage in XIL-ADR (called Refine Data & Retrain Model
activity) can be viewed as an operationalization of the
interventions taking place in XIL-ADR: It is merely an
action based on the novel engineering strategies that
emerged from the solid evaluations and reflections of
previous design cycles. In emphasizing the importance of
interventions in XIL-ADR, we are thus in line with the
propositions of Mullarkey and Hevner (2019, p. 8).

One of the more intricate differences between classical
ADR (i.e., Sein et al. 2011; Mullarkey and Hevner 2019)
and XIL-ADR is that XIL-ADR also introduces the concept
of cyclic renewal of the artifact’s basis. While in stan-
dardized ADR projects with classical IT tools, system
prototypes can be built based on defined design guidelines,
system syntax, and rulesets, projects involving ML-based
systems face fundamentally different circumstances (e.g.,
Teodorescu et al. 2021, p. 1494). Because modern ML-
based systems, such as DL systems, learn from data and
build a model based on selected statistical and often non-
linear methods, they provide promising solutions to fuzzy
sets of problems (e.g., LeCun et al. 2015). Due to this very
feature, developers and system users can often hardly
recognize intricate data and architecture problems in the
pilot stages of development (e.g., Schramowski et al.
2020). Nevertheless, when ML models fail due to the data
foundation (e.g., false ground-truth labels, confounders in
training data, cascading data errors, see Sambasivan et al.
2021) or due to unfitness of the model’s basic architecture,
appropriate responses must be made. As such, XIL-ADR
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integrates this potential for a cyclic renewal of the artifact’s
basis into its method (which, without this, required a jump
to the Design stage).

In summary, XIL-ADR provides an iterative process
aimed at improving ML-based systems and at eliminating
potential errors and biases. In contrast to conventional
IML, the integration of explanations and visualizations
enables participants to interpret, reflect on and learn from
the system’s reasoning about the results. Up to this point,
IS research has not contributed much to illuminate the
benefits of IML (e.g., Grgnsund and Aanestad 2020) for
data science in organizational settings, yet it emphasizes
the importance of system explanations for human-in-the-
loop configurations. In this regard, XIL-ADR can enable
the engineering of high-performance, less biased, and
insightful ML models for practice and presents the
opportunity for more profound insights into human-ma-
chine collaborations (see also Fig. 1).

2.4 Implementing Machine Learning Projects
with XIL-ADR

To enable research and practice to adopt XIL-ADR for
machine learning projects, we present it in a generalized
manner (see Fig. 3). In classical ADR (i.e., Sein et al.
2011; Mullarkey and Hevner 2019), we find two main
parties that reciprocally shape and mutually influence a
development cycle and each other (e.g., Mullarkey and
Hevner 2019; Sein et al. 2011). Also, in XIL-ADR, on a
high level, we find two groups of actors: Data scientists,
who provide a technical perspective on the matter of
development, and domain experts, who provide a non-
technical but domain perspective. Together they are called
the development team. As Zhang et al. (2020) put forward,
including various kinds of users directly in the develop-
ment of ML projects not only opens up the potential for
closer domain fit but can also result in less biased systems
(Zhang et al. 2020, p. 11). We recommend including dif-
ferent kinds of users and thus a highly diversified team in
XIL-ADR processes, since we believe that the orthogonal
picture that may form in group-discussions could greatly
benefit the emergence of better models in machine learning
projects (e.g., Lave and Wenger 1991). Especially valuable
in this regard are so-called “model breakers” (Hong et al.
2020, p. 8), who may contribute strongly to improving the
model by means of critical inspection and the application
of their domain knowledge. Such “model breakers” may
come in the form of domain experts, auditors, or product
managers (Hong et al. 2020, p. 8). For example, depending
on their background, model breakers may uncover
semantic problems from a knowledge domain perspective
(domain experts) in addition to unfulfilled regulatory or
legal requirements (auditors).
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XIL-ADR Implementation stage
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Fig. 3 Activities of the XIL-ADR Implementation cycle embedded in the elaborated ADR Process, adapted from Mullarkey and Hevner (2019)

The cyclic process of XIL-ADR consists of five activi-
ties executed in cycles. In the elaborated ADR process,
Mullarkey and Hevner (2019) call these activities “Prob-
lem Formulation/Action Planning (P)”, “Artifact Creation
(A)”, “Evaluation (E)”, “Reflection (R)”, and “Formal-
ization of Learning (L)” (Mullarkey and Hevner 2019,
pp. 3—4). To better fit the Implementation process for Al
systems and guide the application of the proposed process,
in XIL-ADR, the activities have different purposes and
require different actions. Also, the activities’ naming is
adapted to be more descriptive regarding the performed
actions (see the letters in Fig. 3 for an idea about how the
activities were renamed).

A first prototype is needed to enter the XIL-ADR cycle.
Hence, the process starts with an [Initial Instantiation of a
model. Commonly, engineering knowledge largely informs
the Initial Instantiation, and it is thus missing potentially
important pieces of domain knowledge. As such, the data
and model will be primarily prepared along known soft-
ware engineering processes (e.g., Amershi et al. 2019) and
will provide an ingenious starting point for the upcoming
XIL-ADR cycles.

Following Fig. 3, the next activity in XIL-ADR focuses
on actions around Explaining, Visualizing and Inspecting.
In this step, transparency-based evaluation criteria are
needed to come to a transparency-based evaluation report

as the intermediate artifact of this activity. Therefore, the
team conducts performance tests along known metrics
(e.g., Accuracy, Precision, Recall) to get an overall feeling
about the model’s performance. However, these metrics
must be accompanied by XAI (either through metrics or
visualizations) that contextualize model performance either
by explaining the prediction (local XAI), overall model
workings (global XAI), or ideally both (Bauer et al. 2021).
As Hong et al. (2020) contend, it is crucial to design XAI
features according to the different users’ needs, such that
these users can effectively engage in the model inspection.
With this, they are in line with the results of Evans et al.
(2022), who compared different XAI techniques in a
pathology case (Evans et al. 2022, p. 293).

A pivotal step in the XIL-ADR cycle is the Reflect
activity. Data scientists often focus on technical rationality
(e.g., Neumann 2000, pp. 404—406) and overlook missing
domain logic and potential domain-specific implementa-
tion requirements, which may frequently only be realized
at the reflection step (Sambasivan et al. 2021). Thus, the
team has to critically reflect on the fit between the model
and the problem while considering the domain and busi-
ness context. For the reflection activity, the team consisting
of data scientists and domain experts must also deliberate
on the model’s performance in light of the explanations.
Additionally, this step includes a critical reflection of the
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underlying data, as well as a reflection of training and
testing strategies. Following the investigations of Lebovitz
et al. (2021), project teams should use the available XAl as
an opportunity to thoroughly scrutinize the Al model, even
questioning the validity of its ground truth data. This way,
there is a higher potential for uncovering model flaws
pertaining to the data (e.g., low model performance, wrong
features prioritized, data not providing the necessary
information, or insufficient and inconsistent quality).

The realization of Insights follows after the group
reflections. Such insights may be of an engineering nature,
i.e., the realization of novel implementation requirements.
Besides, especially with growing model maturity, there is
also the potential for an extension of the knowledge base
by insights generated through the inspection of explana-
tions (e.g., Teso and Hinz 2020). In this activity, it is
important to view the models as malleable and not solely
focus on technical performance metrics since each partic-
ipant may value these metrics differently, which can hinder
the progress in the iterative model development (e.g., Passi
and Jackson 2018, p. 13). Furthermore, in line with Passi
and Jackson (2018, p. 13), the Insights activity needs to
discursively balance situations in which insights warrant
new implementation requirements or insights pose poten-
tial extensions to the body of knowledge. This activity is
also the point of each cycle where the development team
has to decide about possibly exiting the design cycle.
Details on this decision process follow after completing the
description of the XIL-ADR cycle.

As the last activity in XIL-ADR, Define XIL Strategies
formalizes previously captured implementation require-
ments into strategies for data manipulation, algorithm
adjustment, data annotation, and XAl visualizations. Apart
from distinctions that must be made in data and algorithm
work based on the machine learning task, the data anno-
tation strategy requires special attention. In general,
annotations may critically improve and speed up model
work (e.g., Amershi et al. 2015). Nevertheless, there is a
risk that annotations for large datasets may be costly when
created by experts or may not warrant the expected quality
of results when created by citizen scientists (e.g., Wein-
hardt et al. 2020, p. 275) or crowd workers. Depending on
the type of ML task or data and annotation task, hybrid
approaches where just parts of the data get annotated may
be possible. Usually, after the XIL Strategies have been
defined, XIL-ADR continues to iterate with a new cycle.
XIL-ADR may also spawn sub-cycles if the definition of
strategies proposes to do so (this will be shown in loops 3a
and 3b of our case study). After the Define XIL Strategies
activity, the strategies will be implemented in the first
activity of the next loop (i.e., Refine Data & Refine Model).

A subsequent new XIL-ADR cycle starts with the Refine
Data & Refine Model activity which is performed instead
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of the Initial Instantiation. In this activity, the development
team implements the previously defined strategies. This
involves work on the data basis and the AI model itself.
Actions directed to the data include handling ill-labeled
data, reshaping or reengineering data, and annotating data.
The activity may also require the team to find domain
experts or citizens for the possible annotation of the data.
Actions directed to the model include adjusting the algo-
rithm and implementing (new) XAI features to enable the
team to better understand the model’s reasoning. After the
Refine Data & Refine Model activity, the cycle continues as
described and as Fig. 3 suggests with Explaining, Visual-
izing and Inspecting.

XIL-ADR has the limitation that the current cycle may
only be exited after the Insights activity. Therefore, the
development team has to decide how to proceed at the end of
the Insight activity. In general, there are three distinct pos-
sibilities of outcomes of this decision process: (1) ‘Continue
and Refine Strategy’, (2) ‘Abort and Realign Strategy’, and
(3) “‘Verify, Monitor, Deliver and Improve’. Outcomes (2)
and (3) lead to a Performant or Failed Model in Fig. 3.

For the first outcome, i.e., (1) Continue and Refine
Strategy, the XIL-ADR cycle continues as usual with the
Define XIL Strategies activity, and a new cycle starts
subsequently. For this outcome, Insights must not reveal
severe problems regarding the model or the data. The team
must be satisfied with the model, which includes sufficient
satisfaction from the domain experts’ side (face validity)
and the performance measures looking promising. Addi-
tionally, there still needs to be the potential for improve-
ments, with some doubts or open strategies remaining,
requiring a subsequent Implementation cycle. When the
Insight activity reports serious problems with the data or
the AI model, the outcome will be (2) Abort and Realign
Strategy. Criteria for this outcome are either low perfor-
mance measures or the majority of domain experts reject-
ing the model. In this case, the team stops the process and
has to make substantial considerations about how to pro-
ceed. Jumps to preceding stages, i.e., Diagnosis or Design,
present potential solutions to this problem, but the devel-
opment team must also consider the process’s complete
cancellation — especially under economic constraints.
Finally, the outcome can be (3) Verify, Monitor, Deliver
and Improve. Indications for this include the model being
effective in solving the problem, based on the performance
measures, and the domain experts uniformly approving the
system (face validity). The potential for further improve-
ments has to appear very low, so that a continuation of the
Implementation does not make sense from an economic or
business perspective. In this case, the iterative XIL-ADR
process may be promoted to further quality assessments,
testing, and subsequent deployment cycles in practice, i.e.,
by continuing with the Evolution stage (see Fig. 2).
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3 Evaluation Case Overview

Guided by the “Method Engineering as Design Science”
(Goldkuhl and Karlsson 2020) process, the following two
sections serve as the demonstration and evaluation of the
proposed ISDM method. To illustrate how we envision the
application of XIL-ADR in research and practice (Gold-
kuhl and Karlsson 2020), we conducted an exemplary ADR
case study. In the following, we provide an overview of our
case study situated in healthcare. This case description also
guides the reader along the first two of four stages in ADR
as put forward by Mullarkey and Hevner (2019), i.e., the
Diagnosis and Design stages (refer to the section
“Embedding XIL in the Elaborated ADR Process” for an
overview of the purposes of these stages). While the
developments of current research on Computer Vision in
Health IT informed the domain experts and the domain-
specific research on Covid-19 informed the researchers in
the Diagnosis stage, discussions with clinical personnel
(i.e., pneumologists) on the application of ML-based sys-
tems in healthcare largely affected the Design stage. For
the Design stage, we also introduce the data basis and the
technical methods to prepare for the XIL-ADR-based
Implementation stage in the subsequent section. The sub-
section on technical methods also includes (technical)
insights from the Implementation cycles, e.g., about the
XAl visualizations used. We chose this presentation
approach to separate the technical results from the evalu-
ation of the XIL-ADR method, which takes place in
Sect. 4, “Evaluation Case Study”.

3.1 Diagnosis Stage: Background of the Application
Domain and Data

Pneumonia is an inflammatory condition of the lung and
can be caused by bacteria, a virus, or, less commonly, by
other microorganisms. Each year, pneumonia affects about
450 million people globally and results in about four mil-
lion deaths (Ruuskanen et al. 2011). With the advent of the
novel corona virus (SARS-CoV-2), we observe a surge in
viral pneumonia cases worldwide. While the WHO has
been reporting up to millions of new cases each day for the
past two years, governments worldwide have taken drastic
measures to relieve the strain the pandemic has on our
health systems and medical staff (Lai et al. 2020; McCall
2020). Although the policy measures to “flatten the curve”
have shown some effect (Gibney 2020), the race between
scientific research to treat and contain the disease and the
growing discontent of the population with the perceived
limitations is still ongoing.

Pinpointing exact symptoms in contrast to conventional
viral pneumonia and the correct treatment at each stage of
the disease (Chen et al. 2020a) now appears to be more

critical than ever. Nevertheless, several factors limit the
efficiency of hospitals and medical practices and place a
heavy burden on staff. Firstly, high medical expertise is
often a scarce resource. Second, inexperienced specialists
may have difficulty recognizing novel and unusual disease
patterns in coronavirus-affected patients (e.g., Schubert
et al. 2013). Thirdly, even with high expertise, medical
doctors are (even in everyday situations) put under high
time pressure, which challenges the extremely precise and
quick decision-making required (e.g., ALQahtani et al.
2018; Tsiga et al. 2013), which may be necessary for
adequate treatment and allocation of medical resources for
viral pneumonia cases.

Therefore, primary concern in a pandemic is the effi-
cient use of available personnel. Trained medical experts
cannot easily be scaled to growing demand. Radiological
imaging has been used as a primary screening tool in some
countries and has proven essential for detecting, ruling out,
and monitoring pulmonary infections with SARS-COV-2.
Researchers have suggested automatic detection methods
for several reasons: providing decision support, providing a
quantitative measure for diagnostic purposes, and provid-
ing a predictive tool. Further, automatic detection and
diagnostic assistance tools can help substitute for trained
personnel in a region with low availability of medical
human resources.

To make viral pneumonia easier to detect and relieve
and to assist physicians in diagnosing and treating the
disease, scholars have tried to create effective ML-based
expert systems that can predict positive cases of Covid-19-
infected patients from radiography (e.g., Shi et al. 2021).
Several of these systems achieve high accuracy on the data
available to the researchers (e.g., Wang et al. 2021).
However, we should consider the actual usefulness of these
systems in reality with the limitation in mind that the image
data that these systems use might not provide a perfect,
comparable, and uniform data basis, and therefore, the
accuracy of these models may not hold in practical use (Shi
et al. 2021, pp. 11-12). Furthermore, only very few of
these systems (e.g., Wang et al. 2020) currently offer
plausible explanations for their predictions, which, on the
one hand, is a critical factor for the usefulness of such
systems in practice and as a driver for trust in these sys-
tems. On the other hand, there is evidence that being able
to interactively modify a system further increases trust,
satisfaction, and thus efficient use of these systems (e.g.,
Dietvorst et al. 2018). Finally, in the case of clinicians or
radiologists reading chest radiographs (CXR), this reader
would be able to check and intervene quickly, adding a
layer of safety to the diagnosis. With these aspects in mind,
we expect that a system developed with the help of XIL-
ADR that receives sufficient evaluation and adjustment by
medical experts through an IML process and provides fine-
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granular explanations through XAI could not only be more
useful in practice but may also lead to differentiated
insights regarding patterns that may be indicative for
Covid-19.

3.2 Diagnosis Stage: Related Work in Computer
Vision and Radiology

Typically, after first anamnesis and determining abnor-
malities within clinical metrics, one possible further
examination is to have patients with suspected lung disease
screened via radiography. A radiologist would then analyze
CXR or CT images and provide a diagnosis based on the
patterns shown by the medical images.

Unfortunately, in many regions, there are too few radi-
ologists per hospital and even per country (Ekpo et al.
2015), such that not only the large throughput of CXR
images causes enormous amounts of stress (McDonald
et al. 2015), but also a large backlog of CXR images and
diagnoses arises (Yates et al. 2018). For this reason, many
countries have implemented the red dot or asterisk system
(Berman et al. 1985), which allows radiographers with
additional specialization and training to give a first tech-
nical assessment if an image contains abnormalities.
Therefore, the clinicians requesting radiography receive
indications of abnormalities faster than before. Different
studies (e.g., Brealey et al. 2006; Ekpo et al. 2015) illus-
trate the value of red dot systems in speeding up diag-
nostics and patient treatment without significant sacrifices
in accuracy.

Since the advent of DL, scholars in the area of computer
vision and radiology alike have shown increased interest in
developing ML-based approaches to red dot systems. Such
systems may not only assist clinicians by speeding up
diagnosis and treatment but also by facilitating repeata-
bility and potential reproducibility of decisions and auto-
mated processing of substantial amounts of comparable
datasets in case of case registries. Mei et al. (2020), for
example, show that Al-based systems continuously
improve and reach similar levels of sensitivity and speci-
ficity compared to specialists in their field.

In the area of viral pneumonia, many scholars have tried
to create effective and efficient ML-based expert systems
that can predict positive cases in patients from radiography
(e.g., Shi et al. 2021). While many of these studies lack
interaction with clinicians and only present engineering
approaches, some studies that include an assessment of the
system through interaction with clinicians have already
shown promising results. Chen et al. (2020b), for example,
implemented a Convolutional Neural Network (CNN),
which was able to classify control patients with other dis-
eases and patients with viral pneumonia caused by Covid-
19 from computed tomography (CT) scans. In an
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experiment with an expert radiologist, they found that the
radiologist required significantly less time reading CT
images and detecting a patient with viral pneumonia (i.e.,
Covid-19-based pneumonia in this study) when receiving
diagnostic aid by the CNN compared to reading the CT
images only on his own.

As evidence shows and discussed by Kundu et al. (2020)
and McCall (2020), these systems may speed up the
diagnosis process for many diseases enormously when
employed correctly. Currently, there is also some discus-
sion on whether CXR or CT provides a better foundation
for Al-assisted diagnosis. Nevertheless, many clinicians
agree that especially portable X-ray generators are helpful
for a faster and less complicated screening process (Jacobi
et al. 2020).

We use the case of building a diagnosis system based
on CXR, i.e., X-ray images with lower resolution than CT
scans, as an illustrative example to implement the pro-
posed XIL-ADR methodology. For this purpose, we
integrate radiologists and pneumologists from a leading
European university hospital into the XIL-ADR process.
A primary goal of this process is to arrive at a system that
(1) can deliver more differentiated results than a tradi-
tional ‘red-dot-system’-like Al-based system (i.e., not
only flagging images with potential abnormalities (Yates
et al. 2018), e.g., by providing some kind of confidence
measure), (2) that is able to deliver explanations regarding
its predictions, and (3) that delivers more reliable results
than conventional, non-XIL trained Al-based systems, due
to the fact that with XIL expert knowledge directly
influences the results. By applying XIL-ADR, we show
how we unravel problems with data and develop and shift
XIL strategies to get closer to this goal with each
development cycle.

3.3 Design Stage: Data Basis

The development of such a system requires not only
abundant computational resources but also suitable data.
Fortunately, since the pandemic started, not only enormous
amounts of studies have been conducted that focused on a
better understanding of the disease and on finding thera-
peutic methods, drugs or vaccines, but also many initiatives
have tried to improve the networking and exchange of data
sources to facilitate the development of technical solutions
to overcome the pandemic.'

We started developing our system based on the
“COVID-19 Radiography Database” provided by

' For example, see https://www.covidl9dataportal.org/ or https:/
www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.
Last Checked: 10.01.2023.
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Table 1 Covid-19 Radiography Database provided by Chowdhury et al. (2020)

Types (1) Normal (2) Covid-19 (3) Viral Pneumonia
Count 1341 219 1345
Examples Tini 4

Sample N-85

Sample CoV-44

Sample CoV-65

Sample V-1

Sample VP-87

Chowdhury et al. (2020).> This publicly available database
comprises radiographs of patients with suspected lung
diseases caused by pathogens from various sources (e.g.,
Cohen et al. 2020) and won the Kaggle Dataset award. To
date, many researchers reference or use this dataset for
their studies (e.g., Apostolopoulos et al. 2020; Apos-
tolopoulos and Mpesiana 2020; Ucar and Korkmaz 2020;
Yamag et al. 2021).

The X-ray images included in this database were ini-
tially taken during examinations and marked with the final
diagnosis so that labels corresponding to the diagnosis are
available for the radiographs. This process resulted in a
database with labels for (1) healthy patients, (2) cases of
pneumonia caused by Covid-19, and (3) cases of pneu-
monia caused by conventional viral pathogens. This
foundation (see Table 1 for more details and sample data)
enables us to build a classifier that may be able to distin-
guish efficiently between these three classes.

3.4 Design to Implementation Stage: Technical
Methods

As we mentioned in the theoretical background, we
instantiate XIL-ADR in the development-centered Imple-
mentation stage of ADR (stage three, see Fig. 2). This
section provides some insights into the technical methods

2 An updated version of the dataset is available on: https:/www.
kaggle.com/tawsifurrahman/covid19-radiography-database. We
retrieved the version of the database in March 2020. Last checked:
10.01.2023.

needed for the specific XIL-ADR process (Design stage)
and technical insights from the Implementation stage.

The proposed cyclic XIL-ADR process consists of
innovative approaches from computer science. Deep
Learning lays the foundation for the process. We open the
black-box by using methods coming from the area of XAl
To allow humans to bring their expertise into the process,
we use IML employing the CAIPI algorithm (Schramowski
et al. 2020, p. 478) and then start the Deep Learning pro-
cess again afterward. By combining these different
approaches, it is possible to remedy the most pressing
problems in ML. We will later exemplify the process and
will share a few insights from the area of medical imaging.

3.4.1 Deep Learning

We decide to train a CNN on the X-ray dataset. CNNs are a
category of models of DL. We use the AlexNet version in
the PyTorch library from Facebook (Paszke et al. 2019)
that has been pre-trained on ImageNet data (Deng et al.
2009). The decision to use the AlexNet architecture results
from numerous preliminary studies with different network
architectures, such as ResNet, SqueezeNet, and DenseNet.
The AlexNet architecture is based on the work of Kriz-
hevsky et al. (2012). In CNN literature, this well-known
model has demonstrated its capability in the field of image
classification.

This CNN model has eight weighted layers, consisting of
five convolutional layers followed by three fully connected
layers (Krizhevsky et al. 2012). We transformed the X-ray
images to AlexNet input size and thus fed them into the
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network with a resolution of 224 x 224 pixels. In the
context of our AlexNet parameterization, we use a global
learning rate of 0.0001 for all layers. We implement
RMSProp as the optimizer with an alpha of 0.99, epsilon of
1 x 10_8, a weight decay factor of 0, and a momentum of
0.09. Based on the PyTorch DL framework, we divide our
dataset into a train, a validation, and a test set. We utilize the
validation set for hyper-parameter tuning and the test set to
determine the neural network’s performance. The test set
contains unique X-rays sampled from the raw dataset,
which are not in the train or validation dataset (Chowdhury
et al. 2020). We use a random fraction of 50% from the
source dataset for the training dataset. For the test and
validation datasets, we randomly split the remaining set of
X-rays again in fractions of 50%. We randomly rotated each
image in the training set between — 15° and 15° relative to
its stored position from the source dataset and randomly
cropped and flipped it horizontally and vertically. We use
the labels for each class label provided in the source dataset
as ground truth. To improve image quality in the context of
training, we make use of classical image normalization.

3.4.2 Explainable Al

As already mentioned, ML methods have a growing impact
in more and more areas and applications, especially
grounded in the latest advances in Deep Learning. Domain
experts usually do not explicitly implement the decision
process of such models. Instead, the machine itself learns it
from the provided data. The result is that the user or
domain expert loses the influence on how and why a
machine is making its decisions. XAl tackles the latter one.
Within XAI, one must distinguish between white-box
machine learning algorithms that are inherently explainable
(e.g., decision trees and Bayesian classifiers) and black-box
models. Deep Learning models are commonly used black-
box models. XAI methods (e.g., Lundberg and Lee 2017;
Ribeiro et al. 2016; Selvaraju et al. 2017; Simonyan et al.
2014) are trying to open these black-box models to explain
the learned decision process. On the other hand, inter-
pretable models not only provide explainability and
understandability but do this inherently, offering these
benefits with the downside of giving up flexibility in the
model choice (i.e., difficulties using DL) and increased
effort in development (e.g., Rudin 2019, pp. 208-210).
Here, an interesting approach is the design of inter-
pretable Deep Learning architectures (Chen et al. 2019),
which create an intermediate interpretable layer within the
DL algorithm. The user can use this layer to understand the
classification. With XAI, the resulting explanation can
have different modalities; often, however, visual feature
importance maps are provided, e.g., in the form of heat-
maps. For medical images, like in our example case, they
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are well suited as easy-to-understand visual explanations
that reflect the way of thinking of pneumologists and
especially radiologists (Evans et al. 2022, pp. 282, 293) and
serve an understanding of the underlying model, which is
crucial for the use of XAl in XIL.

3.4.3 XIL

The algorithmic methodology applied in the context of
XIL, i.e., CAIPI, can be regarded as model agnostic (e.g.,
Teso and Kersting 2019, p. 239). As outlined in Fig. 3 in
the section “Implementing Machine Learning Projects with
XIL-ADR”, we employ the XIL optimizer (i.e., CAIPI
algorithm with “right-for-the-right-reasons loss” (RRR))
as proposed by Schramowski et al. (2020) as part of our
strategy for algorithm adjustment. In this regard, the opti-
mization function of XIL uses annotations (i.e., a binary
mask generated from human-created annotations) to
penalize the model using parts of an image that lie outside
the annotations. In doing so, the XIL optimization function,
i.e., CAIPI, is proposed in the paper of Schramowski et al.
(2020) (see pp. 478—479 for more details on the underlying
theorem) and adjusted from Ross et al. (2017). It helps the
ML model to focus better on relevant regions by penalizing
attributions outside annotated areas, i.e., the model learns
to base its predictions on annotated regions while paying
less attention to penalized areas.

Figure 4 shows an exemplary depiction of how the XIL
optimizer uses annotations for an image to influence
algorithmic attribution. The picture on the right shows the
same picture as on the left, with different annotated areas
(highlighted for exemplary purposes in bright grey).
Everything (i.e., every gradient/pixel) that lies outside
these annotation masks is subject to penalization. This way,
our model is directed toward attributing the relevant image
features.

3.4.4 XAl Visualization

To visualize the explanations of the used neural network
classifiers, we used two separate XAl methods with vary-
ing colormaps. For coarse image explanations, we applied
the Grad-CAM method (Selvaraju et al. 2017), representing
a trade-off between spatial information and higher-level
visual constructs. Grad-CAMs are, however, too coarse for
detailed medical explanations based on our CXR data. For
this reason, we additionally applied the VarGrad method of
Adebayo et al. (2018) for more fine-grained explanations.’
According to Hooker et al. (2019), VarGrad shows more

3 As a foundation for the basic Grad-CAM and VarGrad method, we
used the Python Captum Package: https://captum.ai. Last checked:
10.01.2023.
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Fig. 4 An exemplary depiction of how our XIL optimization strategy
uses the annotations. The original image is on the left, and the same
image is on the right with different annotation regions (highlighted in
bright colors). Based on the optimization strategy, dark areas denote

faithful results than many other gradient-based XAl
methods which the authors had compared to.

Apart from using a one-dimensional standard colormap
to present the model’s explanations (e.g., as usually used
with VarGrad), we extend the standard approach and pro-
pose a two-dimensional colormap (2Dcolormap) which
linearly encodes the importance map returned by the
specific XAI method with the pixel intensity of the original
input image. This approach adds information on whether an
indicated important image area corresponds to a dark or
light region of the original image.

Figure 5 presents the coding of this colormap and Fig. 8
shows example explanations using this colormap. This
extension ensures that one picture compiles all necessary
information, and the user does not need to switch back and
forth between examining the interpretation and the original
X-ray (e.g., compare Evans et al. 2022).

4 Evaluation Case Study: Generating Insights
and Improving Models with XIL-ADR

Figure 3 shows that XIL-ADR can result in several
loops/cycles, and each loop can generate new insights. This
case study will describe the different loops we conducted in
the Implementation stage of our medical case using XIL-
ADR with experienced pneumologists and radiologists and
how the result of one loop shaped the next loop. In effect,
while this section describes the implementation phase of
the medical case (conducted with XIL-ADR), it primarily
serves as an exemplary evaluation case of our XIL-ADR
method. As such, this description of the implementation

Annotation area: throat

Penalization area:

Dark area = Outside of
Annotation area

Annotation area: lungs I

Annotation area: torso I

image regions, which the model should not focus on to make its
predictions and lead to penalization in case it does (color
figure online)

does not focus on the results of each loop but on the
developmental journey using XIL-ADR. The following
subsections describe the XIL-ADR loops we conducted in
the course of this implementation following the activities
of the XIL-ADR cycles (see Fig. 3). In this context, we will
also describe the intermediate artifacts (e.g., lessons
learned, design requirements) that emerged from each
activity. At the beginning of the XIL-ADR process, we
describe the Instantiation of the model prototype (subse-
quent cycles start with Refine Data and Retrain Model).
Next, we describe the activity of Explaining, Visualizing
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Fig. 5 2D Colormap to visualize explanations, which linearly
combines pixel importance predicted by the XAI Method (vertical
axis) with pixel intensities of the input image (horizontal axis) (color
figure online)
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and Inspecting the model and its performance. This step
forms the basis of the subsequent Reflection on the model
explanations and performance, which leads to the genera-
tion of Insights. Finally, each loop results in the Definition
of XIL Strategies for the subsequent loops. For an overview
of the four conducted XIL-ADR cycles, the data basis, and
their intermediate artifacts, refer to Table 2 at the end of
this section.

4.1 Loop 1
4.1.1 Model Instantiation

We first train the classifier as outlined in the last chap-
ter and use the complete information on the X-ray for
classification. This procedure is the standard approach, and
the resulting classifier is (too) often the endpoint of a
standard ML process. The disadvantages will become
evident when we analyze the results with XAI and then
continue with the IML part in the next loop.

4.1.2 Explain, Visualize and Inspect

Overall, the performance metrics indicate a particularly
good model, with the model correctly predicting 98% of
Normal, 83% of Viral Pneumonia, and 96% of Covid-19
cases. This result indicates that our model can distinguish
lungs with pulmonary infiltrations from lungs without
infiltrations (the patients can still be sick for other reasons)
and can even distinguish standard viral pneumonia (with-
out Covid-19 pneumonia) from the new Covid-19 pneu-
monia with extremely high accuracy. The model’s
accuracy is 91.06%, precision is 93.64%, and recall is
92.53%. Such results would be highly beneficial, and a
number of papers have shown similarly encouraging results
on the basis of the same dataset.

4.1.3 Reflect

However, such a simple approach that is widely used in
practice and research tends to overlook potential con-
founders. In addition, our loop 1 prototype suffers from
such a potential problem as a detailed analysis of the
explanation reveals: Fig. 6 presents a typical confounder
on an X-ray of a Covid-19 patient. The visualization shows
that the AI has detected predictive value in the ‘R’ on the
left upper side and heavily uses it to predict the class of
Covid-19 cases.

4.1.4 Insight

The ‘R’ on an X-ray typically marks the patient’s right
side, but it cannot be found on all X-rays in our sample as it
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might have been left out or cropped, and the fonts used can
also vary. Potentially newer X-ray machines include this
marking more often, or hospitals/radiologists from a par-
ticular region hit hard by Covid-19 use machines that
include this marking technique automatically. Furthermore,
patients with Covid-19 often lie face down, which was
found to improve lung recruitability* (Pan et al. 2020), and
hence it is more practical to place the ‘R’ on the detector
(opposite to placing it on standing patients).

4.1.5 Define XIL Strategies

In the presence of such a bias in the data, the classification
would work well on our test dataset, but it would fail to
deliver satisfactory results on X-rays from out of sample,
e.g., other regions that would not have the same bias.
Therefore, forcing the Al to focus on regions that should be
used for classification is mandatory. Indeed, it is possible to
pre-process pictures accordingly, but it needs expertise to
think about potential confounders. Furthermore, often the
strenuous and unwelcome data work leads to incomplete-
ness in this respect and thus also to corresponding cas-
cading errors in the development process (Sambasivan
et al. 2021).

Usually, the confounding effects are more challenging
to detect than our illustrative example in Fig. 6 suggests, a
problem we will exemplify in loop 2. To solve these
problems, XIL-ADR and appropriate annotation tools
allow experts to exclude problematic regions and can
thereby force the algorithm to focus on different regions
throughout the different replications of the process cycle.
This fact would also allow us to evaluate whether certain
other regions, like the heart, would create excellent
predictors.

4.2 Loop 2
4.2.1 Refine Data and Retrain Model

To exclude obvious confounders, we compiled an instruc-
tion video and hired crowdworkers to annotate the dataset
of nearly 3000 images. Figure 7 shows a tool based on the
COCO Annotator (Brooks 2019) that we customized for
our study. Based on the recommendation of our medical
colleagues, we thereby instructed the crowdworkers to
annotate three different regions: Torso, lungs, and throat,
and merge them to create a fourth class which we call
“Full”.

In loop 2, we trained another classifier that uses the
annotation  described in our technical methods

* ILe., reopening collapsed areas of the lung. For more detailed
explanations, please refer to Santos et al. (2015).
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section. Again, the model exhibits a superb goodness-of-fit
(correctly predicted 99% of Normal, 91% of Viral Pneu-
monia, and 89% of Covid-19 cases). The accuracy of this
model is 94.50%, precision is 96.30%, and recall is
92.93%.

4.2.2 Explain, Visualize and Inspect

The results seemed to be very promising, and in a joint
(virtual) session of three computer scientists, three infor-
mation systems researchers, and four physicians (i.e.,
radiologists and pneumologists), we inspected the expla-
nations, some of which are visualized in Fig. 8.

4.2.3 Reflect

Even for non-experts, it becomes evident through the XAI
explanations that typical patterns on the X-rays lead to the
classification. If non-experts can recognize these high-
lighted patterns on X-rays and then diagnose new diseases
reliably, this would constitute a significant breakthrough.
In this loop, we observe blue areas between the ribs for
physiological subjects, indicating that these areas are
important and that they are dark areas on the original X-ray
image.

In contrast, we observe that patients with classical viral
pneumonia have many red areas, indicating that bright
areas on the original X-ray are of importance. In contrast to
these two groups, we can identify Covid-19 cases by a
cloud of blue and sometimes reddish points in the lung
area.

4.2.4 Insight

While these results are promising for further inspection
from the physicians, the explanations revealed another
critical aspect that non-domain experts would not recog-
nize so easily. Also, in our case, only the medical experts
wondered about specific patterns. In some XAI images, we
recognized that the algorithm marked areas around the
shoulder as important. On closer inspection, these changes
correspond with the developing skeletal features that are
distinct for individual skeletal maturity stages of children
and differentiate these images from adults. The closing of
epiphyses, such as the humerus head epiphysis highlighted
in Fig. 6, are examples of these fundamental anatomic
differences between age groups. These predictors do not
relate to the classification task or do not correlate with the
ground truth indicating pneumonia or Covid-19-induced
pneumonia.

This insight caused a further inspection of the X-ray
image database, which revealed that the classes of viral
pneumonia and normal cases indeed entirely consist of

pediatric patients, i.e., children, while the Covid-19 cases
are mixed and mainly consist of older adults. Further
analysis of the data sources that contributed to the Kaggle
winning dataset (Chowdhury et al. 2020) revealed that the
XAI pointed to a hidden but very important confounder:
The “Normal” and “Viral Pneumonia” CXR categories
consist of images from the “Pediatric Bacterial and Viral
Pneumonia Data Set” by Kermany et al. (2018)° while the
Covid-19 category consists of CXR of patients of various
ages, yet primarily adult patients. In principle, this boils
down to the classifier being able to distinguish between a
CXR of an adult and a child. At least this biased data
source partly explains the excellent classification of the
holdout sample. In search of related papers that recognized
this issue, we found only very few articles that address this
problem and adjust their data selection process accordingly
(e.g., Oh et al. 2020). Many other papers that rely on this
dataset did not recognize and/or address this problem. In
practice, we would observe another failed ML project
where the standard training/test approach would lead to
highly promising results but where the system would fail to
deliver on new datasets in practice. Garcia Santa Cruz et al.
(2021) also emphasize this issue in the available Covid-19
chest X-ray datasets and critique published papers blindly
using those datasets for training ML models without
accounting for potential sources of bias involved in the
data.

4.2.5 Define XIL Strategies

After discussing this problem, we decided to pursue two
different strategies. First, we excluded the Covid-19 cases
from our dataset to see whether our algorithm could detect
viral pneumonia in children. We describe this in loop 3a.
Second, we curated a new dataset that does not implicitly
lead to such biased results. We describe the insights about
this fourth classifier in loop 3b.

4.3 Loop 3a
4.3.1 Refine Data and Retrain Model

In this loop, we continue to work with the subsamples
“Normal” and “Viral Pneumonia” of the Covid-19 data-
base (Chowdhury et al. 2020) that were initially compiled
by Kermany et al. (2018). It entirely consists of X-ray
images from pediatric patients, and we can thus rule out the
confounding problem from loop 2, and the identification of

5 Available on: https://www.kaggle.com/paultimothymooney/chest-
xray-pneumonia. Last checked: 10.01.2023.
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Fig. 6 Loop 1 XAI. Original
image on the left, XAl showing
confounders with Grad-CAM
method (Selvaraju et al. 2017)
on an overlay of the edge-
filtered image on the right (color
figure online)

viral pneumonia in children alone is of importance. As of
January 2023, a joint report® from the American Academy
of Pediatrics and the Children’s Hospital Association
reported 15.24 million Covid-19 cases for children in the
US registered from the onset of the pandemic. Further-
more, they reported in August 20217 that between 1.6 and
3.5% of the total cumulated hospitalizations (of twenty-
three states plus New York) due to Covid-19 were children.

4.3.2 Explain, Visualize and Inspect

Naturally, we use the created annotations to minimize the
influence of potential confounders outside the area of
interest. The accuracy of this model is 93.91%, precision is
94.13%, and recall is 93.91%.

4.3.3 Reflect

The algorithm detects healthy subjects in 98% of all cases
and correctly identifies patients with viral pneumonia in
90% of all cases. Looking at the colored explanations in
Fig. 9, we recognize some patterns from loop 2. The
classifier uses bright parts of the X-ray in the lung to
identify viral pneumonia. If these areas in the lung are
darker, the algorithm classifies the case as normal.

4.3.4 Insight

Loop 3a is a very illustrative example but not as chal-
lenging as distinguishing between Covid-19 and classical

S For details, see the ‘State Data Report’ Version 1/5/2023: https://
downloads.aap.org/AAP/PDF/A AP%?20and%20CHA %20-%20Chil
dren%20and%20COVID-19%?20State%20Data%20Report%201.5.
23%?20FINAL.pdf. Last checked: 10.01.2023.

7 ‘State Data Report’ Version 8/12/21: https://downloads.aap.org/
AAP/PDF/AAP%20and%20CHA %20-%20Children%20and %
20COVID-19%20State%20Data%20Report%208.12%20FINAL.pdf.
Last checked: 10.01.2023.
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viral pneumonia, and the results similar to loop 2 (cloud of
blueish and reddish points in the XAl images) seem to be
interesting. What may be problematic here, however, is
that since patient metadata on the images is missing,
patient leakage from the train into the test set may bias
these results. This problem would also be the case for the
Covid-19 dataset of loops 1 and 2.

4.3.5 Define XIL Strategies

We, therefore, started to curate a new dataset for training
and testing from the “ChestX-rayl4 database” by Wang
et al. (2017), which involves a lot of work. We will analyze
this dataset in loop 3b. In our quest to reduce bias while
gaining an understanding of the model workings, we also
compiled an additional independent test set from the
database of the Hannover Medical School (Winther et al.
2020) for the Covid-19 class, which helps us to realize and
exemplify the importance of independent patient holdout-
testing.

4.4 Loop 3b
4.4.1 Refine Data and Retrain Model

We use the “ChestX-rayl4 database”® by Wang et al.
(2017) in this branch. This extensive database contains
about 112,000 labeled CXR images of fourteen common
thorax diseases, as well as CXR images without a diagnosis
on any of the fourteen diseases, which are therefore labeled
as “No Finding”. Due to the vast amount of CXR images
and the trustworthy seal of the “National Institutes of
Health”8, this dataset has been used extensively in the past

8 Available on: https://nihcc.app.box.com/v/ChestXray-NIHCC. For
details on NIH, see https://www.nih.gov/. Retrieved in June 2020.
Both last checked: 10.01.2023.
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Fig. 7 The user interface of the customized COCO Annotator used by the crowdworkers to annotate the images. Using the tools on the left on

each X-ray, the areas for the throat, lungs, and torso were highlighted (color figure online)
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Fig. 8 XAI showing Explanations for Classification in loop 2 (using our customized red-blue filter solution based on VarGrad (Adebayo et al

2018)) (color figure online)
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True Class: Normal; Pred Class: Normal

True Class: Viral Pneumonia; Pred Class: Viral Pneumonia

Fig. 9 XAI showing Explanations for Classification in loop 3a (using our customized red-blue filter solution based on VarGrad (Adebayo et al.

2018)) (color figure online)

three years in medical DL research and has enabled the
pursuit of many research projects.

From this dataset, we utilize two categories to imple-
ment a three-class classifier: (1) we use the “No Finding”
class to establish a baseline, and (2) we use the “Pneu-
monia” disease class to be able to distinguish our “Covid-
19” class (from the Chowdhury et al. (2020) database)
from other Pneumonia cases.” In a multi-stage data
preparation and selection process, we filter out (a) non-
frontal images, (b) heavily cropped images, (c) images with
poor resolution, (d) images with too prominent thoracic
foreign material, and (e) images with an inappropriate
windowing.'” We arrived at a higher-quality subset of the
dataset through this process.

4.4.2 Explain, Visualize and Inspect

First, we realized that the new dataset made the classifi-
cation much more challenging. It is easier for an algorithm
to distinguish adults from children based on X-rays, but
detecting patterns that explain diseases is harder. Based on
the two testing strategies, i.e., testing on the Covid-19
images with suspected test leakage (Chowdhury et al.
2020) (left) and the independent Covid-19 dataset (Winther
et al. 2020) (right), we arrive at the following confusion
matrices depicted in Fig. 10. The accuracy of this loop’s
model based on the original test set is 67.23%, precision is
72.27%, and recall is 67.23% (left). As the confusion
matrix on the right in Fig. 10 shows, testing for the Covid-

° In contrast to the dataset provided by Kermany et al. (2018), this
dataset includes CXR images of patients of different ages and not
only children. Furthermore, it must be noted that the “Pneumonia”
disease category may not only contain viral pneumonia cases, but also
bacterial pneumonia cases. The dataset does however not provide
detailed information about the distribution of the cases that were
caused by bacterial and viral pathogens.

19 Tmages with inappropriate windowing or contrast stretching are
too dark or too bright compared to the standard level used in digital
imaging. Our radiologists suggested excluding such images because
of their low quality.
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19 class with an independent test set revealed that the
classifier appears to be struggling to discern other variants
of Pneumonia from Covid-19-induced Pneumonia with
out-of-sample data.

4.4.3 Reflect

The results are weaker than the ones reported by Mei et al.
(2020) (75.9% sensitivity for the CNN), where CT images
have been used, which have a much better resolution (but
have other disadvantages) and where only two classes
(Covid-19 vs. normal) were examined. Interestingly, as
both confusion matrices indicate, most of the misclassifi-
cation rate for Covid-19 falls on false-positive classifica-
tions for Pneumonia but not on No Finding. From a
different perspective, this indicates that the classifier can
recognize Covid-19 patients as ill patients quite well. We
can also go one step further than Mei et al. (2020) and
inspect the model using the XAI part of our proposed
method. Again, the XAl often points to clouds of dots in
the lung that seem to be a predictor of Covid-19.

4.4.4 Insight

One insight generated in loop 3b are the mentioned dot
clouds. Potentially, these dot clouds could be indicators for
vascular changes that might occur with Covid-19 infection
(inflammatory, pulmonary reactions). Human experts usu-
ally find such details hard to detect by visually inspecting
the original X-ray. The XAl part of the cycle can thus help
humans by highlighting important areas.

At this point, a further curation of the dataset, training,
and testing strategies (e.g., acquiring more images of dis-
tinct patient cohorts for testing, see Irvin et al. 2019) is
necessary. Facing these major challenges, we therefore
follow the ‘Abort and Realign Strategy’. Nevertheless,
there may be potential in refining the model, as the con-
fusion matrices indicate, and also labeling strategies to help
the model find patterns that more effectively distinguish the
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Fig. 10 Confusion Matrices of loop 3b with Chowdhury et al. (2020) on the left and Winther et al. (2020) on the right

Pneumonia class from the Covid-19 class. The future
development process will be discussed in the “Outlook”
section. Nevertheless, it became evident that XIL-ADR
could help unveil confounding factors and thus contribute
to the improvement of implementation requirements, as
well as the generation of insights on the part of the human
user.

4.5 Outlook

After describing four loops of the XIL-ADR development
process for our illustrative medical case study, the process
ends here, as the challenges faced in this project require a
deliberate and elaborate realignment of the strategy. Hence,
the decision process at the end of the Insights activity
resulted in the ‘Abort and Realign Strategy’.
Nevertheless, the produced models and intermediate
artifacts have already contributed substantially to an
increase in the knowledge base, ostensibly from an engi-
neering perspective but also from a domain perspective;
this result showcases a unique strength of XIL-ADR. The
described loops have already revealed typical pitfalls and
potential confounders that can heavily influence the
resulting models in machine learning. Not only does the
black-box problem make the results less reliable, but this
problem also hampers scientific progress, although these
new methods are so powerful and promising. This medical
example shows simple, obvious confounding factors as
well as more hidden confounders that only domain experts
can recognize. The proposed process of XIL-ADR can
mitigate two problems: First, it allows for identifying and
removing potential confounders, and second, it allows us —

as humans — to recognize patterns more easily and thus
could potentially extend our knowledge base in the appli-
cation domain. In this case, researchers from different
disciplines will further engage in the human-machine-loop.

To ‘Realign’ the project with the defined goals, the next
apparent steps for loop 4 include curating more datasets
including metadata, which will help to ensure high-level
patient-level splits. These quality splits are necessary to
further test for systematic biases in system performance
with the help of XAI (e.g., bias toward gender, age groups,
or disease progression). Furthermore, we will annotate the
newly curated training images to arrive at more refined
results. In addition, data scientists can evaluate the true
potential of more complex and highly acclaimed models
with the help of XIL-ADR. For illustration purposes, we
conclude here with the description of the first four cycles
performed (see Table 2).

5 Discussion and Conclusion

This paper presented a novel situational ISDM called XIL-
ADR. In engineering the method, we followed the
approach of Goldkuhl and Karlsson (2020) by identifying
the problem, theorizing, and engineering the method,
before demonstrating and evaluating it in a healthcare
development case. XIL-ADR is generalizable to iterative
ML development-evaluation activities.

From an ADR perspective, XIL-ADR contributes to
extending ADR (e.g., Baskerville et al. 2018, p. 365) such
that research and organizational teams can use the
methodology to conduct ADR more tailored to data science
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Table 2 Overview of the evaluation case with the four loops and their respective intermediate artifacts

Intermediate Loop 1 Loop 2 Loop 3a Loop 3b
Artifacts
Initial dataset Normal: 1341 Normal: 1341 No finding®: 594

(n per class)

Test dataset

(n per class)

(Refined)
Prototype

Transparency-
based
evaluation
criteria

Evaluation
report

Insights

XIL Strategies

Viral Pneumonia: 1345

Covid-19: 219
Normal: 336

Viral Pneumonia: 337

Covid-19: 54

AlexNet Disease
Classifier (ternary)

Grad-CAM/VarGrad

e Seemingly good
performance

e R’-type
confounders found

e ‘R’ typically
marks the right
side of a patient

e Patients often lie
face-down

e Penalize Al for
focusing
confounders
(RRR)

e Include citizen
annotators

o Definition of
annotation regions

e Teaching citizen
annotators via
video-instruction

o Annotation of the
whole dataset

AlexNet Disease Classifier
(ternary) with Annotations and
Penalization (RRR)

VarGrad

e Seemingly good performance

e Domain expertise
confounders: Focus on
skeletal regions

e Systematic age differences in
data confound the ability to
learn

e Curate new datasets

Viral Pneumonia: 1345

Normal: 335
Viral Pneumonia: 337

AlexNet Disease Classifier
(binary) with Annotations and
Penalization (RRR)

VarGrad

e Seemingly good performance

o Possible train-test leakage may
influence performance

e Not as challenging as ternary
classification

e Curation of a new dataset

o Integration of radiologist
demands in the data selection
process (e.g., windowing)

Pneumonia®: 512
Covid-19: 219

No finding®: 141
Pneumonia®: 105
Covid-19: 47
Independent testing:
No finding®: 141
Pneumonia®: 105
Covid-19%*: 243
AlexNet Disease Classifier
(ternary)

VarGrad

e Seemingly average
performance

e Additional test set reveals
generalization problems due
to train image leakage

e Abnormality in images is
detected quite well

e Struggle to discern Covid-19
from other Pneumonia

e Collecting more patient data:
additional test sets

o Further curation through
annotations

The majority of cases are from the “COVID-19 Radiography Database” by Chowdhury et al. (2020). For loop 3b, alternative classes from the
“ChestX-ray14 database” (Wang et al. 2017) are indicated by a circle (°). The numbers for Wang et al. (2017) already represent case numbers
after the multi-stage data preparation and selection process. The Covid-19 class for independently testing the model (Winther et al. 2020) is
indicated by an asterisk (*)

@ Springer



N. Pfeuffer et al.: Explanatory Interactive Machine Learning, Bus Inf Syst Eng 65(6):677-701 (2023) 697

projects. In doing so, it proposes to shift the focus from an
organizational BIE perspective (e.g., Sein et al. 2011)
toward a more technical BEI perspective with five XIL-
tailored activities and a focus on interventions toward the
ML artifact, which helps to account for the technical
intricacies of data science projects and especially ML-
based system development.

Especially the combination of XAl and IML reinforces
important parts of ADR (e.g., Mullarkey and Hevner 2019;
Sein et al. 2011) in the development cycles and allows the
participants to engage in Reflection and Insight activities,
resulting in well-informed strategies for reengineering. For
research, this may amount to better theoretical insights and
to artifacts that are more refined. For practice, this presents
the opportunity to achieve more efficient development
cycles, with a higher potential to eliminate biases in ML-
based IS, compared to other ISDM. Conclusively, XIL-
ADR not only presents a valuable guideline for practi-
tioners and researchers alike to uncover problematic issues
with underlying ML strategies and data but also serves the
purpose of more intriguingly supporting insight generation.

This article contributes in multiple ways: First, we show
how XIL-ADR can lead to more meaningful models and
help experts to validate existing recommendations and/or
generate new insights in their application domain. Inter-
activity allows experts to force the algorithm to focus on
specific areas in the data, and the algorithm can help the
expert to better understand the data at hand by highlighting
the patterns that determine its classification result. This
information can either be used to assess the recommenda-
tions made by human experts'' or — in the best case — allow
to identify new patterns that have not yet been recognized
by human experts before (e.g., Teso and Hinz 2020). In that
sense, the human-machine-loop can serve as a method to
arrive at novel scientific insights, just like classical statis-
tics helped us to better analyze and understand data in the
past decades. We especially believe that the Information
Systems discipline will play a crucial role in its develop-
ment, as this is where human factors and expertise meet
with technological developments. We used the example of
imaging in medicine because it is very illustrative, but the
methodology of XIL-ADR is, in general, also applicable to
other types of data and other domains.

Second, we show that a simple training approach for ML
models, which is currently widely used, can very often
suffer from confounding factors that can heavily influence
the results. In our illustrative case, confounders like tubes,
marks, or texts (e.g., timestamps) on the X-ray can serve as
predictors for classification, while this would not help us to

T See e.g., recommendations by the German Radiological Society
for Covid-19: https://www.drg.de/de-DE/5995/covid-19/.  Last
checked: 10.01.2023.

predict new, out-of-sample cases. This problem can partly
explain why so many Al classifiers with high accuracy on
holdout test sets later fail to deliver in the real world. In
tackling this problem and engineering XIL-ADR, we
empower IS to fulfill an important mission and work
against bias in ML systems (e.g., Kane et al. 2021, p. 375)
in an effective manner. Thus, XIL-ADR also contributes to
the stream of research on Human-AI Augmentation and
directs the Al toward favorable outcomes (e.g., Teodorescu
et al. 2021). As Lebovitz et al. (2021) state, many Al
models are built quickly and yet achieve high performance
metrics, but do so with lots of uncertainty about how these
models using the underlying data perform so well, and with
suspicions of flaws (e.g., regarding the data or model),
which “a diligent evaluation of such tools could have
surfaced” (Lebovitz et al. 2021, p. 1515). By combining
XAI and IML, we can not only iteratively uncover but also
eliminate such flaws and confounding effects, which
otherwise would require excessive manual labor or cost-
intensive processes. To combat confounders as part of one
XIL Strategy in our evaluation case, we resorted to
crowdsourcing guided by an instructional video, which
helped code nearly 3000 X-rays manually with a cus-
tomized annotation tool. For other use cases, depending on
the type and amount of data, this annotation strategy may
not warrant the expected results or may simply be too
costly. As an alternative strategy, automated tools offer the
chance to (semi-)automatically remove or mark con-
founders on images or other types of data. Furthermore,
research and practice should experiment with the inclusion
of diverse kinds of users in different roles, as well as dif-
ferent collaborative constellations to find effective and
efficient strategies for specific ML tasks. From the view-
point of data science, this is undoubtedly an important
research field that could help XIL-ADR to become
productive.

Third, we propose that task-specific visualization
approaches to XAl may improve the activities of Reflection
and Insight in XIL-ADR. Our approach, for example,
extends current state-of-the-art visualization by incorpo-
rating the special characteristics of X-rays, the application
domain medicine, and, in particular, radiology, which
helped to analyze the domain data better. An iterative
comparison to the constantly evolving stream of methods
in XAl (e.g., Evans et al. 2022) could generate further
extensions of such customized XAI solutions for the XIL-
ADR process (e.g., XRAI by Kapishnikov et al. (2019), or
Guided Integrated Gradients by Kapishnikov et al. (2021)).
Recent research also suggests that even ostensibly
insightful XAI methods should be subjected to vicious
inspection of their fidelity (e.g., Adebayo et al. 2020;
Tomsett et al. 2020). It would thus be recommended to try
and assess different XAI methods (e.g., Teso and Kersting
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2019) for the purpose of inspection, especially in the earlier
cycles of XIL-ADR, and to compare their results regarding
uncovering potential bias or confounding factors. For doing
so, research on and methods of the assessment of caus-
ability of XAl (i.e., effectiveness in explaining) can prove
of high value (Holzinger and Miiller 2021).

Unlike CRISP-DM, XIL-ADR is embedded in a larger
development context and benefits from prior and posterior
defined activities in the ADR process, e.g., considering the
business problem and its domain in the Diagnosis stage.
Unlike other CRISP-DM adaptations, such as CRISP-ML
(e.g., Studer et al. 2021), XIL-ADR explicitly incorporates
XAI and IML methods and accounts for the data-driven
intricacies of ML projects. Lastly, XIL-ADR - in contrast
to traditional implementation phases in ADR — puts heavy
emphasis on technical and data aspects while simultane-
ously focusing development team efforts on defining
appropriate and effective strategies for subsequent ADR
cycles.

In this paper, we proposed the methodology of XIL-
ADR to enable research and practice to construct Al-based
systems that are more reliable. We outlined in which way
XIL-ADR presents an opportunity for improving machine-
learning projects. We showed that ML projects can largely
profit from the iterative XIL-ADR process by refining the
model and the underlying data, training, and testing
strategies, and also how such a process benefits from
including multiple kinds of users. Lastly, through this
iterative refinement of promising models, the full potential
of Al for organizational learning may be unleashed.

Although XIL-ADR comprises some destructive con-
structionism which can be painful at times, we should not
underestimate the potential of Al-based systems. Instead,
we believe XIL-ADR helps to carefully grind the rough
diamond of ML projects to arrive at actionable solutions
that efficiently support organizational goals eventually.

All in all, by creating a virtuous circle of human and
machine collaboration, we could not only make our sys-
tems smarter but also allow different kinds of users to
enhance their knowledge in the focal application domain.
This vision, however, requires potent Al systems that allow
for interactivity, explainability, accountability, and a better
understanding of this human-machine hybridity loop.
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