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Preface

Founded in August 1988, the Transaction Processing Performance Council (TPC) is
a non-profit organization that has wielded considerable influence over the computing
industry’s adoption of standardized benchmarks for over 35 years. These benchmarks
serve as a means for vendors to showcase the performance competitiveness of their cur-
rent offerings and to enhance and track the performance of products in development.
Additionally, many purchasers rely on TPC benchmark results as benchmarks for eval-
uating and comparing new computing systems, whether for on-premises or public cloud
deployment.

This volume presents the proceedings of the 15th TPC Technology Conference on
Performance Evaluation and Benchmarking (TPCTC 2023), held concurrently with the
49th International Conference on Very Large Data Bases (VLDB 2023) in Vancouver,
Canada, on August 28th, 2023. Over the years, TPCTC has evolved into a vital platform
for the performance benchmarking community. Among the 17 papers submitted, seven
were accepted, which brings this year’s acceptance rate to 41%. Each paper was single-
blindly peer reviewed by four peers. Additionally, the proceedings feature one paper
stemming from panel discussions led by industry and research experts, as well as an
invited paper from the chairman of the TPC’s public relations committee, highlighting
new initiatives within the TPC.

The success of this conference was a result of the dedication and collaborative efforts
of numerous individuals. We extend our gratitude to the members of the TPC and the
organizers ofVLDB2023 for their sponsorship, aswell as to themembers of the Program
Committee andPublicityCommittee for their invaluable support.Additionally,wewould
like to express our appreciation to the authors and participants whose contributions were
fundamental to the triumph of this event.

Raghunath Nambiar
Meikel Poess



Redefining Performance Evaluation and Benchmarking
in the Era of Artificial Intelligence

In 2017, the Transaction Processing Performance Council (TPC) revealed the estab-
lishment of a Working Group dedicated to crafting standardized benchmarks for both
hardware and software platforms utilized in executing Artificial Intelligence (AI) work-
loads. Fast forward to 2021, the Transaction Processing Performance Council (TPC)
announced the immediate availability of TPCx-AI, marking it as the inaugural industry-
standard, vendor-neutral benchmark tailored for evaluating real-world AI and machine
learning (ML) scenarios alongside data science use cases. TPCx-AI showcases versatil-
ity by utilizing a diverse dataset and was meticulously designed to be adaptable across
a broad spectrum of scale factors.

AI has become increasingly significant in recent times. The central focus of TPCTC
2023 revolved around contributions that are primarily focused on performance method-
ologies within the vast realm of AI. AI encompasses a diverse spectrum mirroring the
complexity and depth of human intellect it aims to emulate. Ranging from narrow AI,
engineered to surpass human capability in specific tasks such as language translation,
facial recognition, or chess playing, to the ambitious pursuit of general AI, capable of
understanding, learning, and applying intelligence across various domains, the breadth of
AI is vast. This diversity is evident not only in AI applications but also in the methodolo-
gies employed for their performance evaluation. Performance analysis of AI applications
plays a pivotal role in ensuring these systems efficiently, effectively, and accurately ful-
fill their intended objectives. At its essence, performance analysis entails evaluating an
AI system’s accuracy, speed, reliability, and scalability, among other metrics. This is
crucial as it directly impacts the AI’s utility and applicability across diverse domains,
ranging from healthcare and finance to autonomous vehicles and smart cities. By rigor-
ously analyzing performance, developers can pinpoint and rectify weaknesses, thereby
enhancing the AI’s capacity to make accurate predictions efficiently, process data at
requisite speeds, and operate reliably and accurately under varying conditions.

Furthermore, performance analysis is integral to optimizing resource utilization, a
critical consideration given the substantial computational power and data storage that AI
applications inherently rely on. Efficient resource utilization not only reduces operational
costs but also minimizes environmental impact by lowering energy consumption and
hardware demands. Through performance analysis, AI systems can be fine-tuned to
strike a balance between performance and resource efficiency, ensuring they deliver
the highest possible value to customers. This optimization is especially crucial as AI
applications scale up and out, where minor inefficiencies can exponentially magnify
costs.

Meikel Poess
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About the TPC

Introduction to the TPC

The Transaction Processing Performance Council (TPC) is a non-profit organization
with a primary objective of spearheading the development of industry standards tai-
lored for data-centric workloads. Committed to promoting fairness and transparency
in performance evaluation, the TPC diligently collects and disseminates vendor-neutral
performance data across the industry. With a vision to foster collaboration and drive
innovation, the TPC serves as a pivotal platform for industry stakeholders to benchmark
and assess the efficiency of their technologies.

For further insights into the TPC’s initiatives, standards, and resources, visit their
official website at http://www.tpc.org/.

TPC Memberships

Full Members

Full Members of the Transaction Processing Performance Council (TPC) play a vital
role in shaping the organization’s activities. They are actively involved in various facets
of the TPC’s operations, including the formulation, refinement, and implementation
of benchmark standards. These members contribute to the continuous development of
benchmarks that accurately reflect the evolving landscape of data-centric workloads.

Furthermore, Full Members of the TPC actively participate in setting the strategic
direction of the organization. Their insights, expertise, and perspectives help guide the
TPC in its mission to promote fairness, transparency, and innovation in performance
evaluation across the industry.

For those interested in becoming Full Members and contributing to the TPC’s mis-
sion, the Full Member application can be accessed at http://tpc.org/information/about/
join5.asp.

Associate Members

Certain organizations have the opportunity to join the Transaction Processing Perfor-
mance Council (TPC) as Associate Members. While Associate Members have the priv-
ilege to attend TPC meetings, they do not possess the eligibility to vote or hold office
within the organization. This membership category is accessible to a diverse range of
entities, including non-profit organizations, educational institutions, market researchers,
publishers, consultants, governments, and businesses that are not directly involved in the
creation, marketing, or sale of computer products or services.

http://www.tpc.org/
http://tpc.org/information/about/join5.asp
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Associate Membership offers valuable networking and knowledge-sharing opportu-
nities within the TPC community, enabling members to stay abreast of the latest devel-
opments and trends in performance evaluation and benchmarking. By fostering collab-
oration among a broad spectrum of stakeholders, Associate Membership contributes to
the advancement of industry standards and practices.

For those interested in becoming Associate Members and engaging with the TPC
community, the Associate Member application can be accessed at http://tpc.org/inform
ation/about/join5.asp.

Academic and Government Institutions

Academic and government institutions are extended a special invitation to become part
of the Transaction Processing Performance Council (TPC) community. Recognizing the
invaluable contributions of these entities to the advancement of technology and research,
the TPC welcomes their participation in shaping industry standards and best practices.

By joining the TPC, academic institutions gain access to a collaborative platform
where they can engage with industry experts, share knowledge, and contribute to the
development of benchmark standards. Government institutions, on the other hand,
have the opportunity to leverage the TPC’s resources to stay informed about the latest
advancements in performance evaluation and benchmarking.

This special invitation underscores the TPC’s commitment to fostering collaboration
and innovation across academia, government, and industry. For academic and govern-
ment institutions interested in joining the TPC community, the invitation can be found
at http://tpc.org/information/about/join5.asp.

Professional Affiliates

TPC Professional Affiliates are individuals appointed by the TPC, engaged in business
activities that complement or contribute to fulfilling the TPC’s mission. Affiliates cannot
hold membership status or represent members or associate members. They must be
involved in business activities aligned with the TPC’s mission. The appointment of TPC
affiliates is entirely at the discretion of the TPC.

Contact the TPC

TPC
2150 N 107th Street, Suite 205
Seattle, WA 98133
Voice: 415-561-6272
Fax: 415-561-6120
Email: info@tpc.org

http://tpc.org/information/about/join5.asp
http://tpc.org/information/about/join5.asp
mailto:info@tpc.org
mailto:info@tpc.org
mailto:info@tpc.org
mailto:info@tpc.org
mailto:info@tpc.org
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How to Order TPC Materials

We are pleased to announce that all our materials are now available free of charge on
our website. Whether you’re seeking benchmark standards, research publications, or
organizational information, you can access it easily and conveniently online.

Should you have any inquiries or require further assistance, please do not hesitate
to reach out to our office directly. You can contact us via phone during regular business
hours or send us an email at info@tpc.org. We are here to assist you and provide the
information you need.

Staying Connected

The TPC provides a convenient option for users to stay updated on the latest benchmark
results and changes through email notifications. By signing up for our email notifica-
tion service, you will receive alerts whenever new benchmark results are published or
when the primary metric of a published benchmark is modified. To subscribe to this ser-
vice, simply visit http://tpc.org/information/about/mailinglist_signup5.asp and fill out
the subscription form.

In addition to email notifications, the TPC maintains an active presence on social
media platforms such as LinkedIn and Twitter. You can follow us on LinkedIn at https://
www.linkedin.com/company/tpcbenchmarks/ to stay informed about our latest news,
events, and updates. Similarly, you can connect with us on Twitter at https://twitter.
com/TPCBenchmarks for real-time updates, announcements, and insights from the TPC
community.

By staying connected with us through email notifications and social media chan-
nels, you can ensure that you are always up to date with the latest benchmark results,
developments, and activities within the TPC ecosystem.
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Multivariate Time Series Anomaly
Detection: Fancy Algorithms and Flawed

Evaluation Methodology

Mohamed El Amine Sehili and Zonghua Zhang(B)

Huawei Technologies France, 8 Quai du Point du Jour,
92100 Boulogne-Billancourt, France

zonghua.zhang@imt-lille-douai.fr

Abstract. Multivariate Time Series (MVTS) anomaly detection is a
long-standing and challenging research topic that has attracted tremen-
dous research effort from both industry and academia in recent years.
However, a careful study of the literature makes us realize that 1) the
community is active but not as organized as other sibling machine learn-
ing communities such as Computer Vision (CV) and Natural Language
Processing (NLP), and 2) most proposed solutions are evaluated using
either inappropriate or highly flawed protocols, with an apparent lack
of scientific foundation. So flawed is one very popular protocol, the so-
called point-adjust protocol, that a random guess can be shown to
systematically outperform all algorithms developed so far. In this paper,
we review and evaluate a number of recent algorithms using more robust
protocols and discuss how a normally good protocol may have weaknesses
in the context of MVTS anomaly detection and how to mitigate them.
We also share our concerns about benchmark datasets, experiment design
and evaluation methodology we observe in many works. Furthermore, we
propose a simple, yet challenging, baseline algorithm based on Principal
Components Analysis (PCA) that surprisingly outperforms many recent
deep learning based approaches on popular benchmark datasets. The
main objective of this work is to stimulate more effort towards impor-
tant aspects of the research such as data, experiment design, evaluation
methodology and result interpretability, as opposed to putting the high-
est weight on the design of increasingly more complex and “fancier”
algorithms (Code repository associated with this paper can be found at
https://github.com/amsehili/MVTSEvalPaper).

Keywords: Multivariate time series · Anomaly detection · Evaluation
protocols · point-adjust

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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1 Introduction

1.1 MVTS Anomaly Detection: a Hot Research Topic

Time series are a kind of data characterized by its ease of collection and storage
as well as its wide range of applications (forecasting, classification, anomaly
detection, etc.).

Anomaly detection in multivariate time series, particularly unsupervised one,
is a very important topic for the modern, data-powered, industry. This explains
the high interest in the subject in both industry and academia and the prolif-
eration of approaches in recent years, especially deep learning (DL) based ones.
While one should salute the agility and effectiveness of the community at leverag-
ing advancements from other fields such as NLP and CV, and repurposing them
for anomaly detection, one may also argue that evaluation methodology, bench-
mark datasets and objective algorithms’ comparison are still open challenges in
the field as of today [11,16].

Our point is straightforward: algorithm design and pipeline complexity have
been granted much more effort than experiment design and methodology. Actu-
ally, over the last decade or so, works on MVTS anomaly detection have adapted
and experimented with a few of the most recent and most influential ideas in
deep learning such as Generative Adversarial Networks (GANs) [3,5], Trans-
formers [17] and Graph Neural Networks (GNNs) [7,9,19]. At the same time,
we notice that a big number of approaches are evaluated in terms of one very
flawed protocol, the point-adjust protocol, making it impossible, as we will
show in this paper, to know whether an algorithm is outputting random noise
as prediction or doing something cleverer. This may sound overly pessimistic,
but as formally proven by [11] (and also in this work), a random guess based
approach outperforms all “sophisticated” algorithms on popular datasets when
evaluated with this protocol.

In this work, we review the point-adjust protocol and show that by ran-
domly selecting a small, fixed, number of points and tagging them as anomalous,
while tagging the rest of points as normal, we can achieve very high scores with
high probabilities. Our goal is to continue warning the community against this
protocol and its derivatives and encourage it to drop it in favor of more reliable
protocols. We also review the more objective point-wise protocol and show that
it is not appropriate for all kinds of datasets and use-cases. We then introduce
and discuss the event-wise protocol, a new event-aware protocol for MVTS
anomaly detection.

Besides, we demonstrate that an approach as basic as Principal Components
Analysis (PCA), with very simple pre-processing and post-processing blocks, can
outperform many complex DL-based approaches on many datasets. Finally, we
analyze three of the most recent approaches and show how algorithms developed
by exclusively targeting high point-adjust scores fail to distinguish themselves
from a random guess when challenged with other protocols. Finally, without
claiming to be an authority in the field, we share what we believe are vectors of
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improvement based on our experience working on the topic for many years at
an industrial level.

2 Related Work

While the number of works on MVTS anomaly detection has been increasing
over the years, very few studies about issues in benchmark datasets, algorithms
and especially evaluation protocols and metrics have been proposed so far.

In their paper entitled “Current Time Series Anomaly Detection Bench-
marks are Flawed and are Creating the Illusion of Progress” [16], Wu and Keogh
argue that many popular univariate and multivariate benchmark datasets for
anomaly detection have serious flaws that make the claimed performance of
many algorithms questionable. The authors demonstrate that using the so-called
one-liners (i.e., very short code with a simplistic logic such as the difference
between two consecutive points or the moving average), one can achieve state-
of-the-art performance on the datasets considered in the study. They particularly
pinpoint four flaws that the majority of the studied datasets suffer from: trivial-
ity, unrealistic anomaly density, mislabeled ground truth and run to failure bias
(i.e., anomalies systematically located at the end of time series).

While we agree with most of these points and find the conclusions of the paper
highly important, we believe that the point about the unrealistic anomaly density
in datasets should not always be regarded as a flaw. Actually, as the authors point
out, anomalies in data are rare by nature, and it is not easy to build a real-
world benchmark dataset that contains 10% or 15% of anomalies for example.
However, having many anomalies in the data, ideally with different distributions,
is necessary to reliably evaluate algorithms and their generalization capability.
Many of the frequently used MVTS benchmark datasets (e.g., SWaT [12], Wadi
[2] and PSM [1]) are gathered from real-world industrial systems and contain a
relatively high ratio of anomalies obtained by deliberately altering the normal
functioning of the system. These datasets are good to evaluate unsupervised
anomaly detection approaches because their training part is anomaly free1.

Nevertheless, we believe that this point may become concerning when training
data are provided with an “abnormally” high ratio of labeled anomalies, making
it possible to use supervised approaches. This may be problematic because in
the real-world, supervised algorithms would not have access to such big amounts
of labeled anomalies for training.

In terms of evaluation protocols and metrics, recent works on MVTS anomaly
detection have been marked by the use of the highly defective point-adjust pro-
tocol (discussed in Sect. 3.1), claiming very high scores. Kim et al. [11] propose
the first thorough review of this protocol, exposing its flaws. They particularly
introduce three basic methods that outperform all state-of-the-art algorithms
evaluated using this protocol. These methods include: 1) drawing a random
1 Assumption based on the description shared by datasets’ publishers. In any case, no
anomaly labels are provided for the training fold of these datasets, and almost all
approaches using them are unsupervised.
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anomaly score from a uniform distribution over [0, 1], 2) using raw feature val-
ues as an anomaly score, and 3) predicting anomalies using an untrained neural
network.

Based on the conclusions of [11], Garg et al. [8] propose the composite pro-
tocol in which the recall is calculated based on the number of detected anomalous
events (as opposed to anomalous points, see Sect. 3.3), whereas the precision is
calculated, as usual, at the point level. The F1 score is then computed using the
event-level recall and point-level precision This protocol alleviates the effects of
lengthy events on the point-wise protocol (introduced in Sect. 3.2) and allows
for a more intuitive evaluation of algorithms. With such a protocol, we can, for
example, know how many events an algorithm has detected. This is an important
information that the point-wise protocol does not provide.

3 Evaluation Protocols for MVTS Anomaly Detection

3.1 Point-Adjust: A Non-protocol for Time Series Anomaly
Detection

According to this protocol, if an algorithm correctly detects at least one anoma-
lous point within a segment of many, contiguous, anomalous points, then all
points within the segment are systematically considered detected and count as
True Positive (TP). The rationale behind this is that one segment represents one
anomalous event (which is a quite reasonable assumption) and thus, if the algo-
rithm detects one point within it as anomalous, then: 1) the whole event should
be declared as successfully detected, and 2) the algorithm should be rewarded
with as many TP as there are points in the segment, as illustrated in Fig. 1.

Fig. 1. Illustration of the point-adjust evaluation protocol. A single anomalous point
detected by the algorithm implies that all other points within the segment be counted
as True Positive, even if the algorithm did not actually detect them.

While the fact of “successfully detecting one anomalous point within a seg-
ment is sufficient to consider the event detected” is straightforward, we find the
second part of the reasoning problematic. First, it starts off by presenting the
evaluation criterion as event-based: the most important is whether the event is
detected once, regardless of the number of actually detected anomalous points
within it. The reasoning then seamlessly switches to a point-wise evaluation, mul-
tiplying, on its way there, the number of TP by the length of reasoning would
be to count just one TP for one detected event, like in protocols described in
Sect. 3.3.
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Second, this reasoning seems to rely on the tacit assumption that anomalous
points within the same segment are similar, and therefore it is “acceptable” to
detect just one or a few of them to consider all of them successfully detected. We
believe that, if this assumption holds, then from an algorithm developer’s per-
spective, the fact that the algorithm only detects a subset of presumably similar
anomalous points should be an argument to investigate the behavior of the algo-
rithm instead of rewarding it with points it did not detect. If the assumption
does not hold, however, and anomalous points within the same segment may
have different distributions, then considering that all the points were correctly
detected based on the mere fact that one of them was detected by the algorithm
sounds deliberately misleading.

As a result, using this protocol, an algorithm that has many false alarms but
happens to detect one or a couple of anomalies within an anomalous segment
would achieve a high score. Based on the distribution of anomalies in many fre-
quently used benchmark datasets, a very efficient such an algorithm would be a
one that randomly selects a small number of points and tag them as anomalous
while considering the remaining points as non-anomalous. This section intro-
duces, analyses and evaluates an algorithm of this kind.

Kim et al. [11] show that this protocol can be hacked using several proce-
dures, including: sampling random anomaly scores from a uniform distribution,
using raw feature values as an anomaly score, and predicting anomalies using an
untrained neural network. They also provide a formal proof for the first case.

In this work, we propose a procedure to reach a point-adjust F1 score of
choice, and calculate the probability of reaching it. The goal of the current part
is two-fold: 1) show how manipulable the point-adjust protocol can be, and 2)
lay the ground for discussing the weaknesses of the F1 score in general and how
inappropriate it can be for some kinds of datasets and anomaly distributions.
The latter will be further discussed in Sect. 3.2.

The F1 score is calculated in terms of precision P and recall R as follows:

F1 =
2 × P × R

P + R
for P =

TP
TP + FP

and R =
TP

TP + FN
where TP stands for True Positive, FP for False Positive, and FN for False
Negative.

We define r, the contamination rate in evaluation data, that is, the ratio of
anomalous points to the total number of points. If we randomly pick up α points
from evaluation data and tag them as anomalous, then the probability of not
hitting any anomalous point is (1 − r)α. Thus, the probability of hitting one
anomalous point at least is 1 − (1 − r)α.

Based on this, if the anomalies make up one single segment, then applying
the point-adjust procedure yields a perfect recall, Rpa = 1 with the same
probability:

p(Rpa = 1|r, α) = 1 − (1 − r)α (1)



6 M. El Amine Sehili and Z. Zhang

This is the probability of selecting at least one single point within the anoma-
lous segment with α trials, which is also the probability of selecting at most
(α − 1) points from outside the segment. In other words, this is the probability
of having (α − 1) false alarms at most: p(FP ≤ α − 1|r, α).

The point-adjust precision, Ppa, obtained from adjusted TP, TPpa, is:

Ppa =
TPpa

TPpa + FP
(2)

Let A be the length of the anomalous segment. When Rpa = 1, then TPpa =
A and FP equals (α − 1) at most. Thus, the worst point-adjust precision is
Ppa = A

A+(α−1) . We can write the probability of having a point-adjust precision
of at least A

A+(α−1) , given r and α, as:

p(Ppa ≥ A

A + (α − 1)
|r, α) = 1 − (1 − r)α (3)

Similarly, when Rpa = 1 we can write F1pa as:

F1pa =
2 × Ppa × 1

Ppa + 1
=

2 × Ppa

Ppa + 1
(4)

From Eq. 3 and Eq. 4 we have:

p(F1pa ≥
2 × A

A+(α−1)

A
A+(α−1) + 1

|r, α) = 1 − (1 − r)α

which can be written as:

p(F1pa ≥ 2A

2A + α − 1
|r, α) = 1 − (1 − r)α (5)

Equation 5 means that the larger α, the more confident we are about the
minimum F1pa we can achieve by tagging α random points as anomalous, but
the lower is that minimum value itself. However, we can also see that larger
values of A yield higher values for the minimum F1pa value because limA→∞[

2A
2A+α−1

]
= 1.

To illustrate this, we consider four hypothetical datasets with different sizes
but the same contamination rate, r = 0.1, as shown in Fig. 22. Each dataset con-
tains one anomalous segment whose length is 10% of the total dataset length. For
each dataset, we compute the probability of having a perfect point-adjust recall
(p(Rpa = 1)) by randomly tagging 1% of the points as anomalous, and show the
corresponding Cumulative Distribution Function (CDF) of the F1pa score, that
is, the probability of F1pa being ≤ a given value.

As can be observed on Fig. 2, the larger A, the higher p(Rpa = 1) and the
less likely that F1pa falls below the fairly high value of about 0.95. Actually, for

2 These values are not arbitrary but are close to what we observe in popular benchmark
datasets, especially for a A = 500.
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A = 50, we have p(F1pa = 0) = 0.59 and for A = 500, p(F1pa = 0) = 0.005.
For illustration purposes, these values are not shown on Fig. 2 but in a separate
figure, Fig. 3. Figure 3 is similar to Fig. 2 (for A = 50 and A = 500) but shows
the CDF of F1pa starting from F1pa = 0. We can see that with the point-
adjust procedure, detecting one single anomaly within an anomalous segment
may result in an unrealistically big jump in F1pa.

Fig. 2. Probability of achieving a perfect point-adjust recall (p(Rpa = 1) for four dif-
ferent datasets that have the same contamination rate, r = 0.1, but different anomalous
segment’s lengths. For each dataset, we randomly select 1% of the points (α) and tag
them as anomalous. Each subplot represents the CDF of the corresponding F1pa score.
That is, the x-axis represents threshold values and the y-axis is the probability of
obtaining an F1pa score ≤ the corresponding threshold value. Each value corresponds
to s ∈ [1, α], the number of successes hitting the anomalous segment. We can see that
for the same contamination rate across datasets, we are more confident about obtaining
fairly high F1pa scores as the length of the anomalous segment increases. For A = 500
for example, the probability of having F1pa ≤ 0.953 is close to 0.

Fig. 3. Probability of achieving a perfect point-adjust recall (p(Rpa = 1) for A = 50
and A = 500. Unlike Fig. 2, this figure shows the CDF starting from F1pa = 0.

In Fig. 2 and 3, the probability of achieving a perfect point-adjust recall
for A = 50 is 0.41 and that of having F1pa = 0 is fairly high (0.61). These
probabilities are based on α = 5. It turns out that we can improve these scores
and their probabilities by using better values for α while keeping other param-
eters unchanged (i.e., A = 50 and r = 0.1). Figure 4 shows the probability of
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achieving a perfect point-adjust recall for different values of α, and the worst
resulting Ppa and F1pa scores. These worst scores are reached if, out of α ran-
domly selected points, one single point falls within the anomalous segment and
α − 1 points outside of it. For α = 26, for example, p(F1pa ≥ 0.8) ≈ 0.935.

In practice, using this procedure with α = 1000 yielded an average F1pa score
of about 0.95 for SWaT and Wadi datasets and 0.98 for PSM. These scores are
higher than the ones obtained using elaborate DL-based pipelines.

Fig. 4. Probability of achieving a perfect point-adjust recall (p(Rpa = 1) for A =
50 and r = 0.1 for different values of α, as well the worst corresponding values of F1pa

and Ppa. The worst values correspond to the case where one single point within the
anomalous segment and α − 1 points from outside the segment are respectively tagged
as anomalous. Each x value corresponds to p(Rpa = 1) given a value of α.

3.2 Point-Wise: A Good Protocol but Not for All Situations

This protocol consists of computing the precision, recall and F1 score based
on the actual output of the algorithm, without any “adjustment”. There is noth-
ing special about this procedure, which is used in many other fields. One inter-
esting feature of the F1 score is that it is generally a good default choice for
unbalanced datasets. An unbalanced dataset contains a dominant class with the
majority of points belonging to it3. However, in many cases, including anomaly
detection, it is often desirable to know the number of false alarms raised by an
algorithm or at least their rate, referred to as False Alarm Rate (FAR), and
computed as the number of false alarms to the total number of normal points.

Consider for instance an anomaly detection algorithm used to detect upcom-
ing hard disk failures in a data center. Detecting an upcoming failure means that
the disk should be replaced. Using the FAR as one of the metrics to evaluate the
algorithm helps estimate the expected number of unduly replaced disks and the
resulting cost. This is not possible when using the precision or the F1 score.

3 Machine learning students are usually advised to use F1 as a better alternative to
the accuracy score for unbalanced datasets because using the latter would yield a
high score for a trivial algorithm that predicts the dominant class for every input.
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To further illustrate the limits of the F1 score, we consider many anomaly
detectors that have all the same recall of 0.99, but a FAR that varies across
detectors (0.001 ≤ FAR ≤ 0.2). We compute the F1 score of each of these detec-
tors with three datasets that have the same number of normal points (10000) but
a different number of anomalous points (5000, 1000 and 100 points respectively,
meaning that the datasets have a different contamination rate). Figure 5 shows
the F1 score of each of these detectors for the three datasets. As can be observed,
for a given detector (one tick on the x-axis), the F1 scores vary considerably
depending on the number of anomalous points in the dataset.

Fig. 5. F1 score of many anomaly detectors on three different datasets. All detec-
tors have the same recall of 0.99, but a different False Alarm Rate (i.e., each detec-
tor has its own FAR). Each curve corresponds to a dataset that has 10000 normal
points but a different number of anomalous points (the datasets have, therefore, a
different contamination rate). We can see that, even if the recall and the FAR of a
detector are the same for all datasets, its F1 score may be much higher for datasets
with a high contamination rate than for datasets with a low contamination rate. This
is particularly true for detectors with a high FAR.

This happens because the precision and, as a result, the F1 score, are also a
function of TP: a higher TP results in a better precision and F1 score. In fact,
as the FAR of a detector is the same across datasets, and as the three datasets
have the same number of normal points, the expected FP is the same for the
detector across datasets. However, as the number of anomalous points is not
the same for all datasets, the TP of a detector is higher for datasets with more
anomalies. As a result, the precision and F1 score are better for datasets with a
higher contamination rate. Consequently, the precision and the F1 score can only
yield a coarse estimation of false alarms and can hardly be used to accurately
estimate their cost in terms of money, time, human effort, etc.

More related to time series, another case where F1 score computed in the
point-wise fashion has limits is when anomalies make up lengthy segments as
opposed to isolated outliers. We refer to these segments as anomalous events. In
principle, if two algorithms have roughly the same FAR, one would prefer the
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one that detects more events even if its point-wise recall is lower. The point-
wise F1 score does not allow algorithm comparison from that perspective, and
does not let us know how many events were ever detected by an algorithm.

The limits of the point-wise F1 score may be exacerbated for benchmark
datasets that contain one or a couple of very long events compared to the rest of
events. In such cases, an algorithm may be tuned to efficiently detect anomalies
within the lengthy events, while probably (and seamlessly) being less efficient
for shorter events4. This is for example the case for the SWaT dataset, in which
the median event length is 450 points, but there is one 35K-point event that is,
furthermore, the most anomalous and the easiest to detect.

3.3 Alternative Evaluation Protocols

The Composite Protocol. By design, the point-wise F1 score treats TP
and FP alike (and also FN, but this point in not necessary to the current discus-
sion). As a result, each TP is celebrated as one more detected anomaly and each
FP is regarded as a false alarm. The problem is that, for benchmark datasets
that contain anomalous events, the very first anomaly detected within an event
is normally more informative than consecutively detected anomalies within the
same event. Hence, the symmetry with which point-wise protocol considers TP
and FP is no longer justified. Based on this reasoning, Garg et al. [8] propose to
count just one TP for each detected event, regardless of the number of anoma-
lous points detected within it. The recall is hence computed at the event level.
However, to compute the precision, the TP and FP at the point level are used,
just like with the point-wise protocol. The resulting F1 score, referred to as
F1C in the following, is called composite. This protocol is much more appro-
priate than the point-wise protocol for datasets in which anomalies take the
form of long events, and we believe it should be paid more attention in future
works.

The Event-Wise Protocol. Motivated by the conclusions of [8], and in an
attempt to: 1) partially disentangle the precision from TP and give more weight
to false alarms, and 2) make the performance of algorithms easier and more
intuitive to interpret5, we propose the event-wise protocol.

The event-wise protocol computes TP at the event level, as in the com-
posite protocol. However, FP is not counted at the point level, as with the
point-wise and composite protocols, but is the number of anomalous seg-
ments found by the algorithm that do not overlap with any Ground Truth (GT)
event. For clarity, we use “segment” to refer to any set of contiguous points that

4 This situation has subtle links to the one of imbalanced datasets for which the F1
score is usually recommended in the first place.

5 By interpretation we mean understandinghow many anomalous events the algorithm
detects and how many false alarm it raises. This has nothing to do with model
interpretability whose goal is to answer why/how an algorithm made a given decision.
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the algorithm considers anomalous, and “event” to refer to a GT anomalous
event. Based on this, we define the following event-wise metrics:

– TPE : number of GT events that fully or partially overlap with one segment
or more. The event-wise recall is calculated as RE = TPE

# GT events . This is
the same recall used in the composite protocol.

– FNE : number of GT events that do not overlap with any segment.
– FPE : number of segments that do not overlap with any GT event. This

includes segments of many points as well as isolated points. The event-
wise precision can be computed as PE = TPE

TPE+FPE
.

A similar protocol was proposed by [10] but has not been much used in
consecutive works. This is likely due to one serious issue it has: an algorithm that
predicts an alarm for every point (e.g., algorithm A3 in Fig. 6) would have prefect
event-wise recall (RE) and precision (PE). To avoid this, we propose to involve
the FAR at the point level in the computation of the event-wise precision. The
precision at the event level is therefore computed as:

PE =
TPE

TPE + FPE
× (1 − FAR) (6)

where FAR = FP
N and N is the number of normal points in data. The event-

wise F1 score, denoted F1E , is then computed in terms of RE and PE .
Figure 6 illustrates this protocol with the outputs of three algorithms. Note

that algorithm A3 has F1E = 0 despite the fact that it has a perfect event-
wise recall. This is the case because this algorithm has a FAR = 1. Thanks to
the introduction of FAR in the computation of the precision, the proposed event-
wise protocol is more sensitive to false alarms compared to other protocols, and
is less dependent on TP or on the number of anomalous points in the dataset.

Fig. 6. llustration of the event-wise protocol with three GT events and the outputs of
three algorithms. Algorithm A1 detects all events without false alarms (i.e., it has no
segment that does not overlap with any event). Despite this, its precision is not perfect
because its second segment is too long. Algorithm A2 achieves an event-wise recall
of 2/3 and a low precision because its FPE = 3. Algorithm A3 detects all events but
its event-wise precision, PE , and its F1E score equal 0 because its FAR is 1.
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4 Benchmark Datasets, Experiment Design and
Algorithms Comparison

Wu and Keogh [16] discuss flaws of a few datasets for univariate and multi-
variate time series used for anomaly detection, and how trivial solutions can
achieve state-of-the-art performance on them. In this section, we discuss other
issues related to a few popular MVTS datasets and certain practices in terms of
evaluation that hinder objective algorithm comparison.

SWaT and Wadi are two very popular MVTS benchmark datasets for
anomaly detection. They are fairly big in terms of number of points and have
each many anomalous events introduced by deliberately manipulating parts of
the system from which they are collected. However, these datasets are shared by
their publishers in a raw format upon subscription, with incoherent labeling for
the former and two data versions for the latter.

The SWaT dataset for example has one integrated label column as well as
a separate file that contains the start and the end of anomalous events. Using
events’ start and end to reconstruct the labels does not result in the same content
as in the integrated label column. Wadi has two versions from 2017 and 2019,
with different sizes and different anomaly ratios. This situation has led to a
disagreement about the characteristics of these datasets across papers.

Furthermore, as mentioned earlier, the SWaT dataset contains one anoma-
lous event that is much longer than other events. This event contributes to the F1
score much more than other events and explains the relatively high scores of
many algorithms using the point-wise protocol with this dataset compared to
other datasets. Actually, by shortening this event to the median event length,
[8] showed a significant drop in the point-wise F1 score for all algorithms.
While this is an interesting finding, we do not advocate for deliberate event
shrinking because it may introduce artifacts and subtle changes in the data,
making the event easier to detect. We believe that this issue can be better dealt
with using event-aware evaluation protocols like the ones introduced in Sect. 3.3

The use of different evaluation protocols across publications has also led to
situations where authors evaluate their algorithm with the point-adjust proto-
col but report results of other approaches using the point-wise protocol. This is
for example observed in [6], which evaluates the proposed algorithm using point-
adjust and compares the results to at least one algorithm (GDN [7]) using the
point-wise protocol. Other works, such as [15], use the point-adjust protocol
without even mentioning it in the text. These practices, which may be observed
in other works (and which we assume are not intentional), are very likely to
be misleading for uninformed readers, including reviewers. Finally, in [13] the
authors explicitly confirm that they do not use the point-adjust protocol, cit-
ing what is probably the main work highlighting the flaws of this protocol as of
today, [11]. However, reported scores for the proposed algorithm, as well as for
state-of-the-art algorithms considered for comparison, look as high as the usual
point-adjust scores encountered in many studies with the same datasets.
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5 Algorithms

In this part, we evaluate three DL-based algorithms for MVTS anomaly detec-
tion, as well as a baseline algorithm based on PCA. These DL-based approaches
are selected because they are quite recent (2021), introduce very interesting
ideas, and achieve a very good performance with the used protocols. Moreover, all
of these approaches have an official open source implementation that we used in
our experiments. The approaches are:

– Anomaly Transformer [17], uses Transformers to model time series
dynamic patterns. Evaluated using the point-adjust protocol only in original
work.

– NCAD [4], uses a 1D Convolutional Neural Network (CNN) to obtain feature
representations of data. Also evaluated using the point-adjust protocol only
in original work.

– GDN [7], uses GNNs to learn the relationship between time series to achieve
a better forecasting performance. Evaluated using the point-wise protocol
only in original work.

Our goal is to challenge these algorithms with different evaluation proto-
cols and confront them with PCA. Table 1 summarizes the obtained results with
point-wise, composite and event-wise protocols. It also reports the number
of detected events (TPE) and the number of predicted anomalous segments that
do not overlap with any GT event (FPE , see Fig. 6). Results are obtained using
the SWaT (with labels constructed from attacks’ start and end), Wadi (2017
version), and PSM datasets.

Table 1. Comparative results of AnomalyTransformer (AT), NCAD, GDN and PCA
using the point-wise (F1), composite (F1C) and event-wise (F1E) protocols. All
metrics are computed based on the detection threshold that yields the best point-
wise performance. The SWaT, Wadi and PSM datasets have 35, 14 and 72 events and
a contamination rate of 11.98%, 5.70% and 27.76% respectively.

SWaT Wadi PSM

F1 F1C F1E TPE/FPE F1 F1C F1E TPE/FPE F1 F1C F1E TPE/FPE

AT 0.214 0.214 0.000 35/0 0.108 0.108 0.000 14/0 0.434 0.434 0.000 72/0

NCAD 0.217 0.217 0.002 35/694 0.114 0.115 0.003 14/1394 0.429 0.429 0.000 72/0

GDN 0.821 0.488 0.478 11/0 0.567 0.764 0.485 9/14 0.594 0.640 0.096 63/843

PCA 0.801 0.476 0.440 11/4 0.325 0.498 0.151 6/59 0.470 0.457 0.156 61/85

These results reveal a number of interesting findings, summarized as follows:

– Algorithms that were developed using point-adjust as the sole target fail
to reach any score better than a random guess when evaluated with other
protocols. This is the case of AnomalyTransformer and NCAD. For the
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sake of completeness, we also evaluated these algorithms using the point-
adjust protocol and achieved the same, very high, scores reported in original
papers. It is worth mentioning that we also achieved essentially the same high
scores using untrained versions of these models. We assume that many other
approaches developed using the same setting would face the same problem6.

– GDN, however, which was developed based on the more realistic point-
wise protocol, shows more resilience when evaluated with other protocols.

– Datasets that have a very high contamination rate, such as PSM, yield point-
wise F1 scores that can be misleading. AnomalyTransformer and NCAD,
for example, achieve a point-wise F1 score around 0.43, which may look as
a fairly good baseline score. In actual fact, based on the contamination rate
of the dataset, this score is achievable by predicting all or most points as
anomalous, and this is what these algorithms are doing. The composite
score is comparable to the point-wise score in this case and does not bring
any useful information. The event-wise score, however, severely penalizes
such approaches thanks to the inclusion of FAR in score computation.

– Finally, we show that PCA, which is not considered as a particularly
advanced approach for MVTS anomaly detection, achieves an honorable
point-wise score compared to many recent DL-based approaches (e.g. USAD
[3], MSCRED [18], OmniAnomaly [14] and DAGMM [20], see [11] for a sum-
mary of the performance of these approaches). Our conclusion here is that
many works have been developed without establishing a simple but enough
challenging baseline. Actually, the bar of 0.8 point-wise F1 score for the
SWaT dataset had been a symbolic target for many years until recent GNN-
based approaches, such GDN [7] and FuSAGNet [9], reached it. In our PCA-
based pipeline, we use simple pre-processing and post-processing blocks (input
scaling, clipping and score smoothing) that significantly improve the score.

Scores in Table 1 are obtained using the threshold that yields the best point-
wise F1 score. To further understand the decisions of algorithms such as Anom-
alyTransformer and NCAD, we used the threshold that yields the best point-
adjust score for these algorithms and looked at their outputs to better under-
stand their behavior. As aforementioned, using the point-adjust protocol, we
obtained scores comparable to those reported in original papers for these algo-
rithms (actually, we achieved even higher scores). The first row in Fig. 7 shows all
GT events of SWaT as well as the outputs of AnomalyTransformer that lead
to a 0.97 F1pa score. By zooming in on smaller parts of the dataset (the three first
events, then just the first one), we see that the algorithm predicts anomalies at
an almost regular pace. More precisely, using the threshold that ensures the best
F1pa score results in a total of 4097 points predicted as anomalous, of which 473
lie within an anomalous event and 3624 outside any anomalous event. Knowing
that the whole test dataset is about 5 days long, has one point per second, and
a total of 35 anomalous events, the algorithm, with such an output, helps detect

6 Also check out this issue and related ones on AnomalyTransformer’s official repos-
itory: https://github.com/thuml/Anomaly-Transformer/issues/34.

https://github.com/thuml/Anomaly-Transformer/issues/34
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all 35 events while raising 3624 false alarms over 5 days. On average, it raises an
alarm every 110 s, making it, in our opinion, barely useful for deployment. Such
a behavior is generously rewarded by the point-adjust protocol.

Fig. 7. Ground Truth anomalous events of the SWaT dataset and outputs of Anom-
alyTransformer. The second and third rows zoom in on the first three events and
on the first event respectively. We can see that all the algorithm is doing is output an
anomaly prediction at almost regular intervals. This ensures a 0.97 F1pa score. Note
that on the first row (whole dataset), there are exactly 4097 red dots (≤ 1% of the
total points) but they look many more because the size of the dots is intentionally big
for visualization purposes.

6 Discussion: Towards Better Practices for MVTS
Anomaly Detection

6.1 Evaluation Protocols and Metrics

The point-adjust protocol has had its very illegitimate hour of glory and cre-
ated what Wu and Keogh [16] call “illusion of progress” in probably quite a
unique way in machine learning. We believe that this protocol should no longer
be used. Authors should resist the temptation of publishing high but misleading
scores using it, and reviewers should be aware of its flaws and advise authors to
report results using other protocols.

Evaluating algorithms for time series anomaly detection is not a trivial task.
The point-wise protocol may be good as a straightforward way to compare and
rank algorithms but other protocols and metrics, especially event-aware ones,
should be used alongside this protocol when possible. For datasets that contain
anomalous events/episodes, at least the number of detected events should be
reported for each algorithm alongside point-wise metrics.
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6.2 Datasets and Experiment Design

By sharing the raw versions of SWaT and Wadi datasets, the publishers appar-
ently wanted to give researchers the freedom to experiment with the data the
way they want. However, this has led to a divergence in the way these datasets
are described and used in the literature. We believe that it would be better that
the data be stored in a unique, accessible place using a format that anyone can
start experimenting with quickly. Ideally, part of the test data would be pro-
vided without labels so that researchers upload the output of their algorithms
to a third party server for evaluation and publication on a public leaderboard.

6.3 Algorithms

As mentioned in Sect. 1, recent approaches for MVTS anomaly detection have
been marked by quite a few innovative ideas. However, based on the methodology
issues discussed along this paper, our position on this is the following: while
many of the proposed approaches are conceptually very appealing, we believe that
the merits of a majority of them are yet to be confirmed in the light of more
appropriate evaluation protocols.

Researchers should find a balance between the effort allocated to designing
efficient algorithms and that allocated to running sound experiments. Based
on our own experiments and on the results shown by [11] using an untrained
model, it is reasonable to assume that studies using the point-adjust protocol
achieved high scores in a relatively short time. Oftentimes in machine learning,
an abnormally high score is achieved with little effort either because the problem
at hand is trivial, due to a data leakage somewhere in the pipeline, or due to
a bug in evaluation code. Admittedly, when the main cause is a widely used
evaluation protocol, it can be much harder to uncover, hence the need to discuss
evaluation protocols and their potential weaknesses and biases.
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Abstract. Blockchain benchmarking systems are actively discussed in
the literature, focusing on increasing the number of blockchains that can
be supported. However, the constant inception of new blockchains into
the market and their vast implementation differences make it a mas-
sive engineering challenge. We provide a general discussion on the main
aspects of benchmarking blockchains, highlighting the necessary contri-
butions from the developers and users of blockchains and benchmarking
systems. We identify problem statements across four benchmarking fac-
tors by investigating five popular permissioned blockchains. Further, we
define a broad methodology to tackle these problems. We conduct a case
study of five existing blockchain benchmarking systems for our evaluation
and identify their limitations, clarifying the need for our methodology.
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1 Introduction

Though blockchains were initially considered digital currency exchange sys-
tems, introducing smart contracts led to the classification of blockchains as
decentralized transactional management systems that could support more use
cases [64]. Later, the conception of permissioned blockchains that restricted the
network access to authorized users and improved the overall performance made
blockchains attractive for enterprise use cases. Currently, the most popular per-
missioned blockchain platforms, such as Fabric, Corda, Multichain, and Quo-
rum, have around 30 to 70 enterprise partners using their systems for various
use cases, such as banking, supply chain transparency, and digital asset manage-
ment [20,42,54,59].
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However, the plethora of blockchain systems currently available in the mar-
ket creates uncertainty in the selection process. A recent survey shows that
26% of users switched from their initially chosen blockchain at a later stage
of development and that performance is one of the top selection criteria for
blockchains [62]. Though most blockchains report their individual performance
data, the vast differences in implementation, system configuration, and work-
loads make a fair comparison challenging [33]. This highlights the demand
for a comprehensive and impartial blockchain benchmarking approach. Cur-
rently, there are multiple benchmarking system implementations available for
blockchains [11,28,33,40,57,65]. Each of them targets one or a specific set
of blockchains to benchmark. The current focus in this research space is on
increasing the number of blockchains supported by a benchmarking system.
For example, Blockbench [28], the first benchmarking system for permissioned
blockchains, supports four blockchains, while Diablo [33] and Gromit [57], the
latest benchmarking systems, support seven blockchains. However, the rapid
inception of new blockchains into the market makes this a massive engineering
challenge.

Additionally, as is the case with most transaction processing systems, ini-
tially, the lines between the design and implementation of benchmarking sys-
tems are often blurred [4]. A well-implemented benchmarking system may still
fail to consider all crucial aspects of benchmarking due to poor design [34]. For
example, many existing benchmarking systems only support simple asset trans-
fer scenarios [57,65], while in reality, blockchains are employed for numerous
other use cases. Therefore, we identify the need for a thorough discussion on the
different aspects of benchmarking blockchains, which will assist in implementing
a comprehensive and extensible benchmarking system in the future.

One needs to understand the similarities and differences between the various
blockchain platforms to identify the diverse factors of benchmarking accurately.
A significant challenge in this direction is the insufficient scientific literature.
Since many blockchains are commercialized, apart from research papers, we
must also analyze technical documentation and blog posts from the respective
blockchain developers to understand their systems thoroughly. Further, given
the vast implementation distinctions among the different blockchain systems,
discussions regarding blockchain benchmarking should not be limited to devel-
opers of benchmarking systems, but should also include developers of blockchain
systems.

Our discussions address the problems regarding crucial benchmarking ele-
ments such as system configuration, parameter tuning, workloads, and metrics.
We emphasize the importance of these issues by extensively analyzing five dif-
ferent permissioned blockchains. We then define the contributions required from
the entire blockchain community to tackle them. We also conduct a case study
of five existing benchmarking systems to identify their limitations and highlight
the need for contributions. For example, we identify various system configuration
settings that affect the performance of each of the multiple blockchains, while
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current benchmarking studies only employ the default value for these settings.
In detail, we provide the following contributions:

1. We formulate problem statements across four aspects of benchmarking based
on five different permissioned blockchains (Fabric, Corda, Multichain, Quo-
rum and Diem). This highlights the importance of these problems across
different blockchain platforms.

2. We define a general methodology to tackle the problems that spans across
developers and users of blockchains as well as benchmarking systems. This
highlights the contributions required from each of them to improve the domain
of blockchain benchmarking.

3. We provide a case study of five different blockchain benchmarking systems and
the corresponding benchmarking studies to highlight the current limitations.
This can help benchmarking system developers to extend their implementa-
tions to adhere to our methodology.

2 Permissioned Blockchains

In permissioned blockchains, access is restricted to a set of authorized users, mak-
ing them suitable for many enterprise use cases that cannot support anonymity.
They are peer-to-peer networks with access controls operating on a distributed
ledger. Despite being in the same classification, the multiple permissioned
blockchain systems currently available have vast differences in their implementa-
tion. This section briefly overviews the basic concepts and transaction flow of five
popular permissioned blockchains, accentuating their similarities and differences.

2.1 Hyperledger Fabric

Hyperledger Fabric (a.k.a Fabric) is an open-sourced, permissioned blockchain
system under the Linux foundation [2]. Fabric follows an execute-order-validate
(EOV) model, one of its unique features. The main components of a Fabric
network are peers, endorsers, and the ordering service. Only the endorsers store
the smart contracts, and transactions are sent to the endorsers for execution
based on an endorsement policy. Speculative transaction execution results in a
read-write set of all the keys in the transaction which is then forwarded to the
ordering service. The ordering service is a cluster of nodes that employs the Raft
consensus protocol to decide on the order of the transactions. Upon consensus,
a block of ordered transactions is broadcasted to all peers. Every peer validates
the speculative results of every transaction in the block with the current world
state. After successful validation, the world state is updated, and the block of
transactions is committed to the ledger.

2.2 Corda

R3 Corda is an open-sourced permissioned blockchain mainly designed for finan-
cial use cases [7]. In Corda, data is only shared among the network participants
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on a need-to-know basis. The nodes in a Corda network are authorized using an
identity service. Further, a network map service is employed for node lookup,
enabling point-to-point communication between nodes. An immutable object
called a state describes any data known to the nodes at a specific point in time.
Each node has a vault or database that stores all the state sequences it knows.
Constraints to ensure that a state is valid are defined using smart contracts. A
transaction defines the input and output for a state transformation. Further legal
prose can be attached to a transaction to settle future disputes, which makes
Corda appealing to financial use cases. Notaries are specific nodes assigned with
the responsibility of ensuring that output states are unique successors of input
states thereby preventing double spending. When a transaction proposal is cre-
ated, only the entities related to it execute the smart contract to ensure its valid-
ity. Further, notaries check each input state object in a transaction to ensure
that they have not been consumed earlier and prevent double-spending. Trans-
actions are committed after the transaction-related entities and the notaries sign
them.

2.3 Multichain

Multichain is a fork of Bitcoin and shares many of its features [35]. However, it is
designed for a permissioned environment where nodes prove their identity using
a handshaking protocol when connecting to other nodes. Each node defines the
public address for which it has a private key, and other nodes can send challenge
messages to be signed with this key. Unlike Bitcoin, only a few nodes are granted
mining privileges, and there is a single validator per block. The validator is
scheduled in a round-robin style with tunable parameters. Other participants
then execute the individual transactions in a block in the defined global order.

2.4 Quorum

Quorum is a fork of the Go implementation of Ethereum, where the P2P layer
was redesigned to allow only authorized nodes [50]. A privacy layer is imple-
mented to support private and public transactions in a permissioned environ-
ment. Quorum uses transaction managers to handle encrypted data, including
an enclave, which is a hardware security module, to hold private keys. Private
transactions are sent to transaction managers for encryption after verifying the
sender, and only the entities related to the transaction can receive the decrypted
data. Different protocols, such as Raft, IBFT, and QBFT, are employed to attain
consensus in the Quorum network. When consensus is reached, all the nodes in
the network execute the public transactions in a block, while private transactions
are only executed by the entities related to the transaction.

2.5 Diem

Diem (earlier known as Libra) is a permissioned blockchain introduced by Face-
book (now Meta) [27]. The network consists of two types of nodes - full nodes
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and validators. For every incoming transaction, validators check the signature,
balance, and whether the transaction has been replayed, before sharing them
with other validators. A BFT protocol (DiemBFT) is used to reach a consensus
on the order of transactions. When a validator is elected as the leader, it pro-
poses a block which is forwarded to the other validators for approval. Meanwhile,
the transactions in the block are speculatively executed and also shared. Upon
consensus, all the transactions of the proposed block are committed. Full nodes
are employed to re-execute and store all transactions to provide evidence in the
event of a history rewrite attempt. It ensures that validators cannot collude on
transaction executions.

3 Benchmarking Guidelines

In this section, we focus on four important aspects to address when benchmark-
ing permissioned blockchains. We consider examples from Fabric [2], Corda [37],
Multichain [55], Quorum [60] (four of the most commonly used permissioned
blockchains [62]) and Diem [27] when defining each problem statement. We then
propose a general methodology for tackling each problem. The methodology tar-
gets blockchain developers, benchmarking system developers, as well as those
conducting benchmarking studies on blockchains. We aim to bring to light the
contributions required from each of them to the blockchain benchmarking space.

3.1 System Configuration

Problem Statement. There is a vast distinction in the system components
that compose the different permissioned blockchain implementations. The choice,
count, and distribution of the different components significantly affect the per-
formance. For example, the Hyperledger Fabric network consists of validating
peers, endorsers, orderers, and clients where the count and distribution of each
of these components impact the performance [9,12,38]. Corda offers two config-
urations for its notary nodes: validating and non-validating. Deploying multiple
validating notary clusters can aid load balancing, improving performance [19].
In the Quorum network, performance is influenced by the choice between full
nodes with a privacy manager or light nodes [32] for process-intensive tasks as
well as boot nodes [14] or static nodes [15] for different peer discovery strategies.
Multichain has the concept of data streams, and nodes that subscribe to these
streams ensure faster information retrieval [52]. Also, Diem has the concept of
validator nodes and full nodes, the choice of which can introduce additional over-
head depending on the use case [26]. Therefore, identifying the influential system
components and designing the optimal setup is crucial to ensure the best per-
formance for each blockchain implementation. Further, even though the system
configuration of each blockchain needs to be individually optimized, the hard-
ware requirements or the hardware cost must be uniform across all blockchains
for a fair benchmarking approach [61].
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Methodology

1. Blockchain system developers need to provide extensive documentation and
experimental results to quantify the influence of system components on the
performance for each blockchain. Identifying and documenting a priority-
based list of the main components that significantly impact the performance
will be highly beneficial. Multichain published a list of tips for performance
optimization on their website [53] which includes ideal server specifications,
and though they do not provide concrete suggestions, this highlights the need
for such documentation from the developers.

2. Benchmarking system users must design an optimal system setup specific to
each blockchain based on their documentation. This is a challenging yet cru-
cial task. Individually optimizing the system setup ensures benchmarking the
best performing setup of each blockchain. Further, all the blockchains bench-
marked together must employ uniform hardware or be limited to uniform
hardware costs to ensure fairness [61].

3. Benchmarking system developers must support easy integration and recon-
figuration of all system components. Due to the large number and type of
components involved, system setup is often complex for blockchains [71].
Benchmarking systems need to provide automation scripts or at least detailed
documentation that supports the integration of influential system components
apart from the default to ease the system setup process. Further, the optimal
system setup varies with use cases, so easy reconfiguration should also be
supported.

3.2 Parameter Tuning

Problem Statement. Parameter tuning is a significant factor to consider while
benchmarking blockchains, and it is heavily discussed in the literature [9,47,70].
The literature mainly discusses generic parameters, such as block size, while
system-specific parameters are largely ignored. However, both are equally impor-
tant to ensure fair benchmarking. The number of transactions to include in
a block is a well-known parameter that influences the performance of most
blockchains [9,49], but Corda is an exception since the concept of blocks does not
exist [18]. Further, there are system-specific parameters such as the set of cache-
related parameters for GoQuorum [30,31] and Corda [17], the validator pool
size, endorsement policy, and CouchDB parameters for Fabric [12], or the min-
ing diversity and skip proof-of-work check [51] configurations in Multichain, all
of which can be tuned for performance improvements. Also, Diem offers mempool
[25] and consensus [24] configurations that are based on its unique implementa-
tion. Therefore, individually identifying and tuning the critical parameters for
each blockchain is required to benchmark the ideal performance of every system.
However, on the other hand, some parameters may impact the system’s func-
tionality and must be set equivalently to ensure a fair comparison. For example,
Clique is byzantine fault tolerant with eventual finality, while Raft is only crash
fault tolerant with immediate finality, and either can be chosen as the consen-
sus protocol in Quorum [16]. If Fabric, which offers only the Raft consensus



24 J. A. Chacko et al.

protocol, is benchmarked with Quorum, then to ensure fairness, Quorum’s con-
sensus protocol needs to be set to Raft. Parameter tuning is often discussed in
the literature on benchmarking transaction processing systems [4,34]. However,
when considering blockchains, there is a more diversified set of parameters for
tuning since the blockchain stack is comprised of numerous layers such as con-
sensus models, access control protocols, database stores, smart contracts, and
distributed ledgers.

Methodology

1. Blockchain developers should identify key parameters that influence the
performance of their blockchain. They should ensure that all configuration
parameters and quantitative evidence of their effect on performance are well
documented. Workload-based analysis of these parameters should also be con-
ducted and documented. Further, given the large number of parameters in
blockchains, a prioritizing strategy would be beneficial. For example, Fabric
has over 50 parameters, and a recent study quantitatively ranked the top
parameters that significantly affect the performance [46].

2. Benchmarking system users must tune parameters based on the workload and
system setup. Currently, benchmarking is often accomplished with the default
parameter values or with a one-time tuning of limited parameters [28,33,57].
However, studies show that parameter tuning significantly depends on the
workload and system setup [9,47,70]. Therefore, parameter tuning should be
done dependent on the use case that is being benchmarked. Recently, auto-
tuning of blockchains is also being discussed in the literature, which could
ease this process [46].

3.3 Workloads and Use Cases

Problem Statement. The third important aspect to consider is the workload
employed for benchmarking. Using existing workloads such as YCSB and TPC
is a popular choice since these are well established in the community [28,44].
However, blockchains often target different use cases than traditional transac-
tion processing systems. Therefore, reusing existing workloads is often unrealistic
and leads to inaccurate assumptions about the performance of a system [33]. But
traditional workloads are still useful to benchmark scenarios where enterprises
port their existing applications to blockchain systems. Further, blockchain imple-
mentations are varied, and each is designed with a specific use case in mind. For
example, Fabric cannot handle highly skewed workloads due to its optimistic
concurrency control model [9], and Corda supports only point-to-point requests
between entities involved in a transaction [18]. Also, Quorum and Corda are
mainly popular for financial use cases while Fabric applications range across
multiple domains such as supply chain management and healthcare [73]. Fur-
ther, the system setup, parameters, and transaction definition also vary with the
use case. Multichain recommends different performance optimization strategies
based on the expected type of workload [53], and Diem defines three different
types of transactions based on the client account type [72].
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Methodology

1. Benchmarking system developers should focus on both traditional as well
as blockchain-specific workloads. Porting traditional workloads such as TPC
and YCSB to blockchain environments is a good practice as it corresponds to
scenarios where existing enterprise applications are migrated to blockchain
platforms. However, the focus should also be given to blockchain-specific
workloads, such as supply chain and digital asset management scenarios, to
capture realistic performance capabilities better. Apart from workload gen-
eration, converting or porting the workloads to support multiple blockchain
implementations is an important and challenging engineering task.

2. Benchmarking system developers must also generate system-specific work-
loads. Such workloads that stress test distinctive blockchains based on their
specific design are essential to highlight accurate performance expectations.
For example, private transactions in Fabric and point-to-point requests in
Corda would need specific workloads different from other generic broadcast
transactions. Also, the targeted use cases of each blockchain implementation
should be supported.

3. Benchmarking system users and blockchain developers should provide use
case-based discussion of benchmarking results. Benchmarking results will
quantitatively indicate the most or least performant blockchain. However,
a specific blockchain’s intended use case must be considered before reach-
ing a viable conclusion. For example, it has been quantitatively shown that
Fabric is more performant than Diem [76]. However, Diem supports a byzan-
tine fault-tolerant consensus protocol, while Fabric uses a crash fault-tolerant
consensus protocol, both of which are suitable for entirely different use cases.
Therefore, evaluation results need to be explored extensively in relation to
the blockchain implementation and envisioned use.

3.4 Performance Metrics

Problem Statement. The metrics used for benchmarking depend on the qual-
ity being benchmarked. Throughput and latency are the main client-visible met-
rics generally used in benchmarking blockchains when the focus is on perfor-
mance; as well, some studies look at metrics reported from the blockchain plat-
form, such as CPU usage or storage. However, there needs to be more clarity
about how to define these metrics. Throughput is often defined as the number of
transactions committed to a blockchain per second. However, for Fabric, failed
transactions are also committed to the blockchain [2]. Latency is often described
as the duration between transaction submission and final commit. However, sub-
mission time can be considered as the time the client submitted the transaction or
the time the transaction entered the consensus protocol [28,45]. Further, depend-
ing on whether the blockchain supports immediate or probabilistic finality, the
definition of commit time changes [57]. Also, latency is a distribution, and sin-
gle summary values such as mean or 95-percentile can be quoted, depending on
what matters most for the specific use case. Therefore, a uniform definition for
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blockchain performance metrics is challenging. Further, system-specific metrics
also need to be considered to provide a better understanding for the client. For
example, apart from throughput and latency, Diem developers define a met-
ric called capacity as “the ability of the blockchain to store a large number of
accounts” [1].

Methodology

1. Blockchain developers must define generic as well as system-specific perfor-
mance metrics. Generic metrics should either be uniformly defined for all
blockchains along with the system-specific assumptions or be uniquely defined
for each blockchain (or both). System-specific performance metrics must be
clearly defined, and the necessity for these metrics must also be clarified.

2. Benchmarking system developers should support fine-grained result gener-
ation. Since the metric definition varies for each blockchain, publishing all
variations of a metric in the results will be helpful for better understanding.
In most cases, simple mathematical calculations can provide more fine-grained
results. For example, the results from the Caliper benchmarking system dis-
play only the “success throughput” and not the “commit throughput” even
though both can be derived from the available results [9].

4 Case Study

In this section, we analyze five different benchmarking systems that support
permissioned blockchains [5,8,22,36,40] as well as the corresponding five bench-
marking studies conducted using these systems [9,28,33,57,65]. Our discussion
is mainly based on the benchmarking studies as this is representative of how
the benchmarking system is used in practice. Table 1 summarizes the integrated
blockchain systems, available workloads, and published performance metrics for
each benchmarking system. We intend to identify the limitations of the current
benchmarking systems through this case study which can help develop a more
comprehensive system.

Scope. We observe that none of the benchmarking systems currently support all
four of the most commonly used permissioned blockchains (Fabric, Corda, Mul-
tichain and Quorum). One of the main reasons for benchmarking is for clients
to choose the appropriate blockchains based on their requirements. Therefore, a
benchmarking system must support at least the most popular blockchain choices.
However, the engineering challenge behind implementing such a comprehensive
benchmarking system is immense. Alternatively, providing documentation that
accurately details the exact procedure to integrate any new blockchain into an
existing benchmarking system would be beneficial. Diablo, Gromit, and BCT-
Mark provide short documentation or discussions on integrating new blockchains
into their benchmarking system [23,57,65]. Caliper provides extensive documen-
tation that details the steps required to implement a connector to integrate a
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Table 1. Blockchain Benchmarking Systems

Benchmarking Systems Supported blockchains
(permissioned
underlined)

Supported Workloads Performance Metrics

Blockbench [28] Ethereum [74],
Fabric [2], Parity [58],
Quorum [60]

YCSB, smallbank,
etherId, doubler,
wavesPresale,
doNothing, analytics,
IOHeavy, CPUHeavy [5]

success throughput,
average latency

HyperledgerLab [9],
Caliper [40]

Fabric, Ethereum,
Besu [39]

simple asset transfer,
smallbank, fabcar,
synthetic generator,
electronic health
records, digital music
management, e-voting,
supply chain
management [41,43]

commit throughput,
success throughput,
average latency

Diablo [33] Algorand [29],
Avalanche [63],
Ethereum, Diem [3],
Solana [68], Quorum,
RedBelly [21,69]

exchange DApp, gaming
DApp, webservice
DApp, mobility service
DApp, video sharing
DApp [22]

throughput, average
latency, proportion of
committed transactions,
peak transaction
throughput, latency
distribution over time

Gromit [57] Ethereum, Algorand,
BitShares [66], Diem,
Fabric, Stellar [48],
Avalanche

simple asset transfer [36] peak transaction
throughput, average
latency

BCTMark [65] Ethereum, Clique [13],
Fabric

synthetic generator,
history-based , sorting
algorithms [8]

CPU usage, HDD usage,
memory consumption,
gas cost

new blockchain [75]. This includes the requirements of the connector, implemen-
tation, binding, and integration, as well as instructions on how to document
the newly developed connector for future users. Despite the well-defined doc-
umentation, there has been little effort from the community to integrate more
blockchains into Caliper.

System Configuration. The existing benchmarking systems support the eval-
uation of the different blockchains on scaling hardware configurations. Diablo,
Gromit, and HyperledgerLab emulate geo-distribution. However, system config-
uration is not extensively evaluated in the corresponding benchmarking studies.
The number of hardware nodes and, correspondingly, the number of peers in a
system are scaled and evaluated but the peer configurations are kept constant.
Currently, system configuration is considered independent from the benchmark-
ing systems and is left to the client’s responsibility. Providing automated testbed
setups for the supported blockchains can ease the benchmarking effort with vary-
ing system configurations. The HyperledgerLab benchmarking system includes
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such an automated testbed and therefore can evaluate the effect of endorser and
database configurations, but it is limited to Fabric.

Parameter Tuning. In the studies we examined, system parameters are mostly
kept with the default value used in whichever blockchain is being tested. Block-
bench tunes the difficulty variable for Ethereum to limit miners from diverg-
ing [28]. HyperledgerLab evaluates the effect of system parameters such as block
size and endorsement policy but is limited to Fabric [9]. Tuning the parameters
of individual blockchains to ensure the fair comparison of the best performance
of all the systems under test is a massive challenge due to the large number of
parameters involved. Currently, we identified some of the prominent parameters
for the different blockchains discussed in this paper by manually parsing through
the multiple documentations and configuration files [15,17,18,26,30,32,38,51].
Blockchain developers must provide more intuitive documentation regarding the
performance tuning of their specific blockchain implementation. Consequently,
benchmarking systems could automate parameter tuning to ease the benchmark-
ing process.

Workloads and Use Cases. Workloads are well investigated by the exist-
ing benchmarking systems, and the supported workloads for each are listed in
Table 1. Diablo extracts the workload trace from five real centralized applications
and designs corresponding decentralized applications (DApps) to provide a real-
istic blockchain-specific benchmarking scenario. Blockbench provides popular
database benchmarking workloads such as YCSB and small bank, which provides
a good understanding of the contrast between blockchains and databases. Block-
bench also supports microbenchmarks such as IO-heavy and CPU-heavy, while
HyperledgerLab provides synthetic workloads such as read-heavy, update-heavy,
or skewed keys. All the existing benchmarking systems also support workloads
at different transaction rates. Overall, the workloads supported by the existing
benchmarking systems cover many practical and synthetic use cases, ensuring
a comprehensive blockchain evaluation. There are also many other blockchain
specific workloads available in the literature [9,10,56]. However, developing or
extending a benchmarking system to include this extensive set of workloads
would be advantageous. The evaluation results of the existing benchmarking sys-
tems are well explored and discussed in their corresponding papers. For example,
Nasrulin et al. [57] highlight six different findings that summarize the perfor-
mance of the compared blockchains. However, relating the evaluation results to
the implementation specifics of the blockchains and the intended use cases would
be helpful for a client trying to choose the ideal blockchain. Gramoli et al. [33]
observe that Diem and Avalanche do not support challenging hardware configu-
rations but also point out that such configurations may not be the intended use
case for these blockchains. They also highlight that blockchains with eventual
consistency scale better, providing a client who requires immediate consistency
with realistic expectations. The intended use cases of a specific blockchain and
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its implementation specifics, such as its consistency and fault tolerance models,
need to be effectively explored while discussing benchmarking results.

Performance Metrics. The existing benchmarking studies evaluate a wide
range of performance metrics. Gromit focuses on the peak transaction through-
put, the maximum throughput supported by a system before it hangs. Dia-
blo measures the average throughput and a throughput time series, including
the peak throughput. BCTMark focuses more on system metrics such as CPU
and memory usage. Blockbench measures the success throughput, while Hyper-
ledgerLab evaluates the committed throughput, including failed transactions.
The importance and reasoning of each of the metrics are well-defined in the
benchmarking studies. However, a single benchmarking system that provides a
comprehensive set of all the different metrics would be valuable.

5 Related Work

The literature proposes various benchmarking systems and corresponding bench-
marking studies for permissioned blockchains, which we have analyzed in our case
study. Dinh et al. developed the first benchmarking system for permissioned
blockchains with a precise definition for the different abstraction layers [28].
HyperledgerLab [9], which uses the Caliper benchmarking system [40], imple-
mented an automated blockchain (Fabric) network deployment tool to simplify
benchmarking experiments. Saingre et al. proposed a blockchain benchmark-
ing system that adheres to the six criteria for a good benchmark [65,67]. Nas-
rulin et al. investigated the popular consensus protocols and benchmarked rep-
resentative blockchain systems for each [57]. Gramoli et al. implemented real-
istic distributed applications to evaluate multiple blockchain systems’ perfor-
mance uniformly [33]. The existing publications focus on developing a bench-
marking system, while our work highlights general benchmarking guidelines for
the blockchain community, which includes both blockchain and benchmarking
system developers. Benchmarks and benchmarking systems are well-established
research areas in the database community [4,6,34,61]. However, despite the sim-
ilarities, the implementation and application differences demand a separate dis-
cussion for benchmarking blockchains [64].

6 Conclusion

We analyzed five permissioned blockchains to define specific problem statements
regarding four main aspects of benchmarking blockchains. We provide examples
from each of the chosen platforms to clarify the problem statements. Further,
we discuss a general methodology to tackle each problem statement, highlight-
ing the need for contributions from the developers and users of blockchains and
benchmarking systems. We then conducted a case study of five different permis-
sioned blockchain benchmarking systems and the affiliated benchmarking studies
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based on our problem statements. We emphasize the current limitations of these
systems, which can help improve the state-of-the-art. Given the implementation
differences between blockchains and the numerous components, configuration
parameters, and metrics specific to each blockchain, one main conclusion from
our work is the need for blockchain developers to actively engage in the bench-
marking space. We urge blockchain developers to quantitatively identify and
define system-specific factors such as the top parameters to tune, the ideal sys-
tem setup for a fixed hardware configuration or cost, targeted use cases, and
performance metrics that can ease the process of benchmarking blockchains.
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Abstract. The recent focus inAI on Large LanguageModels (LLMs) has brought
the topic of trustworthy AI to the forefront. Along with the excitement of human-
level performance, the Generative AI systems enabled by LLMs have raised many
concerns about factual accuracy, bias along various dimensions, authenticity and
quality of generated output. Ultimately, these concerns directly affect the user’s
trust in the AI systems that they interact with. The AI research community has
come up with a variety of metrics for perplexity, similarity, bias, and accuracy that
attempt to provide an objective comparison between different AI systems. How-
ever, these are difficult concepts to encapsulate inmetrics that are easy to compute.
Furthermore, AI systems are advancing to multimodal foundation models that
further make creating simple metrics a challenging task. This paper describes the
recent trends in measuring the performance of foundation models like LLMs and
multimodal models. The need for creating metrics and ultimately benchmarks that
enable meaningful comparisons between different Generative AI system designs
and implementations is getting stronger. The paper concludes with a discussion
of future trends aimed at increasing trust in Generative AI systems.

Keywords: Artificial Intelligence · Benchmarks · Generative AI · Foundation
Models · Trustworthy AI

1 Introduction

AISystembenchmarks typically focus on throughput and accuracy, the so-called "speeds
and feeds" metrics. The recent rise of AI systems across a broad spectrum of use cases
has brought attention to new metrics that assess the efficacy of the end-user application
enabled by AI. Standards and benchmarking organizations have begun to add perfor-
mance per watt metrics and have either released the benchmarking requirements or are
in the process of doing so [1–3]. In a recent paper [4], the authors argue for defining
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benchmarks that target energy efficiency, explainability, bias and other such metrics.
The ultimate objective of such initiatives is to increase trust in the use of AI systems.

The recent andmeteoric rise ofGenerativeAI in general, andLargeLanguageModels
(LLMs) in particular, is making it imperative that performance evaluation of AI systems
address the needs of the end user [5]. It is not sufficient to say that the AI system under
evaluation runs "fast" or uses "optimal energy". Rather, it is now becoming necessary to
evaluate metrics such as context-aware factual accuracy, perplexity, toxicity, and bias.
In addition, application-specific performance is also being evaluated, particularly when
the LLM engine is used to carry out tasks otherwise attributed to human intelligence.

A host of LLMs are being designed and offered for use by teams in academia as well
as industry [6–8]. In a paper included in this proceedings, recentLLMsare comparedwith
each other and examined from a standard benchmarking perspective [9]. The need for
optimizing the design of theseLLMs for amore efficient energy usage,whilemaintaining
target throughput, is discussed. It is argued that a “one size fits all” approach is not
conducive to widespread adoption of LLMs across a spectrum of use-cases and usage
profiles.

AI research community in academia as well as industry is actively working on devel-
oping metrics that go beyond just throughput and energy usage. The need for more
comprehensive metrics has started to shift the focus of benchmarking from independent
metrics to combined ones that encompass tasks, skills and usage scenarios [10, 11].

A larger trend of multimodal foundation model is also emerging, enabling use of
training data beyond text to images and other formats in creating large pre-trained “foun-
dation” models like Dall-E [5]. Furthermore, the use of multiple LLMs and foundation
models in service of a single higher-level task has the potential of deploying AI systems
in complex decision-making applications. We describe one such application of LLMs
and generative AI to database management systems.

In summary, the adoption ofGenerativeAI systemswill require a holistic approach to
benchmarking that measure not only how fast or efficient these systems are, but also how
useful and trustworthy they are. This paper examines the emerging need for adopting
such an approach, highlighting the challenges that need to be addressed and the expected
benefits to be achieved.

This paper is organized as follows. Section 2 provides a summary of current bench-
marking approaches for evaluating AI systems. Section 3 focuses on recent LLMs and
summarizes their key features. Section 4 advocates the need for a holistic approach for
benchmarking generative AI systems along multiple dimensions. Section 5 illustrates
a specific area of application of generative AI, namely, database management systems
(DBMS). Section 6 concludes the paper and outlines areas of ongoing work.

2 Benchmarking Approaches for AI Systems

The advent of generative AI made it clear that a holistic approach is needed for AI
benchmarking. While performance remains important, other factors also come into play.
For example, in generative AI it is unclear what the accuracy metric should be. This is
straightforward in non-generative AI, such as image classification, but generative AI
needs to rely on several proxy metrics instead. Similarly, bias and other non-desirable
features are intrinsic part of generative AI and should not be treated separately.
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A new evaluation need emerges in generativeAI datasets. They can only be examined
by automated tools, which creates an opportunity to “benchmark” individual datasets to
compare both negative and positive characteristics of datasets.

Current understanding of benchmarking that narrowly focuses on performance needs
to evolve. InAI, the state of the art, as embodied inMLPerf benchmarks [1], takes a piece-
meal approachwhere only small parts of theAIworkflow are evaluated, namely the com-
pute intensive training and inference of deep learning models, which are benchmarked
separately. TPCx-AI uses a somewhat larger aperture and includes data manipulation
together with training and inference to create an end-to-end benchmark [2, 3, 12]. How-
ever, focusing on traditional machine learning makes this benchmark not representative
of current AI trends.

We advocate for an approach that goes much further and considers performance as
one of the characteristics of AI workloads alongside others. Currently, benchmarking
fixes a workload ahead of time, but with AI having a multitude of options that affect
performance, one can envision a system in which performance is measured along with
metrics such as accuracy expressed in multiple definitions, level of bias, etc. This would
enable end users to choose a particular model or a model/implementation infrastructure
combination.

Fig. 1. Screenshot of Sentiment Analysis Challenge results for MLCommons DataPerf

There are several recent developments in that direction. One example is MLCom-
mons DataPerf Work Group [13], whose purpose is to build leaderboards for data and
data-centric algorithms by running challenges. The challenges run on DynaBench plat-
form [14], which runs in a web browser and supports human-and-model-in-the-loop
dataset creation. Annotators seek to create examples that a target model will misclas-
sify, but that another person will not. The workgroup has launched several challenges
and results for a sentiment analysis are shown in the screenshot in Fig. 1. Note that
the results list several characteristics such as Fairness and Robustness alongside perfor-
mance (Throughput). The challenge for DataPerf is adoption – leading AI companies
have to date stayed away while most participants are from academia and startups.

Another example is Hugging Face, which publishes LLM Leaderboard evaluating
LLM models using several metrics 15]. A screenshot is shown in Fig. 2, where for each
model four key metrics are shown (higher score is a better score):

• AI2 Reasoning Challenge - a set of grade-school science questions.
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• HellaSwag - a test of commonsense inference, which is easy for humans (~95%) but
challenging for SOTA models.

• MMLU - a test to measure a text model’s multitask accuracy. The test covers 57 tasks
including elementary mathematics, US history, computer science, law, and more.

• TruthfulQA - a test to measure a model’s propensity to reproduce falsehoods
commonly found online.

Fig. 2. Screenshot of Hugging Face LLM Leaderboard

Overall, these efforts are very valuable, and it will be interesting to see if these
approaches are more widely adopted.

3 LLMs Used for Benchmarking and Associated Responsible AI
Concerns

The Large Language Models that are in current use have numerous advantages and
disadvantages. In this section a few of the major LLMs options are considered as they
apply to benchmarking. It is beyond the scope of this work to review all LLMs that
currently exist. See [16] for a comprehensive review on the topic.

BERT, short for “Bidirectional Encoder Representations fromTransformers”was for
a very long time the industry standard for Natural Language Processing (NLP) [6]. At the
time it was introduced, 340M (million) parameters were considered very large. However,
it still fit within reasonable size constraints for the day, allowing it to be benchmarked in
a similar manner to other AI benchmarks in computer vision or recommender systems as
evidenced by early MLPerf benchmarks [17]. It is no longer considered the standard for
NLP, and is arguably not even an LLM, but it bearsmentioning because of its prominence
in the history of LLMs and especially in the benchmarking community.

LLaMavaries from7B (billion) to 65Bparameters and hence is aLLMbyourmodern
evaluation and is open-sourced [16]. The first version of LLaMa was not commercially
licensed which limited its impact on industry, even though it had a large impact in
the research community. LLaMA 2 changed that by being commercially licensed and
therefore available for use, benchmarking, and reselling by major corporations.

GPTJ is critical in the benchmarking community because of its ease of use [16]. It
is relatively small at 6B parameters and has a very small relative dataset to train on that
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is only 800GB. This makes it ideal for benchmarking and indeed, MLPerf, the leading
AI benchmark has released a round of benchmarks using this LLM [18].

The LLMs also raise some Responsible AI concerns, see [19] and for medically
related issues see [20]. We will focus here Responsible AI concerns specifically with
benchmarking.

Hallucinations are a major topic of discussion with LLMs and are broadly defined as
responses with factual errors and posing potential risks for the users [5]. We need better
benchmarks for measuring the degree and harmfulness of hallucinations. Unfortunately,
this tends to be highly contextual and subjective and hard to measure. How harmful is
it to manufacture a false reference in a legal case for example vs. a false reference in a
medical report?

Context length is a concern, becausemanyqueries are context dependent, for example
tied to a location or subject. “Who is the best lawyer?” needs to consider both the state
and specialty you are talking about – such as a New York Divorce Attorney or a San
Francisco Personal Injury Attorney. The Natural Questions NQ-Open dataset measures
that 16.5% of information seeking questions are context dependent [21]. Controlling
and measuring this is an important benchmarking consideration.

Once we start adding other modalities to LLMs such as image and video the bench-
marking considerations start to grow exponentially. How do you standardize a LLM that
generates video versus music? This area is largely unexplored at this moment. This is
especially important in the medical field as diagnosis generally require both text (e.g.,
doctor’s notes, medical records) and images (e.g., X-rays,MRI scans). In theory, because
multimodality is adding data, it should boost benchmarking performance.Having images
and text for a product description ideally is more informative than dealing with the data
modalities separately for example. Does it make sense to judge single modality models
in the same framework as multimodal models? As with many things in this space it
remains an open question.

RLHF (Reinforcement Learning from Human Feedback) is not the best way to
quantify the performance of a model. It just tells us that A is better than B. The question
remains “Howmuch better isA thanB?”Withoutmore continuously quantifiablemetrics
we will be held back in our benchmarking progress. We need to define a continuous
variable and not a binary one.

We have discussed the models and what makes certain models usable and bench-
markable, starting from BERT, to commercially licensed models like LLaMa 2, to small
open-source models like GPT-J. Then we have discussed four Responsible AI con-
cerns with benchmarking LLMs – hallucinations, context length, other modalities, and
quantifying performance with RLHF.

4 Holistic Approach for Benchmarking Generative AI System

Benchmarks for ML models have traditionally focused on performance metrics such as
accuracy and power [1–3]. In recent times, it expanded into infrastructure components
such as storage and it diversified into vertical specific benchmarks like medicine AI [22].

With the rapid growth in LLMs, we need holistic benchmarking, and explore a more
multi-dimensional set of metrics to characterize both models and infrastructure. We also
need to extend into datasets (data-centric AI):
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• Infrastructure: Let us consider evaluating infrastructure for a moment. Instead of
evaluating unidimensional metrics like time to complete training with restricted
memory accelerator configuration, we need systems benchmarks including storage,
memory and compute.

• Models: This is where the growth will happen. We will have specialized “standard-
ized” LLM benchmarks. There has been a surge in LLM leaderboards and bench-
marks. We need an industry standard that will help users pick the right models for
the right job (e.g., summarization, coding).

• Datasets: Foundationmodels cannot be usedwith confidence unless customers under-
stand the datasets they were trained on. The lack of this transparency and training
data lineage makes it harder for enterprise legal teams to make decisions.

Examples of recent work in developing standardized benchmarks for LMs are
frameworks such as HELM [10] and FLASK [11].

The HELM framework lays out the foundation for ongoing evaluation of LMs by
identifying the scenarios where LMs can be used and the metrics that evaluate the LMs
for these scenarios. The notion of LM applicability to multiple scenarios necessitates
the need for multiple metrics. Considering this end-to-end approach puts the focus of
evaluation on the target LM rather than a specific combination of LM and the underly-
ing system for implementation. Definition and comparison of different options for LM
implementation can then follow as the next step in the benchmarking effort to arrive at
the most suitable design. The key evaluation components in HELM are the following:

• Scenario such as IMDB
• Adaptation such as prompting applied to a model such as GPT-3
• Metrics such as robustness

Each evaluation run selects a specific scenario, a specific model and adaptation
process and one or more metrics. Multiple evaluation runs span the breadth of scenarios
that an LM can be used for under standardized conditioned and measure relevant metrics
to arrive at results that allow comparison of LMs for desired usage scenarios.

The FLASK framework focuses on skills rather than tasks that are carried out using
LLMs. Their motivation is that benchmarking LLMs using specificmetrics like accuracy
does not provide sufficient guidance for selecting the best LLMs for a desired use case.
Furthermore, overall scoring of model responses, either by humans or by automated
model-based mechanisms also falls short of enabling meaningful comparison between
different LLMs. The proposed protocol is based on four primary abilities and twelve
fine-graine skills:

• Logical Thinking: Logical Correctness, Logical Robustness, Logical Efficiency
• Background Knowledge: Factuality, Commonsense Understanding
• Problem Handling: Comprehension, Insightfulness, Completeness, Metacognition
• Use Alignment: Conciseness, Readability, Harmlessness.

Evaluation using these skills allows task-agnostic scoring that, in turn, enables
comparison of various open-source and proprietary LLMs. A total of 1740 evaluation
instances were collected from various NLP datasets. A scoring scale between 1 and 5
is used in both human-based and model-based evaluations. These two mechanisms for
evaluation are observed to be highly correlated.
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The FLASK framework was used in [11] to compare the following LLMs:

• Vicuna 13B
• Alpaca 13B
• LLaMA2 Chat 70B
• GPT-3.5
• Bard
• Claude
• GPT-4.

The key findings from this comparison are summarized as follows:

• Open-source LLMs significantly underperformed proprietary LLMs for Logical
Thinking and Background Knowledge abilities.

• Some skills like Logical Correctness and Logical Efficiency require larger model
sizes to sufficiently acquire them.

• A subset of very difficult instances (so-called FLASK-HARD set) was created to
evaluate LLMs in a challenging setting. Even the proprietary LLMs were seen to
struggle with up to 50% performance degradation for some skills compared to the
full FLASK evaluation set.

5 Applying LLMs to DBMSs

The integration of Large Language Models (LLMs) with Database Management Sys-
tems (DBMSs) is a rapidly evolving area of research that holds immense promise for
transforming how we interact with and utilize databases. To ensure that the benchmark-
ing of LLMs in this context is meaningful and effective, it is crucial to adopt a holistic
approach to account for the diverse range of applications and functionalities that LLMs
can bring toDBMSs.As such, not one benchmark but a variety of benchmarks are needed
that cover the breadth of functions that LLMs can provide for DBMSs. Furthermore, a
comprehensive set of benchmarks are needed that assess not only performance, but also
various other critical aspects to provide a well-rounded evaluation.

BenchmarkingLLMs inDBMSs requires a clear distinction between scenarioswhere
LLMs are used to replace existing functionality and where they add new capabilities:

Existing Functionality: In cases where LLMs are used to replace existing functional-
ity, such as using LLMs to enable better SQLquery rewriting to improve the performance
of SQL queries (e.g., by unnesting complex SQL statements), it is reasonable to start
with established benchmarks like TPC-H or TPC-DS that primarily measure query per-
formance. However, traditional benchmarks are inadequate in this context. We must
introduce new metrics since LLM-based rewrites might not always return a correct SQL
query. As such, new “correctness” criteria to evaluate the accuracy and reliability of
LLM-generated queries need to be reported.

NewFunctionality: WhenLLMsare employed to support entirely new inputmodalities
for databases, like text or images, novel benchmarks tailored to these specific use cases
become imperative. These benchmarks should consider how effectively LLM-enhanced
DBMSs handle these new features, ensuring that evaluation criteria alignwith the unique
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demands of the added functionality. For example, there has been recent work that has
shown that LLMs can be used to integrate other modalities then tables into databases
[24] or integrate LLMs themselves as another data source in a DBMS and query them
using SQL [23, 25].

In addition to performancemetrics, benchmarking of LLM-enhancedDBMSs should
encompass a spectrum of essential aspects:

• Robustness Analysis: Assess the robustness of LLM-enhanced DBMSs through neg-
ative test cases, highlighting the limitations of LLM models. For example, in the
context of natural language interfaces for databases, it’s crucial to identify which
classes of queries are supported and which are not, shedding light on the system’s
boundaries.

• Systematic Evaluation of LLM Capabilities: Borrow from research beyond the
database community and systematically analyze what LLMs can and cannot do.
For instance, studies from other fields have examined an LLM’s accuracy in arith-
metic tasks. Incorporating such systematic tests into benchmarks can provide a more
comprehensive view of LLM capabilities.

• Trainingoverheads:Report on the overall trainingoverheads. This includesmeasuring
reporting on the initial training overhead against fine-tuning overhead, helping to
understand the practicality of deploying these systems in real-world settings.

• Model Size vs. Accuracy: Examine the trade-offs between model size and accuracy
of LLM-enhanced DBMSs.

• Energy Efficiency: Evaluate the energy efficiency of LLM-enhanced DBMSs,
recognizing the growing concern for sustainable computing solutions.

• Latency: Measure the latency of LLM models, particularly if they are used in
performance-critical DBMS tasks, ensuring that their response times align with
practical requirements.

In summary, the benchmarking of LLMs for data management tasks, especially
within LLM-enhanced DBMSs, requires a nuanced approach that addresses both the
replacement and addition of functionality. Furthermore, comprehensive benchmarks
should encompass not only performance but also robustness, systematic evaluation of
capabilities, fine-tuning overhead, model size, energy efficiency, and latency. This holis-
tic perspective will enable us to effectively harness the power of LLMs in database
systems while providing a well-rounded evaluation framework for their integration.

6 Summary and Conclusions

This paper focused on articulating the need for developing holistic benchmarks for
Generative AI systems. Benchmarking AI systems in general has largely focused on
performancemetrics like accuracy, throughput and,more recently, energy efficiency. The
rapid rise of Generative AI systems has highlighted the need to go beyond such “speeds
and feeds” metrics. Moreover, human-level performance of Generative AI systems in a
vast array of tasks is enabling a shift towards metrics such as factuality, bias, toxicity
and domain-specific completeness. Evaluation mechanism involving humans as well
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as model-based techniques are being proposed. Multi-modal foundation models are
expected to be deployed in a variety of complex decision-making scenarios.

In this paper, various ways to incorporate the holistic approach were described. In
devising the benchmarks, it is necessary to include the models themselves, the datasets
used for training as well as the infrastructure selected to implement and use the models.
Within each of these categories, new metrics being proposed to capture the broader
performance evaluation were presented.

All these trends motivate the need for adopting a holistic approach for evaluating and
benchmarking modern AI systems. Early work in this area is laying the foundation for
such a holistic approach. However, as discussed above, significantlymorework is needed
to develop, debate, agree on and select metrics and benchmarks that enable Generative
AI systems to be evaluated in a comprehensive manner.
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Abstract. At eBay, our graph store is experiencing an exponential
growth. Its workload consists of read-only queries and two types of read-
write batch updates, streaming and scheduled batch loaders. Our objec-
tive is to enhance the latencies of the 95th and 99th percentile of our
read-only queries, because their results are used for real time decision
making. We achieve this by caching the final result of queries. With
repeat queries, we look up their final results using the cache instead
of processing them using the graph store and its transactional key-value
store. Writes compute their impacted cache entries and delete them. The
resulting graph store with application level query result caches provides
strong consistency. We present performance numbers from our produc-
tion workload, highlighting both the benefits and the overheads of using
the query result cache.

1 Introduction

Graph data model is a preferred choice by multiple applications, ranging from
product recommendation, fraud detection to information technology infrastruc-
ture management and knowledge graph. For these application, exploring rela-
tionships of entities via graph traversals in a graph model is easier and more
intuitive than alternative data models such as SQL of a relational database. A
graph model represents the entities and their relationships naturally via graph
elements, including vertices and edges. At eBay, several important use cases
rely on our transactional graph database service for their daily critical business
operations.

One of our biggest use cases has been in production for several years. At
the time of this writing, it consists of billions of vertices and edges with a peak
read traffic in excess of 4000 graph traversals per second. The workload consists
of read-only queries and two types of read-write batch updates: streaming and
scheduled loaders. While the read-only queries are interactive and their latency
impact real-time decision making, the read-write batch updates do not impact
end-user and hence, favor throughput over latency.

Figure 1 shows our workload’s read to write ratio for twelve days. Typically
there are hundreds of reads for every write. At times, there are no writes at all,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Nambiar and M. Poess (Eds.): TPCTC 2023, LNCS 14247, pp. 44–58, 2024.
https://doi.org/10.1007/978-3-031-68031-1_4
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see top of Fig. 1 labeled 100% reads. The motivation for our work is to improve
the latencies of the 95th and 99th percentile of the read-only queries. Although
the 50th percentile latency is competitive (5–8 ms), the application suffers from
unacceptably high 95th and 99th percentile latency (150–700 ms).

Fig. 1. Ratio of reads to writes for a twelve day period. The y-axis is log scale, high-
lighting the dominance of the read operations in our workload.

In this paper, we reduce the latency of select read-only queries by caching
their final query results. We examine the latency of different query templates and
pick a subset for caching. The approach is tailored for our specific application and
is non-trivial because it keeps the cache consistent with the transactional data
store in the presence of writes. With this approach, we could pick ten selective
query templates to cache for our specific application and improve their latency
significantly, 4–50×. It helped reduce the overall read latency (1.3× and 1.5×
for the 95th and 99th percentile latency). Our approach pushes the overhead of
caching to writes. Writes must find the impacted cache entries and delete them.
This degrades the response time of read-write transactions by 5–10×. See Sect. 4
for details.

The rest of this paper is organized as follows. Section 2 presents a spectrum
of caching techniques and the subset that constitutes the focus of this paper. We
present eBay’s graph store using a query result cache in Sect. 3. An evaluation
of the system using mirrored traffic from a production system is presented in
Sect. 4. Section 5 presents brief conclusions and future research directions.

2 Caching and Strong Consistency

Figure 2 shows a spectrum of caching techniques along three dimensions: Gran-
ularity of cache entries, Transparency, and Consistency. Granularity of cache
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entries dictates how an application’s read1 processes the entries. In its simplest,
the cache entry may correspond to the final result of a read. It changes the pro-
cessing of an application read with a data store as follows. It requires the read
to first lookup the cache for its final results. If its results are found (a cache hit)
then the application proceeds to provide the results as its output. Otherwise (a
cache miss), the read is processed using the data store to obtain its final results.
Next, the read populates the cache with an entry that contains this final results
and provide the results as its output. The two operations that constitute this
last step may be performed concurrently. This last step populates the cache with
entries.

Fig. 2. A spectrum of caching techniques.

It is possible to have cache entries at the granularity of intermediate results
required by a read. This requires the read to perform simple processing using
one or more cache entries. An example is computing the intersection of two sets
where each set is represented as a cache entry.

A caching solution may implement either a weak or a strong consistency
technique. A form of weak consistency is eventual consistency [16]. It may be
implemented by assigning a time-to-live (TTL) to each cache entry [7]. The cache
deletes an entry once its TTL expires. A request that observes a miss for this
entry queries the database to populate the cache with the latest value. During
TTL, the cache may produce stale data. It becomes eventually consistent with
the data store once the TTL of the stale cache entry expires.

With strong consistency, writes to the data store (inserts, updates, and
deletes) must maintain the cache entries consistent with the database [4–
6,9,10,15]. One may implement this using different write policies: write-around,
1 A read may consist of one or more queries issued by an application as one transaction.
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write-through, or write-behind. Figure 3 shows these write policies using a simple
architecture that consists of an application node (AppNode) that implements the
application logic using a transactional data store (Data Store) and a cache man-
ager instance (CMI). Write-around and write-through apply AppNode’s writes
to the data store synchronously. Write-back2 buffers the write and applies it to
the data store asynchronously [5]. We describe these policies in turn.

Fig. 3. Alternative write policies.

With write-around, Fig. 3a, the application identifies cache entries impacted
by a write, deletes these entries from the cache, and then applies the write to
the data store. A subsequent cache lookup for a deleted cache entry observes a
cache miss, computes the latest results using the data store, and populates the
cache with the most up-to-date results.

With write-through, Fig. 3b, a write updates its impacted cache entries using
incremental update (e.g., append or increment) or read-modify-write. This pre-
2 Also known as write-behind.
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vents a cache miss for a subsequent read of this entry, minimizing the number of
cache misses observed by an application. Similarly, write-back, Fig. 3c, updates
the impacted key-value pairs by a write. However, it stores one or more replicas
of its changes (termed buffered write) in the CMI instead of applying it to the
data store. The write is then acknowledged to the user as successful. Background
threads, BGTs, apply the buffered write to the data store asynchronously [5].

Finally, transparency dictates how much effort in the form of application
specific software is required from a developer to implement different granular-
ity of cache entries with varying degrees of consistency [17]. At one extreme, the
cache may be non-transparent, requiring an application developer to identify the
cache entries, categorize them, and provide application software for each cate-
gory [1,5,7,9,13,14]. At the other extreme, the cache may be transparent with
parameter settings that enable the database designer to fine-tune its configura-
tion for a deployment [15]. And, one may have hybrids that provide transparency
for some cache entries and require the developer to support others [8]. In gen-
eral, transparent caches are tightly coupled with a data store and its data model.
This explains why we cannot use one of the existing solutions such as [8,15,17]
because they assume the relational data model3 and SQL.

This paper describes a non-tranparent cache with entries at the granularity
of final query results. It implements write-around with strong consistency.

2.1 Write-Around and Strong Consistency

Write-around may incur race conditions that produce stale cache entries [6,9].
This section describes a race condition and how we prevent it by using the
transactional data store as the cache.

Figure 4 shows a system consisting of two separate components: A cache
manager and a transactional data store. A race condition between two concurrent
processes, a write (S1) and a read (S2), results in a stale cache entry [9]. It
assumes the transactional data store uses multi-version concurrency control or
snap-shot isolation to process reads of a data item that overlap with its writes. S1
deletes the impacted cache entries correctly, causing S2 to observe a cache miss
for these entries in Step4 S2.1. However, S1’s write overlaps S2’s read and the
transactional data store processes the read using version V1 while S1 produces
version V2. S2 proceeds to populate the cache with its obsolete value in S2.4.
This cache entry is inconsistent with the database state. It violates the durability
property of S1 because a subsequent read of this cache entry will observe a
obsolete version even though S1 commits successfully.

3 We use a graph data model.
4 A miss in Step 2.1 causes the process S2 to initiate a transaction to read the data

store, perform its processing to compute final results, and populate the cache with
the results.
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Fig. 4. Stale cache entries due to a race condition.

When the cache manager is a component separate from the transactional
data store, one may extend the cache manager with the IQ framework [9] to
prevent the race condition from inserting stale entries in the cache. An alternative
approach is to use the transactional data store as the cache and require Process
2 to perform Step 2.1 as a part of the data store transaction. By executing Steps
2.1 and 2.4 as one transaction, S2 becomes a read-write transaction. Its write
conflicts with the write of S1, causing either S1 or S2 to abort. This prevents stale
cache entry. When S2 catches a transaction abort exception, it may check the
read of Step S2.3 to see if it returned a value. S2 may return the valid value as its
output without writing it to the cache. Hence, S2 may continue to benefit from
multi-version concurrency control and snap-shot isolation techniques without
producing a stale cache entry. We implement this approach in Sect. 3.

3 eBay’s Graph Store and Query Result Cache

Figure 5 shows the three-tier architecture of our graph service. It consists of K
Client instances, N Application (App) Service instances, and a transactional
key-value store, FoundationDB [18] (FDB), as its storage backend. Both the
Client and App Service instances are stateless. The App Service implements the
core functionality of our service using JanusGraph [12], an open-source graph
processing engine. It serves user requests issued by the Client instances. A load
balancer strives to distribute these requests evenly across the N App Service
instances.

FDB is a scalable distributed key-value store that provides strong consistency
(the highest consistency guarantee is strict serializability [2]). It is an important
choice since a graph traversal is executed as one FDB transaction that provides
atomicity. This eliminates inconsistencies such as stale index entries, half-edges,
ghost vertices [11] and others raised by the use of storage manager that provides
a weaker consistency technique such as eventual [16].
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Fig. 5. eBay’s graph store three-tier architecture.

Our target application is modeled as a bipartite graph consisting of two sets
of vertices: accounts and attribute-values, following the labeled property graph
modeling. An edge is bi-directional. It connects an account to an attribute-value
and vice versa. The attribute values are typed, e.g., string, etc. Each type is
represented as a vertex label with a total of 13 labels, e.g. “name”, “address”,
“ip address”, etc.

As of this writing, the graph database consists of more than 16 billion vertices
and approximately 26 billion edges. Figure 6 shows the frequency of the 13 vertex
labels across unique account ids. Where there are multiple unique values for an
attribute (Attr 13), others have duplicate5 values.

Our schema enforces unique attribute values, using edges to capture a many-
to-one relationship between an account and an attribute-value. The attribute
values are indexed using JanusGraph’s composite indices. These indices expedite
processing of the exact match queries that look up the value of an attribute,
enabling the system to fetch all account vertices with that attribute value in
order to initiate edge traversals.

The distribution of the number of incoming edges into a vertex follows the
power law with a long tail. More than 70% of the vertices have 1 incoming edge.
Less than 117 nodes have more than 1 million incoming edges. The maximum
number of edges for a node is approximately 4.3 million. Figure 7 shows the

5 If each account had a unique value for each vertex label then, the sum shown on the
y-axis should have exceeded 1300%. It is 4× lower.
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Fig. 6. Percentage of unique values for each of the 13 vertex labels. The length of the
bar for each label shows its percentage of unique values. The y-axis is the cumulative
sum of the percentages with the labels sorted in ascending order of their percentage of
unique values.

Fig. 7. Distribution of the number of incoming edges. This figure does not show vertices
with only one incoming edge because there are several millions of them.

distribution of the incoming edges and a power distribution function that models
the data.

While the distribution of the outgoing edges continues to follow the power
law, it is less skewed than the incoming edges. Hence, a power density function
is not as good a fit as the incoming edges. See Fig. 8. More than 16% of the
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Fig. 8. Distribution of the number of outgoing edges. The x-axis ticks are cut early
because it stretches to 13,319 with Count= 1. The shown portion highlights a poor fit
between a power density function and the real data.

vertices have one outgoing edge. Less than 0.01% of the vertices have more than
250 outgoing edges. The maximum number of outgoing edges for a vertex is
13,319.

Our workload consists of three types of requests: Reads from the clients,
periodic writes by batch loader instances, and continuous writes by streaming
loader instances. A write operation is a transaction that may read some data,
perform some processing, and update/delete/insert vertices and edges. The read
operations access data in a skewed manner. 80% of read operations access 50%
of the total data.

3.1 Caching Query Results

We extend the App Service to use the transactional data store as a cache, see
Fig. 5. This extension includes a hash table of query templates whose instances
are recognized by the caching framework. The results of these query instances
may be found in the cache. When a query is submitted, the App Service extracts
its template by removing its parameter values. It probes the hash table with the
query template. If the template is found then it constructs the key for the query
instance. This key is a concatenation of a 1 byte unique identifier for the identified
query template, and the values of the parameters of the query instance. Next,
the App Service looks up the cache with this key. If the cache returns a value (a
cache hit) then it is used as the result of the query. Otherwise (a cache miss), the
App Service processes the query instance using JanusGraph to obtain a result
set, i.e., a value, and inserts this (key, value) pair in the cache.
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Fig. 9. Computing impacted keys in the presence of edge insertions and deletions.

A query instance traverses a fixed number of edges starting with a vertex. In
the presence of edge insertions and deletions, we compute the impacted query
instances whose results may have changed. To illustrate, Fig. 9a shows an original
sub-graph. A transaction may delete an edge from “Acc 3” to “Linking 1”, see
Fig. 9b. Alternatively, a transaction may insert an edge from “Acc 1” to “Linking
4”, see Fig. 9c. In both cases, we identify the vertex with the incoming new edge,
i.e., a linking vertex, and use the traversal pattern of a query template to identify
its impacted instances. We construct their keys and delete them.

4 An Evaluation

We evaluate the impact of caching using the workload of our production system.
Our evaluation is done on a test deployment that mirrors the hardware of our
production system, see Fig. 10. Initially, the test database is nearly identical to
our application’s production database. The software on the test system is exper-
imental and may cause the test database to diverge from the production system.
We fork the read, write, and read-write transactions of the production system
to the test system as follows. When a client request is issued to a production
service instance, the service instance places the request in a queue and proceeds
to process the request. A thread removes a queued request and forwards it to
one of the service instances of the test system for processing.

Request queues and background threads minimize the overhead on the pro-
duction system. However, they introduce undesirable race conditions that result
in a higher number of aborted transactions with the test deployment when com-
pared with the production system. Below, we describe an undesirable race con-
dition that causes the majority of aborts and our solution for it.
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Fig. 10. Evaluation using mirrored traffic from a production system.

A background thread may send a sequence of transactions issued by one client
to different service instances of the test deployment for concurrent processing.
However, these transactions were processed sequentially by the production sys-
tem because a client does not issue a transaction until its pending transaction
completes execution. Concurrent processing of a client’s transactions is a con-
sequence of using the queue. This concurrent processing may result in conflicts.
To elaborate, FoundationDB uses optimistic concurrency control, where conflicts
of concurrent transactions are resolved at commit time. Read-only transactions
commit always. Writes or read-write transactions may conflict with one another.
FDB commits one and aborts the other conflicting transactions. While multi-
ple conflicting writes or read-writes processed sequentially do not conflict, their
concurrent processing may result in conflicts and a high number of transaction
aborts.

We minimized the number of undesirable race conditions by requiring a pro-
duction service instance to transmit the transactions issued by a client to one
service instance in the test deployment. We do this mapping using a hash func-
tion applied to the id of the client that issues a transaction, directing all its
transactions to one deployment service instance.

4.1 Results

Figure 11 shows the 50th%, 95th%, and 99th% of the response time of one of the
cached query templates using the test system with the cache enabled. We disable
the cache at timestamp 52, causing the response time to increase. These results
highlight the benefits of using the cache to reduce response time. In this figure,
the cache reduces the 50th%, 95th% and 99th% response time approximately
50×, 1.5× and 2×, respectively.
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Fig. 11. Query response time of a cached query template. Cache is enabled at time 0
and disabled at time 52min, causing a significant increase in the query response time.

In the presence of updates to the graph store, the system identifies the
impacted cached keys and delete them. Figure 12 shows the number of impacted
keys before and after the batch loader instances start their writes. It shows the
99th% of the number of keys impacted by a write is more than 10K. A write
deletes these impacted keys, incurring a response time higher than its execution
without a cache. Figure 13 shows the response time of a write operation before
and after the batch loader instances start. It shows a significant increase in pro-
cessing a batch write. Their degraded response time does not impact our users’
experiences because users are not waiting for these writes to complete.

5 Conclusions and Future Research Directions

Application-level query result caches significantly speedup queries that observe
a cache hit. In addition, they reduce the amount of processing required by the
graph store and its transactional storage manager, enhancing the overall system
latency. This is important for read-only real-time workloads, which are a critical
component of many applications.

We are evaluating other variants of caching techniques in the spectrum of
Fig. 2, such as a transparent cache using intermediate query results for query pro-
cessing while providing strong consistency. This approach does not require appli-
cation specific software. Hence, it may be used by many applications. Instead
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Fig. 12. Number of impacted keys.

Fig. 13. Write operations are slowed down because they incur the overhead of finding
and deleting the impacted cached keys.

of invalidation with a write-around cache, we may use other cache coherence
techniques such as write-through and write-back [5,13]. We will also explore
alternative architectures [3,4] such as having the in-memory cache layer as a
part of the transactional data store.
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Abstract. Modern hardware is increasingly complex, requiring increas-
ing effort to understand in order to carefully engineer systems for optimal
performance and effective utilization. Moreover, established design prin-
ciples and assumptions are not portable to modern hardware because:
1) Non-Uniform Memory Access (NUMA) architectures are becoming
increasingly complex and diverse across CPU vendors; Chiplet-based
architecture provides hierarchical NUMA instead of flat-NUMA topol-
ogy, while heterogeneous compute cores (e.g., Apple Silicon) and on-chip
accelerators (e.g., Intel sapphire rapids) are also normalized in material-
izing the vision for workload- and requirement-specific compute schedul-
ing. 2) Increasing IO bandwidth (e.g., arrays of NVMe drives approaching
memory bandwidth) is a double-edged sword; having high-bandwidth IO
can interfere with the concurrent memory access bandwidth as the IO
target is also memory; hence IO itself consumes memory bandwidth. 3)
Interference modeling is becoming more complex in modern hierarchical
NUMA and on-chip heterogeneous architectures due to topology oblivi-
ousness. Therefore, systems designs need to be hardware topology-aware,
which requires understanding the bottlenecks and data flow characteris-
tics, and then adapting scheduling over the given hardware topology.

Modern hardware promises performance by providing powerful and
complex yet non-intuitive computing models which require tuning specif-
ically for target hardware or risk under-utilizing the hardware. Therefore,
system designers need to understand, carefully engineer, and adapt to
the target hardware to avoid unnecessarily hitting bottlenecks in the
hardware topology. In this paper, we propose the Chaosity framework,
which enables system designers to systematically analyze, benchmark,
and understand complex system topologies, their bandwidth character-
istics, and interference of effects of data access paths, including memory
and PCIe-based IO. Chaosity aims to provide critical insights into system
designs and workload schedulers for modern NUMA hierarchies.
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1 Introduction

Post Moore’s law era, hardware designs have tended to scale horizontally, scaling
compute via partitioning and packing more computational units in a single chip.
In addition to multi-core processors, NUMA (non-uniform memory access) sock-
ets add another layer of compute partitioning, creating an almost distributed
yet coherent and shared-everything system in a single scale-up server. Initially,
NUMA hardware had non-uniformity, but all CPUs were treated as homogeneous
processors, while accelerators were treated as co-processors for each NUMA node.
Essentially, NUMA nodes were arranged as siblings in the hardware stack, hav-
ing their own memory hierarchy, including PCIe-attached storage and a set of
co-processors optionally.

Advancements in the hardware landscape challenge traditional system
designs to avail the performance and efficiency offering from the modern hard-
ware and maintain performance standards [11]. The fundamental changes are:

1. Hierarchical NUMA in chiplet-based architectures, even in single-socket
machines in mainstream CPUs offered by AMD [12] and Intel [13].

2. IO-bandwidth competing with memory bandwidth. Moreover, co-processors
and other sibling PCIe-attached devices may compete in bandwidth utiliza-
tion by directly consuming from the devices (e.g., GPU reading from NVMe
without involving CPUs), compared to previously strict uni-directional stor-
age hierarchy [15].

3. Heterogeneous compute-on-chip is becoming the norm rather than a niche.
For example, Apple Silicon [8] and Intel [4] consumer-grade chips have differ-
ent types of compute units within the same chip, specialized for a range of
workloads, and Intel Sapphire Rapids offer on-chip, off-core accelerators. This
introduces additional heterogeneity in compute scheduling and data rout-
ing [13].

Consequentially, tuning systems with traditional but usurped design princi-
ples in mind, including but not limited to NUMA-aware partitioning and caching
across memory hierarchy, may result not only in a lack of speedup but also in
performance regressions. Modern hardware promises increased performance and
scalability when tuned to the expected software design. This is because, pre-
viously, hardware across vendors and generations was mostly homogeneous in
design principles. For example, a multi-socket, multi-core machine was assumed
to have three layers of caches for each processor, the first two levels private to
each core and a shared last-level cache, and a high-speed coherent link between
all NUMA nodes. In general, each newer processor generation added new fea-
tures but was mostly transparent to the user regarding software design, there-
fore, was compatible with existing NUMA-aware systems. However, with mod-
ern hardware, the hardware topology is not homogeneous across vendors: AMD
EPYC has a heterogeneous chiplet-based architecture [11], while Intel Sapphire
Rapids [13] offers on-chip accelerators and even high-bandwidth memory in cer-
tain models. Further, depending on the specific hardware, the NUMA topology
may be hierarchical in the case of chiplets, creating a tree of NUMA nodes.
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This results in the fundamental invalidation of software design principles and
assumptions. For example, the used-to-be flat NUMA-aware partitioning would
suffer from interference in remote accesses in a hierarchical NUMA topology.
Such trends require hardware-software co-design, but it requires either software
designed especially for specific hardware only, which is hardly the case, or adap-
tive across hardware. In any case, the first step in designing a system that could
efficiently utilize the powerful features of modern hardware is understanding the
hardware. Make no mistake: understanding hardware does not mean studying it
at the silicon level, but understanding the hardware topology and capabilities,
the data-flow paths, and associated characteristics. For example, understand-
ing the bandwidth difference between memory and disk is critical in designing
caching policies [14,15]. In another case, an algorithm design would differ based
on the availability of coherent versus non-coherent interconnect between a CPU
and an accelerator (e.g., GPUs).

Therefore, we propose Chaosity, a framework for systematically understand-
ing hardware topology, bandwidth characteristics for memory and PCIe-based
IO, and modeling interference between non-partitioned memory operations. This
is a first step towards automatic benchmarking and bootstrapping critical and
actionable insights required for a systems engineer to understand and for an
adaptive system to tune itself for specific hardware. The rest of the paper is
organized as follows:

– Section 2 highlights the increasing heterogeneity in the hardware landscape,
which motivates the importance and impact of systematic analysis,

– Section 3 focuses on the initial design of an automated non-uniformity bench-
mark,

– Section 4 and Sect. 5 presents experimental results that demonstrate the need
for a chaos-aware heterogeneous platform on two such architecture configu-
rations,

– Section 6 discusses the takeaways, implications and provides future directions
for this work

– Section 7 concludes the vision of Chaosity.

2 Motivation: Rising Entropy in the Hardware Landscape

The advancements in computer architecture change the system landscape and
the opportunities for hardware-software co-design. Figure 1 shows the evolution
of recent mainstream CPU topologies. Besides the well-known transition from
single-core to multi-core architectures, the chip shrinkage has allowed integrating
components from a single Northbridge/memory controller hub (Fig. 1a) into a
single chip die (Fig. 1b), alleviating the bottleneck of data transmission and
introducing NUMA with on-socket memory controllers.

2.1 Hierarchical NUMA

The continuation of chip downsizing has led to the post-Moore law era, leading
to challenges in CPU scalability where vendors are increasingly adopting chiplet
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(a) Memory controller and IO on
north bridge

(b) Integrated memory con-
troller style

(c) AMD EPYC Milan style (d) Intel Sapphire Rapids style

Fig. 1. Evolution of recent CPU topologies. Solid black boxes represent chips/chiplets,
and dashed blue boxes represent NUMA regions. (Color figure online)

(multi-chip module) designs (Fig. 1c) [12,13]. This changes the traditional mono-
lithic CPU design when non-uniform memory access (NUMA) resulted from
multi-socket CPU servers. Chiplets introduce additional NUMA regions even
inside a single socket in a hierarchical fashion, increasing the complexity of main
memory access paths. Though chiplet-based CPUs are not the first CPUs to
expose multiple NUMA regions within a single socket, they are more widely
adopted than previous commercial offerings, such as Intel’s Xeon Phi Knights
Landing. [19,23]). AMD has been using chiplet designs since the EPYC Naples
generation [12], while Intel recently moved to chiplets for many of their server
CPUs in the Intel Sapphire Rapids [4] generation. The chiplet designs from Intel
and AMD allow exposing the hierarchical NUMA regions to the operating sys-
tem, e.g., 8 NUMA nodes in a 2-socket server.

2.2 On-Chip Heterogeneity

The complexities do not end at hierarchical NUMA. To add to memory and data
access path complexity, even the compute units may not be uniform. Specialized
accelerators and non-uniformity introduce differences in throughput and memory
access (Fig. 1d).

The benefit of having specialized or heterogeneous cores on a single chip is
clear to all hardware vendors, and thereby, in the last few years, we have seen
consumer-grade CPUs like Apple M1/M2 silicon and 12th generation Intel Core
desktop processors packaging performance and efficiency cores in a multi-core
chip, scaling the non-uniformity axis to heterogeneous compute units. Further,
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besides the disparity between different cores, both consumer- and server-grade
hardware introduced specialized on-chip off-core accelerator components opti-
mized for specialized or specific workloads, such as neural processing. To list
a few, Apple Silicon has an accompanying neural engine for machine learning
(ML) workloads. Intel Sapphire Rapids CPU comes with specialized tile registers
and matrix multiplication intrinsic (AMX) for ML, data encryption and com-
pression accelerators (QAT), and data streaming accelerator (DSA). Recently,
AMD also announced MI300 APUs (accelerated processing units) composed of
modular chiplets. The AMD MI300 APU will offer a combination of CPU (Zen4)
or GPU (CDNA3) chiplets and on-chip high-bandwidth memory [22]. Further,
Nvidia Grace Hopper Superchips tightly integrate an ARM-based CPU and an
NVIDIA GPU chip with a fast inter-chip NVLINK interconnect [17].

2.3 Data Highways: Interconnect

Interconnects play a significant role in data access and movement across com-
plex topologies as careful use of the limited available bandwidth is crucial for
efficiency [6,15,21]. PCIe interconnects in complex topologies (Fig. 2) represent
a shared resource between CPUs, accelerators, and IO devices.

An added complexity ensues with the addition of per-hierarchical-NUMA
PCIe controllers and, for example, fast NVMe drives, which are in aggregate
on par with the available main-memory bandwidth, interfering and contending
with the even more complex memory access path. IO predominantly uses direct
memory access (DMA) to transfer data between devices and main memory. To
perform a DMA transfer to read data from an IO device, the CPU submits
a request to the device and then the device’s DMA engine is responsible for
transferring the data directly to main memory.1 The CPU can then read the
data from memory using load instructions. The processing for writing data to
an IO device inverts the order of operations. Still, there is no uniform design
approach for interconnects, as Apple Silicon has a unified memory architecture
for their CPU, GPU, and neural engines. Overall, the location of the IO device
and the access path complexity requires careful coordination and placement.

2.4 Systems with Complex Data Access

Traditionally, the hardware topologies were mostly homogeneous and standard
across the vendors, and therefore, the underlying hardware performance was
more predictable and understandable by the on-paper specifications. The system
designers would have to consider only a few metrics, including but not limited
to memory bandwidth, CPU interconnect bandwidth, and PCIe or device band-
width. Most scalable applications were designed with NUMA-aware partitioning
and cache-aware algorithms, catering to both CPU caches when reading/writing

1 Intel Xeon CPUs feature Data Direct IO (DDIO), which transparently allows PCIe
devices to read/write directly to last-level caches initially bypassing DRAM. [1].
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Fig. 2. Interconnects contribute to complex heterogeneous topologies

from memory to CPU and buffer pools when reading/writing from disk to mem-
ory. However, with ever-increasing heterogeneous and complex hardware, mere
NUMA-partitioning and cache-aware algorithms do not fully utilize the under-
lying hardware but may result in performance regressions in some cases. For
instance, Nicholson et al. [14,15] concluded that with high-bandwidth storage,
simple frequency- or recency-based caching is sub-optimal and requires propor-
tional caching to utilize the high-bandwidth storage fully. Moreover, not only do
the system designs have to cater to fully utilizing the underlying hardware capa-
bilities, but they also need to account for the interference domain. For instance,
Raza et al. [20,21] partitioned latency-sensitive and bandwidth-intensive work-
loads across NUMA-boundaries to alleviate interference in the memory hierarchy
but was limited by the interconnect; however, with chiplet architectures, the sys-
tem could have partitioned the interfering workloads across chiplet boundaries.

Putting everything together, increasingly high hardware complexity opens
up tuning opportunities to profit from and avoid performance regressions. Such
opportunities may be trivial and intuitive: partitioning workload across NUMA
boundaries, minimizing data movements, etc., or, non-intuitive based on the
underlying hardware characteristics: de-prioritizing data locality in favor of par-
titioning workload based on interference, or staging/buffering IO in system mem-
ory for granular IO from PCIe-attached devices like GPUs [15]. Still, a given
workload will have a combination of memory, computational, and data move-
ment requirements that might have a desirable particular hardware constellation.
This motivates a systematic study of the complexity and the chaos ensuing, not
only for a given platform and workload but for any future change in platform or
workload.

3 Chaosity Framework Understand Thy Hardware

Characterizing non-uniformity and interference is highly challenging. While
benchmarks traditionally target a specific and often limited set of parameters,
previously described complex hardware and data movement interactions instead
exacerbate the need for a holistic benchmark, such as memory-IO interference
or CPU-GPU interference with shared memory. Still, the design space of inter-
ference micro-benchmarks is vast, motivating for a framework that composes
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micro-benchmarks that best represent a workload to analyze the complex effects
of the underlying system and hardware.

To this extent, as good examples of characterizing system-crucial characteris-
tics, we employ fio [3] and STREAM [10]. fio benchmarks persistent disk perfor-
mance (IO), and STREAM measures sustained memory bandwidth. This way,
we aim to analyze and understand the interference between the two subsystems.
Our design allows easy incorporation of existing workloads or ones written from
scratch. For example, rather than measuring memory-IO interference only, CPU
cache interference would allow for finer-granularity benchmark experiments.

Benchmark Categorization and Selection. The first step in profiling any
hardware is the categorization of benchmarks, that is, the target metric or char-
acteristics to be measured. The benchmark category defines the benchmarks that
will be executed across independent and shared configurations. Each benchmark
category measures the specific target property or metric of the hardware under
test. Currently, benchmarking categories include memory and PCIe-based stor-
age bandwidth.

The second step is defining which benchmark to use, either a standard off-
the-shelf benchmark or a customized benchmark. The invariant in one or more
benchmark selections is the target metric. Chaosity provides a default standard
benchmark for each category. However, one can add or replace the benchmark
with another standard or custom benchmark. For instance, by default, Chaosity
utilizes STREAM [10] for profiling memory bandwidth and fio [3] for profiling
storage bandwidth.

Component and Topology Discovery. Chaosity begins profiling hardware
under test by first discovering the available components/devices and their topol-
ogy and memory model. For example, detecting the number of available cores,
the number of hyper-threads per physical core, NUMA nodes, sockets, and con-
nected devices, including but not limited to NVMe storage and GPU devices.
Chaosity leverages hwloc and Linux numactl utilities to discover the hardware
topology [5]; Further, Chaosity queries the underlying hardware properties, such
as detecting if the devices have a unified memory and if the shared memory
is coherent across devices, CPU cache-line size, etc. Chaosity also detects the
availability of pre-defined specialized accelerators, such as on-chip accelerators
in Intel Sapphire Rapids.

Discovering hardware components, their topology, and associated properties
is critical in profiling and benchmarking as it defines the interaction between
different components and the expected behaviors.

Executing Independent Benchmarks. After benchmark categorization, def-
inition, and hardware discovery, Chaosity begins the profiling defined by each
benchmark category. The benchmark utilizes the topology information and starts
by profiling the minimum unit of each type of compute and, from thereon, pro-
files the combination of components in the hierarchy. Chaosity needs to profile
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hierarchy for all combinations to detect any non-uniformity, asymmetry, or some-
times, even hardware defects or misconfigurations. In the following, we detail the
memory and storage bandwidth benchmarking.

Benchmarking Memory Bandwidth. Analyzing memory bandwidth starts with
the default unit of compute, that is, single-thread in CPU, and then proceeds by
analyzing bandwidth of single-NUMA, single-socket, and then all CPUs. Then,
the system profiles remote interactions, which in the case of memory, means
accessing remote memory for each unit, starting from bandwidth for accessing
the memory of different NUMA nodes within the same socket and then similarly
for remote sockets.

Benchmarking Storage Bandwidth. Analyzing storage bandwidth proceeds sim-
ilarly to analyzing memory bandwidths. However, it adds an additional basic
unit, the number of drives attached locally to each NUMA node, to analyze the
bandwidth scalability across combinations of the connected drives within the
same and other NUMA nodes.

Memory-Storage Interference Modeling. A shared memory subsystem
introduces competition in data accesses and hence, causes interference. This
interference occurs at all levels of the memory hierarchy, including competing
cache lines, load requests, and memory bandwidth itself. For now, we target
and model memory bandwidth interference, which arises when accessing both
CPU memory and storage or remote memory over PCIe. The bandwidth interfer-
ence arises as memory access goes through the same memory controller in most
processor architectures. Hence, a memory controller can only process a certain
amount of data simultaneously, prioritizing one over another.

Chaosity profiles and models the interference by scheduling independent
memory and storage bandwidth benchmarks concurrently. It profiles the inter-
ference by collocating and isolating the compute unit and the read drive set using
topology information. In doing so, it models the interference when both accesses
are issued from the same controller or are routed through a different controller.
Ideally, when co-scheduled, the total bandwidth (memory + storage) should be
equal to the max of either; however, when scheduled across NUMA boundaries,
should not interfere with each other as the PCIe root complex should be directly
accessible from the requesting memory controller. However, it is hardly the ideal
case due to the hidden complexities of hardware design, and therefore, it is cru-
cial to profile and understand the bandwidth degradation in all cases, guiding
system designers to account for and schedule workloads accordingly.

4 Heterogeneous Compute Units Apple M1 Pro Silicon

In this section, we use Chaosity to test Apple M1 Pro silicon, explicitly targeting
the unified memory bandwidth across heterogeneous CPU cores and GPU and
analyzing the maximum memory bandwidth when executed in isolation and the
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degradation due to interference when all compute units compete for memory
bandwidth.

Hardware. Apple Macbook Pro 2021 running macOS 12.5.1 with a M1 Pro pro-
cessor (Model identifier: MacBookPro18.3, Model number: Z15G002BDSM/A),
having 10 CPU cores (eight performance and two efficiency cores), 16 GPU cores,
and 16 neural-engine cores, with a total of 32GB LPDDR5 memory and a 512 GB
NVMe SSD.

Benchmark. On the CPU, memory bandwidth tests utilize the STREAM
Triad benchmark [10]. We report the average bandwidth over 100 iterations for
STREAM, not including the first iteration. We compile STREAM with Clang
13.0.1 with the -O2 -fopenmp -DSTREAM ARRAY SIZE=80000000 compiler flags.
In this configuration, each array element is an 8-byte double. While OpenMP
is used to control the number of STREAM benchmark threads, it cannot bind
threads to cores as on Linux. This is because macOS has no underlying API to
pin threads. To run STREAM on efficiency cores, we use the taskpolicy system
utility to launch STREAM with the PRIO DARWIN BG scheduling priority [2]. On
the GPU, memory bandwidth tests use a variation of the bw benchmark from [9];
this benchmark performs a multiple add on 3 input [8192 × 8192] matrices of
32 bit floats and storing the output in another matrix of the same type, using a
total of 1 GiB of memory. For NVMe bandwidth tests, we use fio [3] to perform
sequential reads. Our fio configuration for macOS uses the posixaio engine, a
1MB blocksize, O DIRECT, and is time based to run for 30 s.

4.1 Interference in Unified Memory

Apple Silicon has a unified memory across all types of compute units, including
performance and efficiency CPU cores, GPU cores, and neural-engine cores. Uni-
fied memory offers coherent access across heterogeneous consumers, that is, com-
pute units or networks and other devices in some cases. Apple silicon is different
from traditional CPU-GPU unified memory (like Nvidia’s Unified Memory) in
the sense that all types of compute cores are at the same level, and the last-level-
cache is shared across all heterogeneous cores, which in our view, simplifies the
cache coherency implementation in hardware. However, there is no free lunch. In
the general case, not all compute devices will be running data-intensive opera-
tions. Still, for high-performance or analytical data processing tasks, all devices
will execute data-intensive tasks and, thereby, require the maximum possible
bandwidth to underlying unified memory.

Table 1 shows the experimental results when running memory benchmarks on
Apple M1 silicon in different configurations. For standalone CPU baselines, a sin-
gle performance core can consume a maximum memory bandwidth of 75 GB/s,
while a single efficiency core can only achieve maximum memory bandwidth of
11.5 GB/s. Whereas, utilizing all eight performance cores only, we get 128 GB/s
while using both efficiency cores only, we get 15 GB/s, and utilizing all CPU
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Table 1. Memory Bandwidth Analysis of Apple M1 Pro

Scheduling mode Compute units Memory bandwidths (GB/S)

CPU-only 1 Efficiency core 11.7

2 Efficiency cores 14.8

1 Performance core 75.2

8 Performance cores 128.7

All cores (8P + 2E) 138.3

GPU-only All 16 GPU cores 176.3

CPU-GPU 8 P-CPU (w/ 16 GPU) 59.8

16 GPU (w/ 8 P-CPU) 118.9

10 CPU (w/ 16 GPU) 60.8

16 GPU (w/ 10 CPU) 115.0

cores, that is, ten cores (eight performance and two efficiency), we get a maxi-
mum memory bandwidth of 138 GB/s. In the case of GPU, when benchmarking
in GPU-only mode, the benchmark achieves 176 GB/s, and to the best of our
knowledge, there is no way of scheduling and affinitizing workload on the neural
engine; hence, it is not included in the scope of this study.

From the baselines described above, which do not have any conflicting or
interfering workload, it is clear that GPU-cores have access to 27% and 37%
more memory bandwidth compared to all CPU cores and all of the performance
CPU cores.

Fig. 3. Memory-storage bandwidth interference in Apple M1 Pro

Unified memory shares the memory access across all compute devices, hence
sharing the bandwidth accordingly. We study bandwidth interference and prior-
ity by running parallel independent benchmarks on both CPU and GPU. As the
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benchmarks are executed independently the bandwidth interference arises purely
from resources competing for accessing memory, but not from accessing objects
in memory shared by the benchmarks. Figure 3 plots the bandwidth degradation
when both efficiency and performance CPU cores are used concurrently with the
GPU. Table 1 in addition shows results for just the performance CPU cores.

We observe that GPU still gets priority over CPU in bandwidth allocation.
The GPU memory bandwidth drops 35% and 32% when running using only CPU
performance and all CPU cores, respectively. Whereas CPU memory bandwidth
degrades by 54% when using only performance cores and 56% when using all
cores. In both cases, the sum of CPU and GPU memory bandwidths are nearly
equal to the bandwidth the GPU observes when running independently. This
shows that to leverage the full memory bandwidth, the GPU must be used, but
with the trade-off that less bandwidth will be available for the CPU cores.

5 Chiplet-Based Server AMD EPYC

In this section, we use Chaosity to test and analyze the AMD EPYC (Milan)
server processors having a chiplet-based architecture. AMD EPYC is a repre-
sentative of modern hardware which has hierarchical NUMA, that is, chiplets.
Additionally, it provides enough PCIe 4.0 lanes to saturate more than half of
the memory bandwidth for each chiplet.

Hardware. All experiments were conducted on a server with a 2× 24-core
AMD EPYC 7413 processor, having two threads per core, totaling 96 threads
and 256 GB of DRAM. Each CPU socket has 16 Corsair MP600 Pro NVMe
drives, each using 4 PCIe 4.0 lanes. The manufacturer-specified maximum read
bandwidth of each drive is 7 GB/s [7]. At measurement time, two drives failed;
therefore, NUMA nodes 0 and 4 have 3 NVMe drives each, while all other NUMA
nodes have four drives each. AMD EPYC has 128 PCIe 4.0 lanes per socket,
theoretically having a total bandwidth of 256 GiB/s, whereas the main CPU can
independently achieve an aggregate bandwidth of 128 GiB/s per socket. In a two-
socket configuration, 48 lanes of PCIe are used on each chip for the inter-socket
interconnect. The remaining lanes are available for other PCIe devices.

Our server is running Ubuntu 20.04 with Linux Kernel 5.4.

Benchmark. Memory bandwidth tests utilize the STREAM Triad bench-
mark [10]. STREAM is compiled using GCC 9.4 with the -O2 -fopenmp
-DSTREAM ARRAY SIZE=100000000 -mcmodel=medium compiler flags. In this
configuration, each array element is an 8-byte double. Numactl is used to set
the NUMA nodes STREAM will execute on as well as to bind the memory used
by STREAM to specific, possibly different, NUMA nodes. For NVMe band-
width tests, we use fio [3] 3.32. Our default fio benchmark is a sequential access
benchmark that uses the io uring engine, a 1MB blocksize, O DIRECT, and is
time-based to run for 30 s. Memory Bandwidth. Figure 4 shows experimen-
tal results of measuring memory bandwidth grouped by the CPU cores and
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target memory nodes. Using numactl, STREAM is CPU bound to the NUMA
node on the x-axis and memory bound to the NUMA node on the y-axis. Each
number represents an independent run; hence, no interference or contention in
accessing local or remote memory. The memory bandwidth within the socket is
similar while accessing the memory of a remote socket is 33% slower, regardless
of whichever chiplet in the socket itself.

5.1 Hierarchical NUMA

In the following analysis, we employ Chaosity to analyze memory and stor-
age bandwidth in AMD EPYC Milan architecture and model the interference
between the two.

Fig. 4. Memory bandwidth in AMD EPYC – Each NUMA node accesses the memory
of target NUMA node with STREAM TRIAD benchmark

Figure 5 shows the results of analyzing the maximum storage bandwidth
when all cores of the NUMA node read from all drives of the target node. The
interesting thing to observe here is that the average maximum bandwidth sub-
stantially degrades when all the experiments where NUMA nodes of the first
socket access the NVMe drives on the second socket. However, this is not the
case for the opposite: NUMA nodes of the second socket accessing NVMe drives
connected to the first socket.

To further elaborate on this behavior, Fig. 6 shows the maximum storage
bandwidth achieved by each NUMA node for all combinations of NVMe drives.
The throughput degradation observed in Fig. 5 is shown when the first socket
accesses all drives from individual NUMA nodes of the second socket. However,
it is compensated when read from drives of multiple NUMA nodes of the second
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Fig. 5. Storage bandwidth (GB/s) in AMD EPYC – All cores of NUMA node accesses
all NVMe drives in target NUMA node

socket. Secondly, for both sockets, when accessing from NVMe drives of the
first and last NUMA node of the remote socket, the throughput degrades (fio-
node 4,5,6,7 accessing data from [0,3] and fio-node 0,1,2,3 accessing data from
[4,7]). To the best of our knowledge, the reason for this behavior is unknown
and may be a fault in hardware or software configuration. However, this is one
of the main benefits of Chaosity: targeting and identifying such unexpected
and anomalous behaviors. Without Chaosity, one would have deployed a fully
functional system and then spent time analyzing system performance regression
while not knowing that the actual issues are not in the system design but in the
hardware or hardware configuration.

5.2 Bandwidth Interference – Interconnect & Memory

PCIe data transfers also consume memory bandwidth when reading or writing
from/to CPU memory. One such case is when reading or writing data from/to
NVMe drives. This causes interference and, counter-intuitively, consumes the
memory bandwidth, limiting the processors’ data processing performance. In
what follows, we analyze the interaction of PCIe bandwidth with memory band-
width and provide insights for data-intensive processing.

Figure 7 plots the interaction between IO and memory bandwidth on a single
NUMA node. Data is read from the NVMe drives using fio, while simultaneously,
STREAM is run on the same NUMA node. As the number of NVMe drives read
from increases, more memory bandwidth is used for IO, and we observe lower
memory bandwidth consumed by STREAM. This exemplifies the point that IO
bandwidth consumes memory bandwidth. This is increasingly relevant as storage
bandwidths increase, resulting in memory bandwidth competition.
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Fig. 6. Storage bandwidth (GB/s) in AMD EPYC – All cores of NUMA node accesses
specified NVMe drives in target NUMA node

Fig. 7. Interference in read bandwidth between storage and memory

Fig. 8. CPU and IO compete for memory bandwidth within the same workload.
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Figure 8 demonstrates competition for memory bandwidth between IO and
a simple compute kernel in a single program. The compute kernel performs a
summation over an array of integers, using one socket of the server. The black
line shows the processing throughput when the array is entirely in memory. The
blue line shows the throughput when the array is striped across an increasing
number of NVMe drives on the socket. When the array is NVMe resident, it
is asynchronously transferred in 2 MiB chunks into memory using io uring, as
the chunks arrive in memory they are consumed by the compute kernel so that
the compute and NVMe transfers are overlapped. This experiment differs from
simply using fio, as fio only transfers data from storage to memory and does not
also load the transferred data again from memory to the CPU.

Operating on storage resident data consumes twice the memory bandwidth
than operating on in-memory data. We observe that for the baseline memory-
resident data, the processing throughput is 120 GiB/s, near the single socket
memory bandwidth. When reading from storage, the number of drives, and
hence the storage bandwidth, is the initial bottleneck. Whereas, with eight or
more drives, the available storage bandwidth does not improve the processing
throughput; as the transfers from storage consume memory bandwidth to write
to memory and the CPU utilizes the remaining memory bandwidth to read the
data from memory. At this point, the bottleneck has shifted to memory band-
width.

6 Discussion

In Sects. 4 and 5, we presented experimental results which demonstrate some of
the complexities of the modern hardware landscape that data-intensive systems
developers must account for. Architectures like the Apple M1 can only fully
utilize the memory bandwidth by using the GPU but at the cost of interfer-
ing with the CPU’s memory bandwidth. The EPYC Milan architecture allows
for tremendous PCIe bandwidth, which can be used for NVMe storage, but the
PCIe/storage bandwidth cannot be fully utilized if the CPU also needs to trans-
fer the data between its caches and memory as memory bandwidth becomes the
bottleneck. Our results are only for two specific topologies. However, servers can
be configured in many different ways, for example, with PCIe network interface
cards (NIC) and accelerators. This enables additional data transfer paths such
as storage to accelerator and storage to NIC transfers, which bypasses the main
memory but still consume IO bandwidth [16,18].

The complex topology of modern servers, both due to varying CPU architec-
tures and possible server configurations, severely increases the cognitive load on
designers of data-intensive systems. System designers strive to maximize hard-
ware utilization in order to minimize the cost and energy use of their systems.
We expect two common approaches to achieve good utilization in the era of
diverse hardware. First, organizations that both develop software and deploy on
hardware they manage, such as large cloud companies, may evaluate multiple
types of servers and settle on one or a small number to deploy and optimize for.
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Second, systems that need to achieve portable performance can adapt to the
topology at run-time. Still, both approaches necessitate that system designers
have a deep understanding of hardware.

Our long-term goal is to assist and enable system designers to under-
stand hardware better. Through topology and interference-aware benchmarking,
Chaosity enables the exploration of the limits of the hardware in more realis-
tic scenarios than individual system-wide single-metric benchmarks. Chaosity
can be a complimentary tool to software system-specific benchmarks, as it aims
to reveal the characteristics of the hardware rather than the performance of a,
potentially untuned, software system on new hardware. This can be especially
helpful because discovering performance bottlenecks due to interference at the
hardware level is time-consuming to discover through profiling alone. Chaosity
synchronizes the hardware expectations and reality given the current configura-
tion and may also detect misconfigurations and defects early rather than wasting
time in debugging/profiling a full software system.

Future Directions. We envision Chaosity to be integrated with automatic
topology discovery and adaptive components in a system as an input provider,
thereby assisting systems in adapting to increasingly complex underlying hard-
ware. We aim to include support for more types of benchmarks in Chaosity,
including but not limited to benchmarking latency profiles, on-chip, off-chip
accelerators and devices connected via Compute Express Link (CXL). Further,
we also plan to add a shared and private profiling database to compare different
hardware characteristics across different hardware types, vendors, and gener-
ations. We will encourage vendors and third parties to publish and compare
results against standard and non-trivial configurations.

7 Conclusion

Modern hardware requires co-optimizing hardware and software. However, mod-
ern servers are becoming more diverse and heterogeneous. This complexity is
a result of both CPUs that are scaling silicon horizontally and may also con-
tain heterogeneous compute, as well as the increasing use of high-bandwidth IO
devices and accelerators attached via an interconnect like PCIe. The diversity of
server topologies will only continue to grow as novel CPUs come to market and
new interconnects such as CXL enable new types of devices. Collectively, this
poses new challenges for efficient and high-performance system designs.

This paper proposes an initial vision for the Chaosity framework, which
assists system designers and developers in understanding the target hardware
topology and associated performance characteristics. Further, hardware or soft-
ware configurations are prone to misconfigurations, given the complex hardware
topologies and systems designs. Chaosity will assist in detecting such problems
in the early stages of hardware or software deployments by providing insights
into expected hardware performance.
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Abstract. With exponentially growing popularity of Large Language Models
(LLMs) and LLM-based applications like ChatGPT and Bard, the Artificial Intel-
ligence (AI) community of developers and users are in need of representative
benchmarks to enable careful comparison across a variety of use cases. The set of
metrics has grown beyond accuracy and throughput to include energy efficiency,
bias, trust and sustainability. This paper aims to provide an overview of popular
LLMs from a benchmarking perspective. Key LLMs are described, and the asso-
ciated datasets are characterized. A detailed discussion of benchmarking metrics
covering training and inference stages is provided and challenges in evaluating
these metrics are highlighted. A review of recent performance and benchmark
submissions is included, and emerging trends are summarized. The paper lays
the foundation for developing new benchmarks to allow informed comparison of
different AI systems based on combinations of models, datasets, and metrics.
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1 Introduction

Currently, Large LanguageModels (LLMs) are the hottest trend in Artificial Intelligence
(AI) development and in datacenter workloads in general. Enabled by the development
of transformers, they have replaced vision workloads as the cutting edge of AI. While
LLMs have been popular in the AI community at least since the release of BERT in
2018, it was public release of ChatGPT in November 2022 that captured public attention
and became a watershed moment in LLMs. ChatGPT demonstrated that it can answer
questions, write text and computer programs, pass exams, and much more. It became
the fastest service to reach 100 million users [1].

The success of ChatGPT has catalyzed LLM development and deployment. It has
led to multiple companies rushing to deploy their own LLM models. For example, in
February 2023, Google announced its own rival chatbot, Bard [2].

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Nambiar and M. Poess (Eds.): TPCTC 2023, LNCS 14247, pp. 77–89, 2024.
https://doi.org/10.1007/978-3-031-68031-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68031-1_6&domain=pdf
https://doi.org/10.1007/978-3-031-68031-1_6


78 M. Hodak et al.

At the same time, it has become evident that LLM training and deployment is very
costly.While GPT-3-based ChatGPT remains free, the large size of themodels combined
with the need for large throughput - i.e., generating a large amount of text quickly -
means that deployments usually require a large number of accelerators. This makes
benchmarking indispensable for evaluating different modes of deployments. Yet, LLM
benchmarking lags far behind deployments.

Beyond the rapid public adoption, other reasons benchmarking has lagged are a lack
of standardization and high compute requirements. So far, the gap has been filled with
many ad hoc efforts with chip makers claiming leadership in workloads best suited to
their products and individuals and enthusiasts publishing their own results. Given the
importance of this area, it is imperative that standardization and benchmarking quickly
catch up. On the standardization side, there is a need for identifying the most represen-
tative LLMs along with datasets and with accuracy criteria – unlike in vision workloads,
accuracy scoring in LLMs is less obvious and several competing metrics have been
developed. Once the models and datasets are identified, a set of benchmarking rules can
be defined to arrive at a fair LLM evaluation.

The current state of the field is that only a single standards organization has brought
LLM benchmarks: MLCommons. This organization, which publishes MLPerf bench-
marks has published its first round of LLM benchmarking within its MLPerf Training
suite as of writing of this paper (June 2023) with MLPerf Inference slated to include
LLM in the next version scheduled for release in September 2023. Other organizations
have yet to announce their plans for LLM inclusions.

This paper is organized as follows: Sect. 2 describes difficulties in LLM benchmark-
ing, Sects. 3 and 4 give an overview of LLM models and datasets, respectively. Sects. 5
and 6 give benchmarking considerations for LLM training and inference, respectively.
Sect. 7 discusses metrics for evaluating LLM performance while Sect. 8 reviews current
state of LLM benchmarking in established benchmarking suites. Finally, Sect. 9 give a
Summary and Conclusions.

2 Difficulties in LLM Benchmarking

Running LLM workloads is challenging because it requires large computational
resources. LLM training is usually done onmany – tens, hundreds, or even thousands – of
GPUs. Therefore, realistic LLM training benchmarking requires an accelerated scale out
cluster, which means that an organization needs to put in a substantial investment into its
benchmarking compute resources. Beyond raw computational power, a storage system
needs to be in place – a commonly used C4 dataset is about 750GB in size – capable of
enough throughput for the compute cluster. A common pitfall in LLM performance pub-
lished so far is measuring throughput only – throughput can often be increased at the cost
of worsened convergence and thus does not reflect the actual HW performance. A realis-
tic benchmark needs to take convergence into account, but because the full convergence
is too costly it can only be estimated.

LLM inference requires less computational resources, but even then, scale out or
at least scale up may still be required owing to the large size of LLM models. These
can be pruned and quantized to decrease the size, but that needs to be balanced with
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accuracy. Beyond the size, realistic LLM inference should generate a reasonable number
of words per second – at least a few per second – meaning that just making an inference
benchmark to run is not sufficient to evaluate its deployment performance.

These and other considerations are discussed inmore detail in the following sections.

3 LLMModels

Table 1 shows a quick overview of most common LLMs, which are also discussed in
more details below. These are built on transformer architecture [3].

Table 1. A selection of noteworthy base LLMs.

Model Creator Availability Parameters Training
Data

Architecture

BERT Google Apache 2.0
(commercial)

110M (base),
340M (large)

3.3B
words

Bidirectional (not
generative)
transformer

GPT-3 OpenAI Proprietary (API
only)

175B 300B
tokens

Auto-regressive
(generative)
transformer

LLaMa Meta CC BY-NC-SA
4.0
(non-commercial)

7B, 13B,
33B, and 65B

1T tokens
(7B, 13B
models),
1.4T
tokens
(33B, 65B
models)

Auto-regressive
(generative)
transformer

LLaMa 2 Meta Llama 2
community license
(commercial)

7B, 13B,
34B, 70B

2T tokens
(7B, 13B,
34B, 70B
models)

Auto-regressive
(generative)
transformer

MPT-7B MosaicML Apache 2.0
(commercial)

7B 1T tokens Auto-regressive
(generative)
transformer

PaLM 2 Google Proprietary (API
only)

Four sizes,
count
unknown

unknown Auto-regressive
(generative)
transformer

BLOOM BigScience Big Science RAIL
License
(commercial)

176B 366B
tokens

Auto-regressive
(generative)
transformer

GPT-J EleutherAI Apache 2.0
(commercial)

6B 402B Auto-regressive
(generative)
transformer
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3.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) is one of the most
widely adopted transformer self-supervised language models. A comparatively simple
model to modern standards it has 340M parameters and is not truly a generative model as
it is technically an encoder-only bidirectional transformer. However, it serves as the base
of so many subsequent models it bears mentioning here. BERT is a masked language
model in that it takes the sample dataset and “masks” 15% of all the tokens which
it then tries to predict [4]. This was the breakthrough that allowed it to be used on
unsupervised datasets such as English Wikipedia (2,500Mwords) and the BooksCorpus
(800M words).

3.2 GPT-3

Generative Pre-trained Transformers (GPT)-3 is a decoder only unidirectional autore-
gressive model that has 175 billion parameters. This model by OpenAI is the model
that powers ChatGPT. This model was trained on 499 billion tokens consisting of Com-
monCrawl (570 GB), WebText, EnglishWikipedia, and two books corpora (Books1 and
Books2) [5]. A previous restriction on many models has been a relatively small context
such as only examining a sentence at a time. However, GPT-3 uses 2048-token-long
context which is long enough to demonstrate strong zero-shot and few-shot learning on
many tasks.

3.3 PaLM

Pathways Language Model (PaLM) is a recent breakthrough from Google that is 540
billion parameters. It gets its name from the novel method in which it is trained, the
Pathways system, which enables efficient multi-node training of the model. PaLM has
a modified encoder-decoder transformer architecture. It has achieved state-of-the-art
results on 28 out of the 29most widely used EnglishNatural Language Processing (NLP)
tasks that “span question-answering tasks (open-domain closed-book variant), cloze
and sentence-completion tasks,Winograd-style tasks, in-context reading comprehension
tasks, common-sense reasoning tasks, SuperGLUE tasks, and natural language inference
tasks” [6]. In addition to this, PaLM is notably achieved state-of-the-art performance
on arithmetic and commonsense reasoning task which has traditionally been especially
difficult for LLMs.

3.4 LLaMA

Large Language Model Meta AI (LLaMA) was released by Meta AI in February of
2023. This model has a variety of model sizes from 7 billion to 65 billion parameters,
with the largest models rivaling PaLM [7]. It draws from an enormous training dataset
including webpages (CommonCrawl), open-source repositories (GitHub), Wikipedia in
20 languages, books (Project Gutenberg), scientific papers (ArXiv), and questions and
answers (Stack Exchange) [6]. LLaMA 2 was released by Meta AI in July of 2023,
LLaMA 2 has a variety of model sizes from 7 billion to 70 billion parameters. LLaMA
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2 used public data source, but it didn’t specify the source name [30]. Architecturally
different from GPT-3, LLaMA/LLaMA 2 uses a SwiGLU activation function, rotary
positional embeddings, and root-mean-squared layer normalization.

3.5 GPT-J

Generative Pre-trained Transformer-J (GPT-J) or GPT-J-6B, is a 6 billion parameter
model developed by EleutherAI. As the name suggests, it is a GPT-3 like model with
a few adjustments. The three main differences are that it uses dense attention, Rotary
Position Embeddings, and that the attention and feedforward network were computed in
parallel during training [8]. The model is trained on a published dataset that is 800GB
consisting of 22 smaller, high-quality datasets [9].

3.6 BLOOM

BigScience Large Open-science Open-access Multilingual Language Model (BLOOM)
was created by over 1000 AI researchers to provide an open-source LLM. Unlike a lot
of the other LLMs that are only trained on English, BLOOMwas trained on the ROOTS
corpus which comprises of hundreds of datasets in 46 different natural languages and 13
programming languages [10]. The architecture is modified from Megatron-LM GPT2
and is a decoder-only architecture with ALiBi positional encodings, GeLU activation
functions, and layer normalization applied to word embeddings layer.

4 LLM Datasets

Preparing datasets for pre-training the LLMs is a multi-step process. Each of the LLMs
described in this paper were pre-trained using datasets prepared uniquely for this pur-
pose. That said, there are also significant commonalities. In this section, we describe
these similarities and differences and distill key considerations from a benchmarking
perspective.

In general, LLMs are trained in two phases: pre-training and fine-tuning. The pre-
training is typically unsupervised and uses a large dataset. The fine-tuning initially was
supervised, using a labeled dataset for specific target tasks. This step has now been
replaced by few-shot training, using a small number of example prompts. A special case
is zero-shot where no examples are used, and the model is directly used with new data.
The change from target-specific fine-tuning to few-shot training has been possible by
progressively increasing the scale of the LLM by a factor of ten to a thousand and more.
The datasets used for fine-tuning are now largely part of the evaluation and benchmarking
stage and span a number of different target tasks.

We focus on the pre-training datasets and describe their evolution over the past
several years. The initial GPT [11] used BookCorpus [12]. GPT-2 [13] used WebText
created from the Common Crawl web scrape. GPT-3 [14] started with CommonCrawl
[15], performed deduplication and added WebText, Books1, Books2, and Wikipedia.
GPT-4 [16] has used data from public sources as well as data licensed from third-party
sources.
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A team fromMeta has recently released LLaMA [6]. C4 [15] dataset was used, along
with CommonCrawl. The key difference in its training dataset is that it was created from
only publicly available data sources. This contrasts with OpenAI’s GPT models that use
proprietary data licensed from 3rd parties along with publicly available data.

A number of models and chatbots have been released by fine-tuning the LLaMA
model: Alpaca, Vicuna, andKoala.Most recently,MosaicML team released theMPT-7B
model [17] trained on dataset curated by combining data from various public sources.

Table 2 shows a comparison of data sources used by popular LLMs.

Table 2. Training datasets used by various models.

Model Training tokens Main data sources for
pre-training

License

GPT 0.04T BookCorpus Non-commercial

GPT-2 0.4T WebText, Common Crawl Proprietary

GPT-3 0.3T Common Crawl, Books1,
Books2, Wikipedia

Proprietary

LLaMA 1T C4, Common Crawl Non-commercial (CC
BY-NC-SA 4.0)

MPT-7B 1T Text and code Commercial (Apache 2.0)

The question of license needs to also be addressed. Most of the LLMs are released
under a non-commercial, research use only license. One exception is MosaicML’s MPT-
7B, which is released under a commercial license.

One key lesson from these modifications to datasets is that limiting the dataset to
public-domain accessible sources only does not impact the performance as long as the
size of the dataset is large enough. This is good news from a benchmarking perspective.
A curated dataset based on public sources can be the basis for use in a benchmarking
suite.

5 LLM Training: Benchmarking Considerations

LLM training requires very large computational resources and takes a very long time. As
a result, it is very costly. For example, Meta has reported that their LLaMA 65B model
training took 21 days on 2,048 NVIDIA A100 GPUs [18]. This is about 1 million GPU
hours, which would cost about $2.4 million on AWS [19]. Similarly, Hugging Face has
reported that training their Bloom LLM took more than two-and-a-half months using
about 500 GPUs. OpenAI’s GPT-3 training cost was estimated at $4 million. This makes
realistic benchmarking very difficult because such a high cost cannot be justified for
benchmarking work.

Duration of LLM training is determined by the number of tokens processed. For
each model, there is an optimal number of tokens needed for training, using more does
not improve the results due to overfitting. In general, models with more parameters need
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more tokens. For example, the GPT-J 6B model needs about 134 billion tokens, while it
is about 3.5 trillion tokens for GPT-3 175B. In fact, some of the largest LLMs are limited
by insufficient number of quality data to train them.

Optimumnumber of tokens is determined by testing themodel against a chosen accu-
racy metric. In practice, multiple checkpoints are saved during training, which are later
evaluated for performance and best performing ones are chosen for further fine-tuning.
This training process is very different from training of convolutional neural nets (CNNs)
used for computer vision. There, training iterates multiple times – expressed in number
of epochs - over the entire dataset until the loss function is minimized. In LLMs, repeated
iterations cause overfitting and degrade performance and thus the training happenswithin
a single epoch on a subset of the dataset.

In general, training time depends on three factors: (i) Number of tokens, (ii) Number
of model parameters, and (iii) Number of GPUs used for training.

The training process described above generates an all-purpose model, such mod-
els are called foundation models. In practice, fine-tuning is usually applied before
deployment. Fine-tuning adapts the model to achieve better performance in a specific
domain.

6 LLM Inference: Benchmarking Considerations

Given the extremely high cost of LLM training, one might expect inference to be less
costly and easier to run, but that is not necessarily the case. A popular LLM inference
service can have thousands of users and needs to have sufficient throughput to generate
output quickly. That implies, at aminimum,multi-accelerator deployment, or even scale-
out to multiple servers. Thus, a realistic LLM inference benchmark needs to be scalable.

A necessary input for inference is a pre-trainedmodel. This has been straightforward,
but with LLMs’ extremely high training cost, availability of high-quality checkpoints
for models such as GPT-3 175B has been an issue. Beyond the cost, additional issue
is that these checkpoints are seen as a competitive advantage for companies that spent
large amount of resources creating them. This creates additional barrier for performance
evaluation of cutting edge LLMs.

Another issue is model size. For example, GPT-3 175B checkpoints need about
700 GB for storing parameters and about an equal amount for activations. These need
to be stored in memory, which means that, at minimum, 16 80GB GPUs are needed to
execute such models. To decrease memory requirements and improve compute through-
put, pretrained models are usually pruned and quantized. The former refers to removing
layers of neural networks, while the latter means converting weights to a lower numeri-
cal precision. Both may result in decreased performance and thus the result needs to be
carefully tested to ensure that the performance loss is acceptable. Sometimes, retraining
may be needed to recover lost accuracy, but this is impractical for LLMs. In general, this
process is complicated, involves using of multiple software tools, and is not captured
in current benchmarking tools. Nevertheless, it is an essential part of AI workflow and
benchmark creators need expertise in these techniques to create relevant benchmarks.

In LLM inference, pruning and quantization are critical because they decrease size
and computational requirements of the models. For pruning, one notable study found
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that LLMs can be pruned to at least 50% sparsity in one-shot, without any retraining,
at minimal loss of accuracy [20]. Similarly, powerful quantizing techniques have been
developed, with one of them delivering up to 1.56x speedup and 2x memory reduction
[21]. These techniques are critical, because they enable running inference on CPUs and
ASIC chips without the need for powerful GPUs.

7 LLM Performance Evaluation

Evaluating the performance of LLMs is an active area of research and discussion. The
variety and number of possible evaluations is quite large because of the numerous
domains in which LLMs are being used. The range of target tasks include language
understanding, question answering systems, text summarization, machine translation
and knowledge testing across a variety of disciplines and subjects. In this section, we
summarize key metrics used in evaluating the performance of LLMs across the breadth
of tasks.

The straightforward evaluation is done by humans examining the output of theLLMs.
These are subjective evaluation of quality of the output and can include factors such as
coherence, correctness and contextual relevance. Such evaluations can be averaged by
employingmany human evaluators, making it a time-consuming and expensive exercise.
These considerations have resulted in a number of differentmetrics specific to target tasks
that can be programmatically evaluated.

The intrinsic quality of a languagemodel ismeasuredby its perplexity, the normalized
inverse probability of the test set. As an inverse, a lower value of perplexity is better
because it indicates a higher corresponding probability value (Table 3).

For text summarization tasks, the metric used is ROUGE (Recall-Oriented Under-
study for Gisting Evaluation). It is a measure of similarity between human-generated,
so-called golden annotated summary and the model-generated summary. Evaluation of
ROUGE metrics includes 1-g (ROUGE-1), bi-gram (ROUGE-2) and L-gram (ROUGE-
L) based F1 scores, calculated as a harmonic mean of the respective precision and recall
values.

Evaluation of machine translation is done using the BLEU (Bilingual Evaluation
Understudy) and measures the similarity between a candidate translation generated by
the model and a reference translation. BLEU score values are in the range from 0 to 1,
and higher values indicate better performance.

LLMs are also measured for knowledge tasks and a common benchmark is the
MMLU (Massive Multitask Language Understanding) [22], which includes 57 tasks
ranging from elementary mathematics, US history, computer science, law and more.

There are also considerations for measuring diversity in the sense of uniqueness and
variety of model output, bias along various dimensions, toxicity, and accuracy in terms
of factual correctness. These are all difficult metrics but will play an important role in
increasing trust in AI systems [23].

In summary, many of the metrics described in this section are commonly used in
academic and industry publications of new LLMs. These are very good candidates for
inclusion in benchmarks for LLMs.
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Table 3. Definitions of metrics for LLM benchmarking

Term Definition

Accuracy The correctness of objective model output

Bias The systematic prejudice of model output, including stereotypes of
certain groups or performance disparities between groups [24]

Coherence The collective quality of the entire model output; the combined degree
to which each part of the model output, given the rest of the output,
contributes to the output’s quality [25]

Contextual relevance The degree to which model output is on topic in response to model
input

Cost The explicit cost (e.g., paying for cloud compute) or implicit cost (e.g.,
the opportunity cost of using owned computing resources) associated
with acting on (i.e., training or inferencing) the model

Diversity The variety of model outputs from varied inputs

Energy Efficiency The energy consumption required by acting on the model, typically
measured per query or per token for inference and in total energy to
reach a certain checkpoint (number of tokens ingested) for training

Sustainability The ability of a model to operate with minimal environmental impact

Throughput The speed of generation during inference, typically measured in tokens
per second

Toxicity The tendency of a model to output “a rude, disrespectful, or
unreasonable comment that is likely to make you leave a discussion”
[26]

Trust A concept comprised of several measurable metrics – interpretability,
reproducibility, and replicability – as well as qualities of a model’s
creation – transparent knowledge of data and model provenance [27]

8 Current Benchmarking Efforts

8.1 MLPerf Training V3.0 LLM Benchmark Design

MLPerf Training is the first major benchmarking suite that includes an LLMmodel as of
v3.0 released on June 27th, 2023 [28]. MLPerf’s model is based on GPT-3 175B model
trained on C4 dataset, which is about 350 GB in size and contains 174B tokens. To
address the long runtimes, only a small portion of training is executed. Training starts
from an initial checkpoint that has been trained on 12.5B tokens and continues to train
on 1.3B tokens to the quality target of 2.69 log perplexity. Thus, the benchmark captures
about 0.4% of the full GPT-3 training. Even that still requires substantial resources
with reference implementation requiring a minimum of 64 accelerators mainly due to
the model’s large memory size. To ensure that model is on its way to convergence an
accuracy evaluation is performed using about 5% of the total validation set.
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8.2 MLPerf Training V3.0 LLM Benchmark Results

MLPerf v3.0 results, which include LLM for the first time, are shown in Table 4. The
results show that only a few submitters submitted LLM scores; out of 12 submitters
in the Closed division and Available categories, only two submitted results: (i) Nvidia
(on their own and also in collaboration with CoreWeave), (ii) Intel-Habana Labs. This
indicates that, as designed, this benchmark exceeds resources that most submitters have
for their MLPerf work. Indeed, the smallest submission is on 256 Gaudi2 accelerators.
The smallest GPU submission is on 768 GPUs, which is 96 Nvidia DGX H100 servers.
On the top end is a 3,584 GPU submission using 448 Nvidia DGX servers.

The results confirm that LLM training is highly scalable as shown in Fig. 1. On
Nvidia servers, going from 768 to 3584 GPUs, 4.67x more, the training time decreases
by 4.17x, about 90% efficiency. Because MLPerf timings include accuracy evaluation,
this underestimates the actual scaling efficiency. Intel’s Gaudi results show even better
scaling, of about 95% but over less accelerators – increasing from 256 to 384.

Table 4. LLM results in MLPerf Training v3.0

Submitter CPU Qty Accelerator Type Accelerator Qty Benchmark Results
(min)

NVIDIA 128 NVIDIA
H100-SXM5-80GB

512 64.264

NVIDIA +
CoreWeave

192 NVIDIA
H100-SXM5-80GB

768 45.606

NVIDIA 192 NVIDIA
H100-SXM5-80GB

768 44.816

NVIDIA +
CoreWeave

384 NVIDIA
H100-SXM5-80GB

1536 23.611

NVIDIA +
CoreWeave

896 NVIDIA
H100-SXM5-80GB

3584 10.940

Intel-HabanaLabs 64 Habana Gaudi2 256 442.578

Intel-HabanaLabs 96 Habana Gaudi2 384 311.945

8.3 MLPerf Inference

MLPerf inference has not released an LLMmodel yet but given that it is usually synchro-
nized with MLPerf training, an LLM inclusion is expected soon. Indeed, its reference
code repository contains two LLM implementations, one based on GPT-3 175B corre-
sponding to the MLPerf Training LLMmodel, while the other is GPT-J 6B, which is not
included in the training. This likely reflects the fact that the 175B model is too resource
intensive and the 6B model makes it easy to run on smaller computational resources.
Because upcoming version of MLPerf Inference is still some time away (September
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Fig. 1. Runtime vs number of accelerators for LLM results in MLPerf Training v3.0

2023, while this paper is being prepared in June 2023), it is currently unknown whether
both models will ultimately be included in the next iteration of the MLPerf Inference
suite, but based on publicly available information it looks like a strong possibility.

8.4 Other AI Benchmarking Suites

TPCx-AI is an AI benchmarking suite developed by TPC consortium. Some of the
authors of this paper have recently reviewed this suite and compared it to MLPerf [29].
TPCx-AI focuses on the low-end AI, while LLM is on the opposite end of the AI
workload spectrum. Current TPCx-AI release does not include LLM nor are there any
public indications that it will be included soon.

SpecML is an AI benchmarking effort from another well-established benchmarking
consortium, SPEC. Despite being announced some time ago, it has not been released
yet and there is no indication that an LLM is being worked on.

9 Summary and Conclusions

This paper has discussed challenges and opportunities in LLM benchmarking as well as
reviewed current state of LLM benchmarking in main AI benchmarking suites.

The opportunity part of the equation is quite clear, with exponential growth in LLM
model sizes and current rush to deploy these in practice, there is a clear need for rep-
resentative LLM benchmarks. There are many models to choose from along with many
datasets that can be used to train thesemodels. Additionally, there is awealth of hardware
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to test on – from high-end GPUs to midsize accelerators, datacenter CPUs all the way
down to edge and embedded systems. The amount of reliable LLM benchmarking data
is currently very limited meaning that many organizations have to make purchasing and
deployment decisions without reliable data.

On the other side, LLM benchmarking also face multiple challenges described in
this paper. One of them is the sheer scale of applications meaning that a single model
will only address a limited scope of deployments and thus multiple LLM benchmarks
are needed to better map out the deployment modes.

Another challenge is a high computational cost of LLM training and inference.
The only existing LLM standard benchmark – GPT-3 175B included in MLPerf train-
ing – covers only 0.4% of LLM training and yet all the submissions use hundreds of
accelerators, which is outside of capabilities of benchmarking setups. The high cost
is an inevitable part of LLMs, but using smaller models, such as GPT-J 6B, included
in the upcoming MLPerf Inference, can be a way to decrease the computational cost
while being a relevant representation of LLM workloads. Ultimately, the practice will
show whether the current trend of ever-increasing model sizes will continue or whether
practical considerations for deployment will lead to more easily usable model while
preserving most of the performance of the cutting edge LLM models.

An important aspect of LLMs is measuring their performance: Our paper discusses
some of themost popular options for doing so.While performance testing for, say, image
classification, is straightforward, the right metric for generative AI is less obvious. Most
likely a combination of several metrics is the best way forward to evaluate usefulness of
the results while minimizing bias and other undesirable effects.

In summary, LLM is an extremely active field and benchmarking is currently lagging
behind. However, there are efforts under way to improve the current state indicating
that the situation is changing. This work surveyed current state of the field of LLM
benchmarking pointing out the unique challenges and opportunities for this workload.
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graph data management problems, making the performance of systems
comparable and facilitating competition among vendors. LDBC also con-
ducts research on graph schemas and graph query languages. This paper
introduces the LDBC organization and its work over the last decade.

1 Introduction

The Graph Data Management Space. The category of data management
software with graph features has grown steadily in the last 15 years [36]. This
includes graph databases [10], relational DBMSs with graph extensions [44],
graph analytics libraries [26], and graph streaming systems [12]. While graph
data management systems are already popular for several use cases, such as
financial fraud detection, recommendation, and data integration [35], they did
not yet reach mass adoption. We believe the two key obstacles to this are: (1) the
lack of standardized query languages and APIs [35], (2) limited and/or unpre-
dictable performance in systems [36]. LDBC makes significant efforts to address
these problems.

Query Languages. The adoption of graph processing systems, particularly
those supporting the property graph data model, is considerably hindered by the
lack of a standard query language [35]. Currently, systems use several different
query languages, including Cypher, Gremlin, GSQL, PGQL, and DQL, which
causes (potential) customers concern over lack of portability. Starting in 2017, a
concentrated effort was launched to create standard query languages. The SQL/
PGQ (Property Graph Queries) extension was released as part of SQL:2023 and
the standalone GQL (Graph Query Language) is scheduled to be released in
2024. Both of these languages have been influenced by LDBC’s G-CORE design
language and LDBC has been involved in their design via its liaison with ISO.

Performance Challenges. Graph processing problems, including graph pat-
tern matching [32], graph traversal (navigation) [4], and graph mining [13], have
irregular memory access patterns and provide little spatial locality or oppor-
tunities for data reuse [17]. Contemporary CPUs are ill-suited to handle these
workloads, leading to performance problems [37]. Moreover, while there were
attempts to harness modern hardware such as GPUs [38] and FPGAs [11], these
only proved beneficial for narrow domains and did not generalize to a wider set
of use cases.

The Importance of Benchmarks. To expedite the speed of progress in graph
data management systems, a group of industry and academic organizations
founded the Linked Data Benchmark Council (LDBC). LDBC is an indepen-
dent benchmarking organization, which defines standard benchmarks to make

A. Prat-Pérez—Work done while at UPC Barcelona and Sparsity.
D. Szakállas—Independent author.
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graph query performance measurable and thus facilitate competition between
vendors. In this sense, LDBC aims to fulfill a role similar to the Transaction
Processing Performance Council (TPC), which defined a number of influential
benchmarks. LDBC uses TPC’s design and auditing processes as inspiration for
its operations.

LDBC Benchmarks. LDBC has six main benchmark workloads covering dif-
ferent aspects of graph processing with different transactional characteristics,
set of CRUD operations, and data distributions. With the exception of Graph-
alytics, a leaderboard-style benchmark, all benchmarks define stringent audit-
ing processes for ensuring that implementations are faithful to the specification
and the derived results are reproducible. As of August 2023, LDBC published
45 audited results.

Paper Structure. This paper is structured as follows. Section 2 gives an
overview of the LDBC organization, including its history and structure. Section 3
presents LDBC’s benchmarks, Sect. 4 describes the benchmark creation and
auditing processes, and Sect. 5 summarizes our benchmark design experiences.
Section 6 introduces LDBC’s working groups and Sect. 7 outlines future direc-
tions.

2 The LDBC Organization

2.1 History of the Organization

Research Project (2012–2015). LDBC started as a European Union-funded
research project by the same name1 with the participation of 4 academic and
4 industry partners [3,14]. The project was coordinated by Josep Larriba Pey
from Universitat Politècnica de Catalunya and Peter Boncz (CWI & VU Ams-
terdam). The consortium designed the Social Network Benchmark suite (SNB,
Sect. 3.2), releasing its first workload, SNB Interactive [19], and the Semantic
Publishing Benchmark [28] (SPB, Sect. 3.3). The non-profit company “Linked
Data Benchmark Council” was established and registered in the UK.2

Sustained Research Efforts (2016–2018). After the EU project concluded,
research efforts continued with the participation of industry partners and
resulted in G-CORE [5], a declarative language designed to formulate compos-
able graph queries. The Graphalytics benchmark (Sect. 3.4) [25] was released,
and a draft version of the SNB Business Intelligence workload was published [40].

Expansion and Auditing Ramp-Up (2019–2022). LDBC’s membership
increased from 7 organizations in 2019 to 22 organizations in 2022 (Sect. 2.2).
While in the previous phase LDBC was economically supported by CWI and
Sparsity, one of the organizational improvements realized by Alastair Green was

1 FP7-ICT grant ID 317548, https://cordis.europa.eu/project/id/317548.
2 https://find-and-update.company-information.service.gov.uk/company/08716467.

https://cordis.europa.eu/project/id/317548
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to get LDBC a bank account, to start collecting membership fees.3 New working
groups were established to research property graph schemas and query language
semantics (Sect. 6). The SNB Business Intelligence workload was completed [41]
(Sect. 3.2). A new Task Force was set up to design the FinBench [24] (Sect. 3.5).
LDBC’s benchmark adoption process (Sect. 4.1) and auditing processes crys-
tallized (Sect. 4.2) with multiple audits occurring per year. The term “LDBC
benchmark result” was trademarked (Sect. 4.3).

Restructuring and New Benchmarks (2023–). In early 2023, the organi-
zation was restructured to simplify governance (Sect. 2.2). The benchmark Task
Forces released the initial version of the FinBench, updated the SNB Interactive
workload (Sect. 3.2), and organized a Graphalytics competition (Sect. 3.4).

2.2 Organizational Structure and Operations

Historical Structure (2013–2022). Until 2023, LDBC member organizations
could appoint a director to the Board of Directors, which at its peak consisted of
20+ members, an unusual and unwieldy structure for a small non-profit company.

Current Structure (2023–). To simplify its governance, LDBC was restruc-
tured in 2023, resulting in new articles of association [29] and updated
byelaws [30]. The new structure (Fig. 1) has Voting Members, who contribute
via the Members Policy Council4 and Associate Members, who pay no fees (and
have no vote) but contribute to the day-to-day work of LDBC. There is a new,
smaller Board of Directors (3–5 members), who are also part of the Members
Policy Council.

Fig. 1. Organizational structure of the LDBC from May 2023.

Membership. As of August 2023, LDBC has 24 member organizations, includ-
ing database, hardware, and cloud computing vendors, and academic institutes.
There are 3 sponsor companies5, 18 member companies6, and 3 non-commercial
3 This seemingly trivial matter posed a practical hurdle for an organization with many

directors (one per member at the time) located in different parts of the world.
4 The Members Policy Council is called the Members Council in official documents.
5 Ant Group, Beijing Volcano Engine Technology Co., and Oracle Labs.
6 Amazon, Alibaba Damo Academy, ArangoDB, Beijing Haizhi Xingtu Company, Cre-

ateLink, Fabarta, Intel, JCC Consulting, Katana Graph, Memgraph, Neo4j, Onto-
text, Pometry, RelationalAI, Sparsity Technologies, TigerGraph, Ultipa, and vesoft.
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institutions7. LDBC has 3 individual voting members8 and 60+ associate mem-
bers.

Intellectual Property Rights. The intellectual property rights policies of
LDBC cover assets created by members while participating in LDBC activi-
ties, including software components, written specifications, discussion proposals,
academic papers, etc.. [30]. Software contributions are licensed under a licence
substantively identical to the Apache Software Licence 2.0; copyright for doc-
umentary or pictorial contributions are licensed to LDBC with a right to sub-
licence. Typically LDBC publishes contributions either to its members or to
external standards groups like ISO, or generally to the public under the Creative
Commons CC-BY licence. Participants in activities of LDBC are also required
to comply with the LDBC Patent Rules, which include disclosing patents that
may be infringed by the implementation of an LDBC benchmark specification,
or by an external standard that incorporates contributions from LDBC.

Teams. LDBC’s members form teams that work on specific aspects of graph
processing. Task forces design, implement, and maintain benchmarks (Sect. 3).
Working groups conduct research on graph query languages and graph schema
(Sect. 6). The establishment of these teams is initiated by the creation of a work
charter and is voted on by the Members Policy Council.

Finances. LDBC’s sources of revenue are its membership and auditing fees. As
of 2023, membership costs 1,100 GBP for non-commercial institutes, 2,200 GBP
for commercial companies, and 8,800 GBP for sponsor members. A fee of 2,000
GBP is applied to audits commissioned by non-sponsor members. Individual
associate membership is free. LDBC uses its funds to pay for cloud compute,
storage, and collaboration services in addition to usual company overheads.

2.3 Liaison with ISO on Standard Query Languages (GQL,
SQL/PGQ)

In 2017, the international standards committee responsible for the SQL database
language standard (ISO/IEC/JTC 1/SC 32/WG 3 “Database Languages”)9,
established a Category C Liaison relationship with LDBC. This liaison allows
WG 3 to share its working documents, draft specifications, and draft digital arti-
facts with LDBC participants. This access gives LDBC members early visibility
into standards development efforts.

Peter Boncz, Alastair Green, and Jan Hidders are LDBC’s liaison partici-
pants on the official ISO roster for WG 3, and can participate in any WG 3
meeting. This liaison relationship has helped to make the SC 32/WG 3 work
more visible to organizations participating in LDBC and give the LDBC work
more visibility in the Database Language standards process.

7 FORTH; Birkbeck, University of London; and Zhejiang Lab.
8 Peter Boncz, Alexandru Iosup, and Gábor Szárnyas; all co-authors of this paper.
9 https://www.iso.org/organization/6720817.html.

https://www.iso.org/organization/6720817.html
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WG 3 has been working on two projects that are of interest to LDBC mem-
bers:

– ISO/IEC 9075-16 Information technology—Database languages SQL—
Part 16: Property Graph Queries (SQL/PGQ)

– ISO/IEC 39075 Information technology—Database languages—GQL

SQL/PGQ is completed and was published by ISO at the end of May 2023.
GQL is currently undergoing a Draft International Standard (DIS) ballot that
started on 2023-05-23 and ends on 2023-08-15. WG 3 aims to resolve any issues
identified during the DIS ballot and to have the GQL standard ready for publi-
cation in early 2024.

Within the database language standards committees, there is ongoing work
to expand the Graph Pattern Matching (GPM) language [18] in areas such as
cheapest path queries. This GPM work will be integrated into the next editions
of both SQL/PGQ and GQL.

The LDBC Extended Schema (LEX) working group [21] (Sect. 6.4) aims to
propose expanded schema capabilities in a future edition of the GQL standard.

2.4 Technical User Community (TUC) Meetings

Table 1. LDBC Technical User Community meetings between 2018 and 2023.

# Year Date Location Format Program

16 2023 June 23–24 Seattle, WA hybrid 31 talks

15 2022 June 17–18 Philadelphia, PA hybrid 26 talks

14 2021 August 16 Copenhagen, Denmark hybrid 19 talks

13 2020 June 30–July 1 online online 4 sessions

12 2019 June 5 Amsterdam, the Netherlands in-person 13 talks

11 2018 June 8 Austin, TX in-person 11 talks

Since 2012, LDBC organizes Technical User Community (TUC) meetings.10

These are 1–2 day informal workshops, where LDBC’s leaders, task forces, and
working groups report on their progress. Additionally, member companies give
updates of their products, researchers in the graph space discuss their latest
results, and users of graph data management systems present their use cases.
The meetings provide an opportunity for members to contribute to LDBC’s
choke points (Sect. 3.1), and to influence the future direction of LDBC. In recent
years, the TUC meetings have been steadily gaining popularity (Table 1).

10 https://ldbcouncil.org/tags/tuc-meeting/.

https://ldbcouncil.org/tags/tuc-meeting/
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3 Benchmarks

Table 2. Key characteristics of LDBC benchmarks. Scale: size of the largest data set,
GP lang.: is the use of general-purpose programming languages allowed for implemen-
tations? Req. isol.: required isolation level (SI: snapshot isolation, RC: read committed).
Legend: ⊗ yes, ◯ no, ⊘ optional; ⍟ the benchmark is under design and audits are not
yet possible; (i) larger sizes can be generated using the Graphalytics graph generator,
but are not part of the standard benchmark.

Benchmark Year Workload Scale Min. scale #Queries #Audits Inserts Deletes GP lang. ACID test Req. isol.

SNB BI 2022 analytical 30,000 30 20 4 ⊗ ⊗ ◯ ⊘ SI

SNB Interactive v1 2015 transactional 1,000 30 21 24 ⊗ ◯ ⊗ ⊗ RC

SNB Interactive v2 ⍟ transactional 30,000 30 21 ⍟ ⊗ ⊗ ⊗ ⊗ SI

SPB 2015 transactional 5 1 12 17 ⊗ ⊗ ◯ ◯ RC

FinBench 2023 transactional 10 0.1 40 0 ⊗ ⊗ ⊗ ⊗ RC

Graphalytics 2016 algorithms 320(i)
− 6 − ◯ ◯ ⊗ − −

In this section, we describe LDBC’s benchmarks. We first present LDBC’s com-
mon benchmark terminology (Sect. 3.1). We then describe the workloads of the
Social Network Benchmark suite (SNB,Section 3.2), followed by the Semantic
Publishing Benchmark (SPB, Sect. 3.3), the FinBench (Sect. 3.5), and Graph-
alytics (Sect. 3.4). The benchmarks are summarized in Table 2. Systems that
implement at least two LDBC benchmarks are shown in Table 3.

3.1 Benchmark Terminology

Choke Points. LDBC’s benchmark design process uses choke points [15], i.e.
well-chosen technical difficulties that are challenging for the present generation
of data processing systems and whose optimization likely results in significant
overall performance improvements. The choke points are identified by expert
data systems architects and also subject to feedback received at the Technical
User Community meetings (Sect. 2.4). LDBC workloads are designed to cover
the set of choke points triggered by a given workload category.

Table 3. Systems with implementations for 2+ LDBC benchmarks. Legend: ⊗ full,

⊘ partial, ◯ no implementation; (a) audited implementation; (s) the implementation
was used for a standard-establishing audit.

Benchmark CreateLink
Galaxybase

OntotextGraphDB Graphscope-
Flex

Neo4j PostgreSQL Sparsity
Sparksee

Microsoft SQL
Server

TigerGraph Ant Group
TuGraph

Umbra OpenLink
Virtuoso

SNB BI ◯ ◯ ◯ ⊗ ⊗ ⊘ ◯ ⊗
(a)

(s) ◯ ⊗(s) ⊘

SNB
Interactive v1

⊗
(a)

⊗
(a)

⊗
(a)

⊗ ⊗ ⊗(s) ⊘ ⊗ ⊗
(a)

⊗ ⊗(s)

SNB
Interactive v2

◯ ◯ ◯ ⊗ ⊗ ◯ ⊗ ◯ ⊘ ⊗ ◯

SPB ◯ ⊗
(a)

◯ ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗
(a)

FinBench ⊗(s) ◯ ◯ ◯ ◯ ◯ ◯ ◯ ⊗(s) ◯ ◯

Graphalytics ⊗ ◯ ⊗ ⊗ ◯ ◯ ◯ ◯ ⊗ ⊘ ◯
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Auditing. Similarly to TPC’s Enterprise Class benchmarks [34], most of
LDBC’s benchmarks must undergo an auditing process conducted by a certi-
fied auditor before they can be published as official results. The auditors check
compliance with the specification, run the benchmark independently and present
their findings in a full disclosure report (FDR). The FDR documents the bench-
mark setup and the derived results in detail, typically spanning over 20–50 pages.
Additionally, audited benchmark results are accompanied by a supplementary
package, which includes the benchmark implementation and the binary of the
system-under-test (SUT), ensuring that the results are reproducible.

Scale Factors. LDBC’s benchmark suites include data generators that produce
synthetic data sets of increasing sizes. Each data set is characterized by its scale
factor (SF) which corresponds to the data set’s disk usage when serialized in
CSV (comma-separated values) format, measured in GiB.

ACID Compliance. Several of LDBC’s benchmarks require the SUT to comply
with ACID properties. An important aspect of this is durability : the SUT must
be able to recover from a crash or power outage without losing any committed
data.11 For the SNB workloads and FinBench, the isolation properties are tested
with an ACID test suite.

3.2 Social Network Benchmark (SNB) Suite

The Social Network Benchmark suite pioneered a number of techniques used in
LDBC benchmarks: choke point-driven design [15], scalable correlated dynamic
graph generation [33,43], and parameter curation for stable query runtimes [22].
The detailed specification of the SNB workloads is available at [6].

SNB Data Generators. The first version of the SNB data generator was
implemented in Hadoop and only supported insert operations [33]. In 2020, it
was ported to Spark for improved scalability,12 and was extended with support
for producing deep (cascading) delete operations [43]. To the best of our knowl-
edge, its ability to generate a scalable graph where structure and values correlate,
with flashmob-style spikes and deep delete operations are features unique to the
SNB data generator [16].

SNB Interactive Workload v1

The SNB Interactive v1 workload was published in 2015 [19]. It is a transactional
benchmark that targets OLTP systems with graph features (e.g. path-finding).
The workload consists of three types of operations: 14 complex read queries,
7 short read queries, and 8 inserts. The workload has a balanced mix of opera-
tions with approximately 8% complex reads, 72% short reads, and 20% inserts.

11 Unlike TPC, LDBC does not require systems to tolerate hardware failures.
12 https://github.com/ldbc/ldbc snb datagen spark.

https://github.com/ldbc/ldbc_snb_datagen_spark
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Fig. 2. Throughput of the audited results over time for the SNB Interactive v1 workload
for scale factors 30, 100, 300 for implementations using general-purpose programming
languages (C++ and Java), obtained between 2021 and 2023.

SNB Interactive v1 has been influential in the graph data management space:
as of June 2023, 24 audited results were published using this workload.13 Fig. 2
shows the top 15 audited results published between 2021 and 2023, which demon-
strate a performance increase of more than 6× over this period.

SNB Business Intelligence Workload

The SNB Business Intelligence (BI) workload [41] captures an OLAP scenario
with heavy-hitting analytical queries that touch on large portions of the graph
(e.g. aggregating all Messages created within a 100-day period or exploring the
neighbourhoods of the Persons living in China). The queries include multi-source
cheapest path-finding (also known as weighted shortest paths), cyclic graph pat-
terns, and have correlated and anti-correlated variants. The workload uses an
improved data generator which produces fully dynamic graphs with insert and
delete operations [43], and scales to SF30,000. The BI workload targets both
DBMSs and data analytical systems such as Spark. To this end, updates can
be applied in two modes: in concurrent read–write mode, reads and writes are
executed concurrently, while in disjoint read–write mode, alternating blocks of
reads and writes (accounting for one day’s worth of updates) are executed. The
BI workload was officially approved in November 2022. Since then, it has accu-
mulated 4 audited results, including one for SF10,000.14

SNB Interactive Workload v2

In 2022, the SNB task force initiated the renewal of the Interactive v1 workload.
The Interactive v2 workload adopted several features from the BI workload:
support larger scale factors and delete operations, and coverage of the cheapest
path-finding algorithm. Moreover, the updated workload introduces a new tem-
poral parameter curation algorithm to ensure stable runtimes for path queries

13 https://ldbcouncil.org/benchmarks/snb-interactive/.
14 https://ldbcouncil.org/benchmarks/snb-bi/.

https://ldbcouncil.org/benchmarks/snb-interactive/
https://ldbcouncil.org/benchmarks/snb-bi/
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evaluated on a fully dynamic graph, and features a complete refactoring of the
driver along with several usability improvements. The balance of the read and
insert queries are similar to Interactive v1 workload with only 0.2% delete oper-
ations added – motivated by the fact that deletes are rare compared to inserts in
most real-life systems [2]. As of June 2023, the workload is in draft phase with
four complete implementations already available (Table 3).

3.3 Semantic Publishing Benchmark (SPB)

The Semantic Publishing Benchmark (SPB) targets RDF database engines and
is inspired by the BBC’s Dynamic Semantic Publishing approach [28]. The sce-
nario behind the benchmark considers a media that deals with a large volume
of streaming content, namely articles and other “creative works”. This content
is enriched with metadata that describes it and links it to reference knowledge
– taxonomies and databases that include relevant concepts, entities, and fac-
tual information. This metadata allows publishers to efficiently retrieve relevant
content and increase engagement.

The main interactions with the repository are (i) updates, which add new
creative works or alter the repository, and (ii) aggregation queries, which retrieve
content. The engine should handle updates executed concurrently with a mas-
sive amount of aggregation queries. It must be able to deal with graph pat-
tern matching, reasoning, geospatial constraints, and full-text search. The SPB
includes ontologies, a data generator, query patterns, as well as test and bench-
mark drivers. The detailed specification of SPB version 2.0 is available at [27].

3.4 Graphalytics

The LDBC Graphalytics benchmark targets systems that evaluate graph algo-
rithms on static graphs. While the scope of Graphalytics is similar to the influ-
ential GAP Benchmark Suite [9], Graphalytics has slightly different algorithms,
more data sets (38 vs. 5), and enforces determinism in its algorithms.

Algorithms. The selection of graph algorithms for Graphalytics was motivated
by input received during the TUC meetings (Sect. 2.4) and a literature survey of
over 100 academic papers [23]. The benchmark includes the following six algo-
rithms: breadth-first search (BFS), community detection using label propagation
(CDLP), local clustering coefficient (LCC), PageRank (PR), single-source short-
est paths (SSSP), and weakly connected components (WCC). Algorithms were
adjusted if necessary such that they are deterministic: BFS returns the distance
(level) for each node in the traversal (instead of picking one of the parent nodes),
while the tie-breaking strategy employed in the CDLP algorithm always picks
the smallest label (instead of picking randomly).

Data Set. Graphalytics uses untyped and unattributed graphs. The data set of
the benchmark includes both directed and undirected graphs. Some graphs have
edge weights, which are used exclusively by the SSSP algorithm.
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Graphalytics Competition. Presently, it is not possible to commission audits
for Graphalytics. Instead, LDBC organizes competitions with leaderboards, in
the style of the Top50015 and Graph50016 competitions of the high-performance
computing community. Solutions compete for both performance (execution time)
and scalability. Implementers are also required to report system prices following
the TPC Pricing Specification [42].

3.5 FinBench

The FinBench (short for “Financial Benchmark”) is a benchmark, new in 2023,
specifically designed to evaluate the performance of graph database systems in
financial scenarios, such as anti-fraud and risk control, by employing financial
data patterns and query patterns. This collective effort led by Ant Group adopts
its rich experience in financial services, making it more applicable to graph users
in the financial industry than previous LDBC benchmarks. Sharing some frame-
work similarities with SNB, it distinguishes itself through differences in datasets
and workloads.

Data Pattern. Financial graphs are distinguished from the social network in
SNB by having hub vertices with higher degrees and allowing edge multiplicity.
Financial graphs are asymmetric directed graphs causing more unbalanced load
and less spatial locality. The maximum degrees of hub vertices are in the mag-
nitude of thousands in the social network generated by the SNB data generator,
while the degree of hub vertices in the financial graphs generated by the Fin-
Bench data generator17 may scale up to millions in large data scales. The higher
degree of hub vertices poses new challenges to the performance of systems. The
edge multiplicity means multiple edges of the same type can exist between the
same source vertex and destination vertex. This requires support in the system
storage and provides optimization opportunities for filtering during traversal.

Transaction Workload. The transaction workload is the first workload
included in the initial version of FinBench targeting OLTP data management
systems, as the SNB Interactive workload [19] does. The key features of trans-
action workload include read-write query, time-window filtering, and recursive
path filtering. The read-write query is a new query type, which wraps a complex
query in a transaction. The write query to execute is determined by the result of
the complex read. Time-window filtering is a pattern when financial businesses
focus on the data, especially the edges, in a specific time range. Recursive path
filtering is a pattern used by financial businesses to find fund traces in the graph.
A fund trace may match the filter that the timestamp increases and the amount
decreases of the edges sourcing from the origin vertex hop-by-hop. These typical
features bring new challenges to the performance of systems. The transaction
workload has 12 complex read, 6 simple read, 19 write, and 3 read-write queries.

15 https://www.top500.org/.
16 https://graph500.org/.
17 https://github.com/ldbc/ldbc finbench datagen.

https://www.top500.org/
https://graph500.org/
https://github.com/ldbc/ldbc_finbench_datagen
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The initial version of FinBench was collaboratively developed by nine leading
graph system vendors. It underwent cross-validation on three systems: TuGraph,
Galaxybase, and UltipaGraph. For more detailed information, please refer to
the repositories on GitHub: FinBench specification18, FinBench driver19, refer-
ence implementation of the FinBench transaction workload20, FinBench ACID
suite21.

4 Benchmark Processes

4.1 Defining New LDBC Benchmarks

LDBC has a strict process for proposing new benchmarks. Based on our expe-
rience, the initial benchmark completion (phases 1 to 3) takes at least 2 years,
followed by adoption and maintenance (phases 4 and 5), which may span 5+
years.

Phase 1: Benchmark Proposal. The benchmark proposer shall create a draft
proposal. The benchmark must be motivated by real-world use cases and target
a category of data processing systems that tackle some aspect of graph pro-
cessing. The designers must reason why the benchmark is significantly different
from existing LDBC benchmarks by identifying new performance challenges and
formulating their choke points, providing data with unique characteristics (e.g.
distribution, frequency/type of updates), etc.. The benchmark draft shall be
presented the benchmark to the Members Policy Council to gather feedback.

Phase 2: Collaboration Setup. The proposer shall gather agreements from
2+ member companies who are willing to contribute to the benchmark specifi-
cation and create reference implementations. They shall create a work charter
for the benchmark task force (e.g. [24,39]), which includes the list the members
interested in working on the benchmark. This shall be presented to the Members
Policy Council, which votes on the establishment of a new benchmark task force.

Phase 3: Detailed Benchmark Design. The task force shall create the
detailed benchmark specification, implement the data generator and the bench-
mark driver. The creation of at least 2+ complete reference implementations is
required. The task force shall ensure that the specification contains the descrip-
tion of the data set, queries, and workload as well as the detailed auditing guide-
lines. They shall publish the specification in an open repository and release the
software components as open-source. The task force shall conduct 2+ standard-
establishing audits. These include the complete execution of the benchmark and
the creation of FDR that detail their outcomes. The task force shall submit all
resulting documents to the Members Policy Council, which votes on the accep-
tance of the benchmark.
18 https://github.com/ldbc/ldbc finbench docs.
19 https://github.com/ldbc/ldbc finbench driver.
20 https://github.com/ldbc/ldbc finbench transaction impls.
21 https://github.com/ldbc/ldbc finbench acid.

https://github.com/ldbc/ldbc_finbench_docs
https://github.com/ldbc/ldbc_finbench_driver
https://github.com/ldbc/ldbc_finbench_transaction_impls
https://github.com/ldbc/ldbc_finbench_acid
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Phase 4: Adoption and Auditing. The task force shall help adoption
attempts by working closely with the benchmark’s early users. They should
create training material and exam questions for auditor exams, then train and
certify auditors. Certified auditors can fulfill incoming audit requests, initially
with close collaboration with the benchmark task force.

Phase 5: Maintenance and Renewal. The task force shall maintain the
benchmark and optionally assist in further adoption and auditing attempts. If
the benchmark remains popular, the task force should consider renewing it after
5–10 years to ensure its continued relevance.

4.2 Auditing Process

Phase 1: Preparation (1–2 Weeks). The Test Sponsor shall be an LDBC
member company. If the Test Sponsor is not an LDBC sponsor member company,
it shall pay LDBC an auditing fee of 2,000 GBP (as of 2023). The Test Sponsor
shall create an initial version of the supplementary package of the benchmark
and send it to an LDBC-certified Auditor for a preliminary review. The Test
Sponsor shall establish the costs of its system setup using the TPC Pricing
Specification [42].

Phase 2: Audit Setup (3–6 Weeks). The Test Sponsor and the Auditor
shall negotiate the timeline and pricing of the audit, and sign a contract. The
Test Sponsor shall hand over the supplementary package to the Auditor. Contin-
uous communication in the form of emails, online meetings, DMs, etc.. between
the Auditor and the Test Sponsor is recommended for status updates and clari-
fications.

Phase 3: Auditing (3–10 Weeks). For the SNB workloads, an audit consists
of the following steps: (1) set up system, (2) run cross-validation, (3) perform
code review, (4) run ACID isolation tests, (5) perform recovery tests, (6) conduct
benchmark runs on the scale factors requested by the Test Sponsor, (7) write
the FDR and the executive summary. The Test Sponsor then reviews the FDR
and executive summary documents. If everything is in order, the Auditor, the
Test Sponsor, and the leader of the task force sign the FDR.

Phase 4: Dissemination of Results (1–2 Weeks). The audit results are
announced on the LDBC website, on mailing lists and on social media.

Timespan. The overall time required for an audit is between 8 and 20 weeks.

4.3 Trademark

To prevent misuse of the benchmarks, the term “LDBC benchmark result” is
trademarked and is only allowed to be used for results that were achieved by
an LDBC-certified Auditor in an official audit. That said, LDBC encourages use
(including derived use) of its benchmarks provided that users comply with the
fair use policies, described in LDBC’s Byelaws [30].
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5 Benchmarking Lessons Learnt

This section captures our key lessons learnt with designing and maintaining
benchmarks, and conducting audits with them.

High Development Costs. We found that creating domain-specific appli-
cation-level benchmarks is a big undertaking. Realistic benchmarks are bound to
be complex as they require a (somewhat) realistic scalable data generator and a
high-performance driver with reference implementations. To make matters more
complicated, the graph domain has highly skewed and correlated data sets, caus-
ing queries to be sensitive to parameter selection [22]. Path-finding queries on
fully dynamic graphs are particularly susceptible to this, necessitating expen-
sive parameter generation steps [41]. Creating reference implementations is also
labour-intensive due to the lack of a standard query language – fortunately, this
is expected to improve with the introduction of SQL/PGQ and GQL.

Data Set Availability is Important. We found that users prefer download-
ing pre-generated data sets from an official repository instead of generating them
using the data generators. To help adoption, it is best to make the data sets avail-
able in multiple serialization formats (different layouts, datetime formats, etc..)
for all scale factors. However, this requires tens of terabytes of storage, leading
to high storage costs. Moreover, we transferring large data sets stored at public
cloud providers can be prohibitively expensive due to high egress fees (i.e. fees
paid for transferring data out of the cloud). To work around this problem, we
use storage services which do not have egress fees. For long-term archiving, we
store our data in the SURF Data Repository,22 which is operated by the Dutch
national HPC support center, and offers tape-based storage. For short-term data
distribution, we use Cloudflare’s R2 service.

Shift to the Cloud. We observed a shift to the cloud for database manage-
ment [1]: approximately half of LDBC’s graph vendors have a cloud offering and
some have cloud-native systems with no on-premise solutions. The use of the
cloud is also popular for running audits (and is encouraged by LDBC for easier
reproducibility): 35 out of 49 audits conducted so far were executed in the cloud.

Finding Problems Beyond Peformance. While the main goal of a bench-
mark implementation is to measure performance and to identify bottlenecks,
implementing a full workload often leads to the discovery of other issues. Namely,
we have found several issues such as insufficient query language features, correct-
ness bugs, concurrency issues on different CPU architectures, crashes on large
data sets, durability errors, parameter handling errors, issues with datetime and
string handling, and deadlocks caused by concurrent transactions. The avail-
ability of public benchmark data sets made these errors easy to reproduce and
reason about, leading to significant improvements in the systems-under-test.

22 https://github.com/ldbc/data-sets-surf-repository.

https://github.com/ldbc/data-sets-surf-repository


104 G. Szárnyas et al.

6 Working Groups

LDBC’s working groups conduct research on areas related to graph query lan-
guages, including formalization of (sub)languages and exploring possibilities for
defining graph schemas.

6.1 Graph Query Languages Working Group

The Graph Query Languages working group created the G-CORE design lan-
guage [5], which treats paths as first-class citizens and supports the composability
of graph queries. While the working group ceased to exist after the publication
of G-CORE, LDBC has a liaison with ISO (Sect. 2.3) that facilitates continued
collaboration on query language standards.

6.2 Formal Semantics Working Group (FSWG)

The Formal Semantics Working Group (FSWG) gives formal treatment to stan-
dard graph query languages to prevent ambiguous interpretations. To this end,
it formalized the Graph Pattern Matching (GPM) language of GQL and SQL/
PGQ [18]. The group also produced a formal summary of the GQL language [31]
and created a pattern calculus for property graphs [20] that serves as a theoret-
ical basis of GPM.

6.3 Property Graph Schema Working Group (PGSWG)

Initial graph database systems were schemaless, which hindered their adop-
tion in several enterprise domains. The Property Graph Schema Working Group
(PGSWG) investigates the problem of defining schemas for the property graph
data model [8]. The group also identified ways to define keys in property
graphs [7].

6.4 LDBC Extended GQL Schema (LEX)

The LDBC Extended GQL Schema (LEX) working group was established in
2022 with an initial membership of 10 organizations and approximately 20 indi-
viduals [21]. The group aims to propose the addition of a future extended schema
definition language to the GQL standard, which allows for more elaborate (and
therefore more restrictive) constraints on the permitted values of GQL property
graphs than can be imposed by graph types as defined in the GQL DIS. These
additional constraints aim to establish parity with the constraints available in
SQL schema, to incorporate features described in PG-Schema [8] and to support
performant processing of incremental transactional updates of a graph database.
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7 Conclusion and Future Outlook

In this paper, we summarized LDBC’s history, organization structure, commu-
nity management; as well as its benchmarks, working groups, and processes. At
the time of writing (June 2023), LDBC has a healthy benchmark ecosystem,
which is actively maintained and renewed. Our benchmarks are used by a num-
ber of database vendors for both internal benchmarking as well as impartial
comparisons via audits, which are now performed routinely.

In the future, we plan to further improve our benchmarks, including support
for larger scale factors (up to SF100,000 for SNB). We also plan to investigate
the impact of incorporating long-running transactions in our transactional work-
loads. Finally, we are interested in creating benchmarks for new areas of graph
data management such as streaming and machine learning on graphs.
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Abstract. The LDBC Social Network Benchmark’s Interactive work-
load captures an OLTP scenario operating on a correlated social network
graph. It consists of complex graph queries executed concurrently with a
stream of updates operation. Since its initial release in 2015, the Inter-
active workload has become the de facto industry standard for bench-
marking transactional graph data management systems. As graph sys-
tems have matured and the community’s understanding of graph pro-
cessing features has evolved, we initiated the renewal of this benchmark.
This paper describes the draft Interactive v2 workload with several new
features: delete operations, a cheapest path-finding query, support for
larger data sets, and a novel temporal parameter curation algorithm
that ensures stable runtimes for path queries.

1 Introduction

LDBC. The Linked Data Benchmark Council (LDBC)1 is a non-profit organi-
zation dedicated to designing benchmarks for graph data management [20,21].
LDBC has strong industrial participation in the form of 21 companies, including
database, hardware, and cloud vendors. Its membership also includes 3 non-
commercial institutions and 60+ individual members. LDBC acts as an indepen-
dent authority for benchmarks and oversees the use of its benchmarks through
a stringent auditing process. Thanks to this, audited LDBC benchmark results
allow quantitative and objective comparison of different technological solutions,
which is expected to stimulate progress through competition. Next, we describe
the two main workloads of the LDBC SNB suite.
SNB Interactive v1 Workload. The LDBC Social Network Benchmark
(SNB) Interactive v1 workload was published in 2015 [7]. It is a transactional
benchmark that targets OLTP data management systems with graph features

1 https://ldbcouncil.org.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
R. Nambiar and M. Poess (Eds.): TPCTC 2023, LNCS 14247, pp. 107–123, 2024.
https://doi.org/10.1007/978-3-031-68031-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-68031-1_8&domain=pdf
https://ldbcouncil.org
https://doi.org/10.1007/978-3-031-68031-1_8
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(e.g. path-finding). SNB Interactive has been influential in the graph data man-
agement space: as of August 2023, 24 audited results were published using this
workload.2

SNB Business Intelligence Workload. The LDBC SNB Business Intelli-
gence (BI) workload was released in 2022 [24]. This workload uses an improved
data generator, which introduces support for delete operations [28] and scale
factors up to SF30,000. The workload captures an OLAP scenario with heavy-
hitting analytical queries that touch on large portions of the graph (e.g. Messages
created within a 100-day period or Persons living in China) and applies daily
batches of updates. It targets both DBMSs and data analytical systems such as
Spark.
Motivation. As of 2023, more than 8 years passed since the SNB Interactive v1
workload’s release. Therefore, we decided to renew it to ensure its continued
relevance. The new version’s key novel features are improved scalability, coverage
of cheapest path-finding, and inclusion of delete operations. The first two new
features were part of the natural evolution of the benchmark. The decision to
support delete operations was motivated by a number of factors. On the technic
side, running the workload’s complex queries efficiently while applying delete
operations assumes mature transaction support that is now expected by users
of graph(-capable) DBMSs. Deletes also make certain graph algorithms, such
as cheapest paths, more difficult to compute incrementally [19], thus limiting
the effects of caching and incremental view maintenance. On the business side,
supporting deletes is necessitated by law in several jurisdictions, exemplified by
the EU’s General Data Protection Regulation (GDPR) [22].

Fig. 1. Components and workflow of the Interactive v2 workload. The corresponding
sections are shown in green circles § . Legend: Software component Data artifact

Contributions and Paper Structure. This paper presents the updated SNB
Interactive v2 workload following the workflow shown in Fig. 1. Interestingly,
while all three new features (scalability, cheapest path-finding, and delete

2 https://ldbcouncil.org/benchmarks/snb-interactive/.

https://ldbcouncil.org/benchmarks/snb-interactive/
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operations) were already supported in the BI workload, adopting them into the
highly transactional, concurrent SNB Interactive v2 workload presented several
complex technical challenges. We document the challenges and our key design
principles in Sect. 2. We present the SNB data set in Sect. 3, the benchmark’s
operations in Sect. 4, and the workload in Sect. 5. In Sect. 6, we introduce the
parameter generator’s novel extensions that were necessitated by delete opera-
tions. In Sect. 7, we discuss how the benchmark is used in practice. We discuss
LDBC’s other transactional benchmark, the FinBench, in Sect. 8. Section 9 sum-
marizes our contributions and outlines future directions.

2 Design Principles

During LDBC’s benchmark design process, we follow the Benchmark Hand-
book [9], which prescribes four criteria for domain-specific benchmarks: (1) rele-
vance,(2) portability,(3) scalability,(4) simplicity.(5) In the following, we discuss
the SNB Interactive v2 workload’s approach for complying with these criteria.

2.1 Relevance: Choke Point-Based Design Process and Domain

Choke Points. To ensure relevance, LDBC’s benchmark design process uses
choke points [4], i.e. technical difficulties that are known to be challenging for
the present generation of DBMSs. Choke points are identified by expert data
systems architects and are also influenced by the input from users of graph data
management systems who contribute their use cases at LDBC’s Technical User
Community meetings3. The initial choke points of SNB Interactive were based
on the influential TPC-H benchmark [25] benchmark and were later extended
with choke points that target graph-specific features such as cardinality estima-
tion for paths and the execution of path-finding queries. LDBC workloads are
designed using an iterative process to ensure full coverage of the choke points
required for a given workload category.
Social Network Domain. The LDBC SNB uses the social network domain
because its concepts (Person, Forum, Message, etc..) are well-understood. More-
over, the social network domain makes it easy to reason about some of the inter-
esting phenomena captured in the choke points. For example, the power law
distribution and correlations (Sect. 3.2) observable in real-life (social) networks
trigger the challenges for cardinality estimation.

2.2 Portability: Implementation Rules

The SNB Interactive v2 workload guarantees portability by taking an agnostic
stance on implementation details.
3 https://ldbcouncil.org/tags/tuc-meeting/.

https://ldbcouncil.org/tags/tuc-meeting/
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Data Model. Implementations are allowed to use any data model, including the
property graph, RDF, and relational models. They are also free to choose their
input format for bulk loading (e.g. CSV, N-Triples).
Implementation Language. Implementations may use declarative query lan-
guages (SQL, Cypher [8], GQL, SQL/PGQ [6], etc..) or general-purpose imper-
ative programming languages (C++, Java, etc..). However, results in these two
categories are ranked on separate leaderboards as the latter systems have a sig-
nificant advantage due to their use of hand-coded highly-optimized query plans.
Setup. There are no restrictions on the operating system, hardware architec-
ture, or number of machines used (both single-node and distributed setups are
allowed).

2.3 Scalability: Scalable Data Generator and Driver

Improving scalability was a key goal during the design of SNB Interactive v2.
While we could leverage the improved data generator of the BI workload [24],
scaling the workload execution posed additional challenges. By its nature, sim-
ulating a transactional database workload requires highly concurrent execution
of the operations.4 This requires the operations in the workload to be parti-
tioned, which is a major challenge as most of the Persons in the social network
belong to a single connected component that does not lend itself to any naïve
partitioning strategy. Moreover, update operations often have long dependency
chains that need to be tracked, e.g. a friendship can only be deleted if it already
exists, the creation of a friendship requires both Persons to exist, etc.. Therefore,
simulating a transactional graph processing scenario is not possible using on-
the-fly workload generation techniques commonly employed in database bench-
marks. Instead, SNB Interactive v2 requires extensive offline data, update stream
(Sect. 3.3), and parameter generation steps (Sect. 6) prior to the benchmark.

2.4 Simplicity: Stable Query Runtimes, Single Output Metric

The benchmark must measure the peak performance of systems when per-
forming typical operations within the target problem domain.

Stable Runtimes. To make the benchmark results easy to interpret, it is desir-
able that instances of a given query type have similar expected runtimes (referred
to as stable runtimes). Ensuring this for graph workloads is non-trivial due to the
highly skewed distribution exhibited in real-world networks [16]. For example, in
a social network, a few Person nodes have a very large number of edges while
others only have a few connections. This has a significant impact on runtimes:
if query parameters are selected using uniform random sampling, query run-
times will be unstable, often exhibiting a multimodal distribution that spreads

4 Most audited Interactive v1 implementations use 48 read and 32/64 write threads.
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across many orders of magnitude and has several outliers [12,24]. SNB Inter-
active v2 employs a sophisticated parameter curation process to select input
parameters that ensure stable runtimes (Sect. 6).
Guaranteed Executability. Stable runtimes also necessitate that opera-
tions are executable at their scheduled start time. For example, if an operation
targets entities that do not yet exist or were already deleted, the operation
becomes trivial or results in a runtime exception, compromising stable runtimes.
Therefore, our workload generator ensures that its operations are always exe-
cutable.
Single Metric. The result of an SNB Interactive benchmark run is charac-
terized by a single metric, throughput (operations/second), which captures the
system-under-test’s end-to-end performance on a transactional graph workload.

3 Data Sets

The LDBC SNB workloads include a scalable distributed data generator based
on Spark.5 Here, we give an overview of the data sets used in the benchmark.

3.1 Graph Schema

Fig. 2. A subset of the LDBC SNB graph schema visualized using a UML-like notation.
Thick lines denote many-to-many relationships.

The graph schema of LDBC SNB has 14 node types connected by 20 edge types.
The data set consists of a Person–knows–Person (friendship) graph and a number
of Message threads within Forums. The root of a Message thread is a Post and the
rest of the thread consists of Comments. All Messages are connected to Persons
by creatorship and likes edges. A simplified schema is shown in Fig. 2.

3.2 Distribution and Correlations

The data set contains two types of graph-shaped data structures. First, the Mes-
sage threads form trees and constitute the majority of the data. Second, the
Person–knows–Person subgraph is a network with many-to-many relationships

5 https://github.com/ldbc/ldbc_snb_datagen_spark.

https://github.com/ldbc/ldbc_snb_datagen_spark
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whose distribution is modelled after Facebook [26] with the social graph exhibit-
ing the small-world phenomenon [27] characterized by a small diameter.

A unique feature not observed in other data generators is that the attribute
distributions are skewed and correlate both within an entity (e.g. people living in
France have predominantly French names). Moreover, the graph has structural
correlations: following the homophily principle [15], people are more likely to
be friends if they studied at the same University at the same time, live in close
proximity, and/or have the same interests. These correlations are exploited by
the workload to stress choke points for querying correlated data (see Sect. 6.4).

3.3 Graph Generation Stages

Temporal Graph. The data generator first produces a temporal graph, which
contains all entities that exist at some point in the simulated social network’s
3-year time period, i.e. between Jan 1, 2010 and Dec 31, 2012. During this
time, entities are inserted and deleted in the network, and the timestamps of
these events are captured according to their time of occurrence in the simulation
time. The insertion and deletion of entities follow realistic time intervals and
conform to the semantics of the social network. Namely: (1) The deletion dates
of Persons are based on the statistics collected from the collapse of a real-world
social network [13]. When a Person is deleted, the content they created is also
deleted [29]. (2) The network contains infrequent flashmob events such as spikes
in insertions of Messages for a given Tag [7]. Deep delete operations and flash-
mob events are unique to the LDBC SNB data generator: according to a recent
survey [5], these features are not supported by any other (graph) data generator.
Initial Snapshot and Update Stream. As the second step in the data gen-
eration, the data serializer splits the temporal graph into two parts by setting a
cutoff date at 97% of the simulation time (Nov 29, 2012). The entities created
before the cutoff date form the initial snapshot, while the entity creations and
deletions occurring after the cutoff date form the update stream.

3.4 Scale Factors

Table 1. SNB Interactive v2 data sets. k: thousand, M: million, B: billion.

Scale Factor (SF) 10 30 100 300 1,000 3,000 10,000 30,000

#nodes 27M 78M 255M 738M 2.4B 7.2B 23B 82.76B
#edges 170M 506M 1.7B 5.1B 17B 51.9B 173B 340.5B
#Person nodes 68k 170k 473k 1.2M 3.4M 9M 26M 77M
#knows edges 1.8M 5.5M 19M 55.7M 187M 559M 1.9B 6.8B
#insert operations 44.6M 127M 399M 1.1B 3.3B 8.9B 27B 76.7B
#delete operations 353k 1M 3.3M 9.3M 28.9M 79.7M 245M 721.8M
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The data generator produces dynamic social network graphs in different sizes,
characterized by scale factors (SF) which correspond to the data set’s disk usage
when serialized in CSV (comma-separated values) format, measured in GiB. The
data generator used for Interactive v1 only supports data sets up to SF1,000. To
improve scalability, Interactive v2 uses the new Spark-based generator, which
was optimized extensively,6 allowing it to scale up to SF30,000. Table 1 shows
the main statistics of the data sets.

4 Operations

The LDBC SNB Interactive v2 workload uses four types of operations. There
are 14 complex (CR) and 7 short read queries (SR). Update operations include
8 inserts (INS) and, newly introduced in the Interactive v2 workload, 8 deletes
(DEL). The workload mix consists of approximately 8% CR, 72% SR, 20% INS, and
0.2% DELoperations. In this section, we describe the four operation types using
examples. We also give ranges on how long operations are expected to take in
state-of-the-art systems (Sect. 7.2).

4.1 Complex Read Queries (CR)

Complex read queries CR1–CR12 discover a given Person’s social environment
(one- to three-hop neighbourhoods) and retrieve related content (Forums, Mes-
sages, etc..). Queries CR13 and CR14 perform path-finding between pairs of Per-
sons. The runtimes of complex read queries are typically between 1 and 500 ms,
making them feasible to compute interactively, in line with the workload’s name.
CR3. For a given Person, find their friends and friends of friends, who created
Messages in both Country $countryX and $countryY within a given time period.
Only consider Persons that are foreign to both of those Countries. Return the
number of their Messages per Country, xCount and yCount (Fig. 3a).
CR13.Return the length of the (unweighted) shortest path between two Persons.

Fig. 3. Graph patterns of complex and short read queries.

Cheapest Path-Finding. While we strived to keep the changes to the queries
minimal, we replaced CR14 due to two reasons. First, we found the original query
6 For details on the optimization steps, see https://ldbcouncil.org/tags/datagen/.

https://ldbcouncil.org/tags/datagen/
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in Interactive v1 to be ill-suited to the workload as it required the enumeration
of all shortest paths between two Persons, which can be prohibitively expen-
sive on large scale factors. Second, we introduced a new choke point, CP-7.6
Cheapest path-finding,7 a key computational kernel and a language opportunity
for GQL [6]. Therefore, we changed CR14 to use cheapest paths instead of all
shortest paths.
CR14 (new).Given two Persons, find any cheapest path in the interaction sub-
graph. This graph contains edges from the Person–knows–Person graph where the
endpoint Persons have exchanged at least one Message (i.e. one Person created a
direct Comment to a Message of the other Person). The weights of knows edges
are integers defined as max(round(40 −

√
numInteractions),1).

4.2 Short Read Queries (SR)

Short read queries perform local neighbourhood lookups on Persons and Messages.
Most short read queries can be evaluated in 0.1 to 75 ms.
SR2.Given a start Person, retrieve their last 10 Messages. For each Message,
return it with the root Post in its thread, and the author of that Post (Fig. 3b).
SR6.Given a Message, retrieve its container Forum (directly for Posts, via the
root Post for Comments) and the Person that moderates that Forum (Fig. 3c).

4.3 Insert Operations (INS)

Insert operations add new entities from the update stream to the graph. A typical
insert operation takes between 0.1 and 100 ms.
INS5.Insert a hasMember edge between a Person and a Forum. The executability
of this operation depends on the existence of its two endpoint nodes.
INS6.Insert a Post node. This operation’s executability depends on two nodes:
both the Person creating the Post and the Forum containing it must exist. When
the Post is inserted, they are linked to it via hasCreator and containerOf edges.

4.4 Delete Operations (DEL)

The Interactive v2 workload uses deep cascading delete operations. Cascading
deletes capture the behaviour of real social networks where users expect their
content to be removed once they delete their accounts. The technical reasons for
requiring cascading delete operations are two-fold: (1) Preventing dangling
edges. To maintain the integrity of the graph, it is required there are no dan-
gling edges thus nodes must be always deleted with all their edges. To prevent
dangling edges, most graph DBMSs support the automatic deletion of edges
attached to a given node, e.g. through Cypher’s DETACH DELETE clause [11]. To
achieve the same effect, RDBMSs can make use of FOREIGN KEY constraints with
7 The term shortest paths refers to the problem of finding unweighted shortest paths,

which can be solved with the BFS algorithm. We use cheapest paths to refer to the
weighted shortest paths problem which can be solved using e.g. Dijkstra’s algorithm.
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the ON DELETE CASCADE clause. (2) Testing triggered deletions. Node dele-
tions can trigger the deletion of other nodes (Fig. 4). For example, according to
the SNB schema’s constraints, the deletion of a Post implies the deletion of all
its descendant Comments along with their edges. Such deletions may be imple-
mented using triggers, constraints (RDBMSs may again harness FOREIGN KEYs),
or by formulating (potentially recursive) subqueries that determine which other
nodes need to be deleted with DELETE ... USING clause.
Choke Points. The coverage of delete features is ensured by three new choke
points: CP-9.3 Delete node (stressed by 4 operations), CP-9.4 Delete edge (8 oper-
ations), and CP-9.5 Delete recursively (4 operations). In the following, we present
two delete operations, both of which cover all new choke points.
DEL6.Remove a Post with all its edges and child Comments via DEL7 (Fig. 4a).
DEL7.Remove a Comment with all its edges and child Comments, which are
deleted recursively by invoking DEL7 (Fig. 4b).

5 Workload Scheduling and Benchmark Driver

In this section, we explain how operations are scheduled in the SNB Interac-
tive workload, how the driver operates, and how the final throughput metric is
determined. In all cases, we assume that the system-under-test has been pop-
ulated with the initial snapshot using a bulk loader before the driver runs the
operations.

Fig. 4. Cascading delete operations in Interactive v2. Symbol denotes deletion.

5.1 Scheduling Operations

TCR (total compression ratio). The scheduling follows the simulation time
of the temporal social network graph. The user-provided total compression ratio
(TCR) value controls the speed at which the simulation is replayed. For example,
a TCR value of 0.02 means that the simulation is replayed 50× faster, i.e. for every
20 milliseconds in wall clock time, 1 s passes in the simulation time.
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Update Operations. The driver replays the update operations starting from
the cutoff date (Sect. 3.3), Nov 29, 2012. The operations are scheduled according
to the distance of their start time from this date, adjusted by the TCR. They
are then used to set the cadence of the schedule for the complex reads and, in
turn, the short read queries, as we will explain momentarily.
Complex Read Queries. The complex read queries differ significantly in their
expected runtimes as they touch on different amounts of data. As each query
instance contributes equally to the output metric,8 we balance them such that
each query type is expected to take the same amount of time to execute. For
example, CR14 (new) is expected to be more difficult than CR13, therefore it
is scheduled less frequently. Frequencies vary based on the SF as the relative
difficulties of queries change with the data size (e.g. three-hop neighbourhood
queries grow faster on larger SFs than one-hop ones).
Short Read Queries. Short read queries are triggered by complex read queries
and other short read queries, and use their output as their input. For example,
both CR3 and CR14 trigger SR2, which also triggers itself. This mimics the real-
life scenario of a user retrieving more information about Person profiles based on
the result of the earlier queries. The mapping between complex and short read
queries is given in the specification [2, Chapter 5].

5.2 Driver

Driver Modes. The SNB driver has two key modes of operation. In cross-
validation mode, it tests an implementation against the output of another imple-
mentation. To ensure deterministic results, operations in this mode are executed
sequentially with no overlap between queries and updates. In benchmark mode
the driver performs a benchmark run where queries and updates are issued
concurrently from multiple threads. The run starts with a 30-minute warm-up
period, followed by a 2-hour measurement window. This mode does not perform
validation as query results may differ (slightly) due to concurrent updates.
Dependency Tracking. To ensure that updates are executable, concurrent
threads must be synchronized so that an operation is only executed when its
dependencies exist in the network (e.g. two Persons can only become friends if
both of them already exist). This is achieved via maintaining a global clock in
the driver and performing dependency tracking for the updates [7]: each update
operation has a timestamp denoting the creation time of the last operation it
depends on. The data generator calculates these timestamp during generation
and ensures that there is a minimum time separation, Tsafe, between dependent
entities to reduce synchronization overhead in the driver when executing oper-
ations. The driver then only needs to check every Tsafe time whether a given
update operation can be executed. By default, Tsafe is set to 10 s in the simula-
tion time.
Latency Requirements. The workload simulates a highly transactional sce-
nario where operations are subject to (soft) latency requirements. To incorporate

8 Unlike in TPC-H [25] and SNB BI [24], which use geometric mean in their metrics.
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this in the workload, it prescribes the 95% on-time requirement : for a benchmark
run to be successful, 95% of the operations must start on-time, i.e. within 1 s
of their scheduled start time. Benchmark runs where the system-under-test falls
behind too much from the schedule are considered invalid.
Throughput. The throughput of a run is the total number of operations (CR, SR,
INS, DEL) executed per second. A lower TCR value implies a higher throughput.
Individual Execution Times. To facilitate deeper analyis, the benchmark
driver also collects all individual query execution times. Based on these, the
benchmark reports must include statics for each operation type (min, max, mean,
P50, P90, P95, and P99 of the execution times).
Driver Implementation in v2. The Interactive v2 is implemented in Java 17.
It consists of 26,500 lines of code for the core project and an additional 18,000
lines of test code. The new version contains several patches including bug fixes,
usability improvements, and performance optimizations.9

6 Parameter Curation

To prevent caching query results, the SNB Interactive v2 driver instantiates
the parameterized complex read (CR) query templates with different substitu-
tion parameters (a.k.a. parameter bindings). However, as explained in Sect. 2.4,
the naïve approach (using a uniform random sampling of parameters and ignor-
ing updates) leads to unstable runtimes, which compromise both the bench-
mark’s understandability and reproducibility. To ensure stable runtimes, LDBC
invented parameter curation techniques, which select parameters that produce
query runtimes with a unimodal (preferably Gaussian) distribution [12,24].

6.1 Building Blocks for Parameter Curation

Temporal Bucketing. To ensure that operations are always executable, i.e.
they avoid targeting nodes that are yet to be inserted or ones that are already
deleted, the parameter curation process in Interactive v2 employs temporal buck-
eting. Namely, we create a parameter bucket for each day in the simulation time
of the update streams, i.e. each day in the simulation time has its own distinct
set of parameters. This is a novel feature in Interactive v2 – previous SNB bench-
marks lacked this feature and only selected parameters from the initial snapshot.
Factor Tables. As shown in Fig. 1, the parameter generation is a two-step
process. The factor generator produces factor tables, which contain data cube-
like summary statistics [10] of the temporal graph such as the number of
Messages for friends. The factor generator is executed in a distributed setup
using Spark as this computation includes expensive joins over large tables, e.g.
knows(person,friend) � hasCreator(person,comment).

9 github.com/ldbc/ldbc_snb_interactive_driver/releases/tag/v2.0.0-RC2.

https://github.com/ldbc/ldbc_snb_interactive_driver/releases/tag/v2.0.0-RC2
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6.2 Parameter Curation for Relational Queries

For relational queries (without path-finding), we based our parameter generation
on two techniques.
(1) Selecting windows. To select the parameters that are expected to yield
similar runtimes, we look for windows with the smallest variance for a given
value using SQL window functions. The parameters are first sorted and grouped
together based on their difference in frequency. Groups that are smaller than
a given minimum threshold are discarded to select a group of parameters large
enough to generate a sufficient amount of parameters. From the latter, we select
the group with the smallest standard deviation.
(2) Selecting distributions. For queries where we want to select parameters
that are correlated or anti-correlated, we use factor tables encoding possible
combinations (e.g. countryPairsNumFriends for CR3): we select values near a
high percentile for the correlated and a low percentile for the anti-correlated
case.
Generating the parameters. The parameter candidates discovered by the
previous approaches are stored in temporary tables. The parameter generation
step uses these tables to select parameters for each day in the update stream.

6.3 Parameter Curation for Path-Finding Queries

The Effect of Deletes. A key distinguishing feature of graph data manage-
ment systems is their first-class support for path queries [1]. We demonstrate why
ensuring stable query runtimes for path queries is particularly challenging
through the example of Fig. 5a, where we query for the (unweighted) short-
est path between Ada and Bob over a dynamic graph. Initially, at t = 1, the
length of the shortest path is 4 hops. Then, the edge between Carl and Dan is
deleted, making Ada and Bob unreachable from each other at t = 2. Finally, a
new edge is inserted between Carl and Bob, yielding a shortest path of length
3 at t = 3. This illustrates how a given input parameter (a pair of Persons) can
oscillate between being reachable and being in disjoint connected components
over a short period. To ensure stable query runtimes for path queries in the
presence of inserts and deletes, Interactive v2 introduces a novel path curation
algorithm, which produces pairs of Person nodes whose shortest path length from
each other is guaranteed to be exactly k hops at any point during a given day.
Graph Construction. The parameter curation algorithm builds two variants
of the Person–knows–Person subgraph for each day based on the temporal graph:
graph G1 has the inserts applied until the beginning of the day and the deletes
applied until the end of the day, while G2 has the deletes applied until the
beginning of the day and the inserts applied until the end of the day. For a given
pair of Person nodes, their shortest path length in G1 is an upper bound kupper
on their shortest path length at any point in the day – when the inserts during
the day are gradually applied, the shortest path length can only become shorter.
Conversely, G2 gives a lower bound klower for the shortest path – the deletes can
only make the shortest path length become longer.
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Parameter Selection. The bounds provided by G1 and G2 guarantee for the
shortest path length k that klower ≤ k ≤ kupper will hold at any point during the
day. We can ensure that k will stay constant during the day by selecting Person
pairs where klower = kupper holds. To this end, we select pairs who are exactly
4 hops apart in both G1 and G2, hence they will be always 4 hops apart during
the given day. Unreachable pairs of nodes can be generated by calculating the
connected components of G2 and selecting nodes from disjoint components. The
path curation for both the reachable and the unreachable cases is implemented
using the NetworKit graph algorithm library [23].

Fig. 5. Example graph and distribution for path curation.

6.4 Query Variants

The new workload introduces variants for three queries: CR3, CR13, and CR14.
CR3: Correlated vs. anti-correlated Countries. We introduce variants for
CR3 (Fig. 5a): variant CR3(a) starts from Countries that have a high correlation
in the friendship network, while variant CR3(b) starts from Countries that have
a low correlation of friendships between. To generate these inputs, we use the
countryPairsNumFriends factor table visualized in Fig. 5b and select values at
percentile 1.00 for variant (a) and percentile 0.01 for variant (b).
CR13 and CR14: Reachable vs. unreachable Persons.Path queries are
expected to have different runtimes if there is a path vs. when there is no path.
While the performance characteristics vary highly between systems, in principle,
the “no path” case should be simpler in the SNB graph, where one of the nodes is
always in a small connected component. To distinguish between these cases, we
have two variants for the two path queries CR13 and CR14. For variants (a)we
select Person pairs which do not have a path, and for variants (b)we select pairs
which have a path of length 4.
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6.5 Parameter Generator Implementation

The parameter generator is implemented in Python using NetworKit [23] and
SQL queries executed by DuckDB [18]. Based on our experiments in [17,
Figure 4.3], the new parameter generator is scalable. Even with the signifi-
cant extra work performed for temporal bucketing, it outperforms the old param-
eter generator by more than 100× on SF1,000, and finishes in less than 1.5 h on
SF10,000.

7 Using the SNB Interactive v2 Workload

In Sects. 3 to 6, we presented the components that make up the SNB Inter-
active v2 benchmark (Fig. 1): its data sets, operations, driver, and parameter
generator. We continue by describing how the benchmark is used, including its
current implementations and considerations for auditing implementations.

7.1 Implementations

The portability of Interactive v2 is demonstrated by having four complete initial
implementations10 based on the Neo4j graph DBMS; and the Microsoft SQL
Server, PostgreSQL, and Umbra RDBMSs. The Neo4j implementation uses the
Cypher query language [8]. SQL Server uses the Transact-SQL language with the
graph extension.11 PostgreSQL and Umbra both use SQL’s PostgreSQL dialect.
All of these implementations passed cross-validation against each other.

7.2 Auditing

LDBC’s benchmarks come with stringent auditing guidelines to ensure that they
are implemented correctly and the results derived during benchmark runs are
reproducible. Audits are carried out by independent auditors who are certified
by the benchmark task force. The auditor ensures that an implementation is
compliant with the LDBC specification by performing a thorough code review,
running ACID tests, and executing the benchmark. The results of audits are
published as full disclosure reports and systems are ranked on the LDBC web-
site according to their throughput.12 In the following, we highlight important
aspects of the SNB auditing guidelines such as rules for precomputation and
ACID tests. For the detailed auditing guidelines, we refer the reader to the SNB
specification [2, Chapter 7].
Precomputation. The auditing guidelines permit the use of precomputed aux-
iliary data structures (views, indexes, views, etc..) provided that they are always
kept up-to-date upon update operations. A frequent use of precomputations is
10 https://github.com/ldbc/ldbc_snb_interactive_impls.
11 https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-

overview?view=sql-server-ver16.
12 https://ldbcouncil.org/benchmarks/snb-interactive/.

https://github.com/ldbc/ldbc_snb_interactive_impls
https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver16
https://learn.microsoft.com/en-us/sql/relational-databases/graphs/sql-graph-overview?view=sql-server-ver16
https://ldbcouncil.org/benchmarks/snb-interactive/
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the creation of a rootPost edge for each Message, which points to the root Post of
the Message’s thread. Implementers may decide to store information redundantly,
e.g. by adding a property to the Forum–hasMember–Person edge that contains
the number of Posts in the Forum, for improved locality during query execution.
ACID tests. To ensure thorough testing of transactional guarantees, SNB Inter-
active v2 uses a separate ACID suite [29], which tests for 10 transactional anoma-
lies. While Interactive v1 only requires systems to guarantee the read committed
isolation level, the inclusion of delete operations necessitates snapshot isolation
to ensure queries read a consistent database state. To illustrate this consider a
graph with four nodes n1, n2, n3, n4, and three edges n1 → n2 → n3 → n4. Assume
transaction Ta begins traversing from n1, reading n1, n2, and n3. Then, Tb deletes
n2 and commits. Then, Tc inserts n5, connecting n3 and n4, (n3 → n5 → n4), and
commits. Ta then reads n5 and (incorrectly) concludes that n4 is reachable from
n1 – when in fact at no point in time was this a valid database state. The ACID
tests also include a durability test: during a benchmark run, the system-under-
test is shut down abruptly and restarted afterward. The system is expected to
guarantee durability, which is verified by the auditor who checks whether the
last update operations issued by the driver are reflected in the database’s state
after recovery.
Full Disclosure Report (FDR). Audited benchmark results must be accom-
panied by a full disclosure report (FDR). The FDR documents the benchmark
setup for reproducibility and contains the detailed results of the benchmark run
(including statistics of the individual query runtimes).

8 Related Work: LDBC FinBench

The LDBC FinBench (Financial Benchmark) targets distributed scale-out trans-
actional graph database management systems. It is set in the financial domain
and uses concepts such as Account, Loan, and transfer. Its data distribution fol-
lows the characteristics of the financial domain, where a hub vertex (e.g. a large e-
commerce vendor) may have billions of edges. To make queries tractable on such
vertices, the workload employs truncation, i.e. a traversal only uses a truncated
set of edges, e.g. the 5,000 most recent edges. A requirement directly derived
from the financial domain is having strict latency requirements for some queries,
e.g. 99% of a given query’s executions have to finish in 100 ms. The workload
also includes path-finding queries that can be expressed as regular queries with
memory [14].

9 Conclusion

Summary. In this paper, we summarized the LDBC SNB Interactive v1 work-
load and explained its shortcoming to motivate its renewal. We then presented
the draft version of the Interactive v2 workload, which is expected to be very
close to the final version of the workload. The new workload uses a data genera-
tor producing deep cascading delete operations, includes a completely reworked
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driver and workload scheduler, and a scalable parameter generator. We compared
the workload against other benchmarks and highlighted its key novel features
that allow the incorporation of delete operations while keeping important guar-
antees such as stable query runtimes. While the benchmark was substantially
reworked, we made an effort to keep the user-facing changes minimal and only
replaced a single read query, CR14. We believe users with an existing v1 implemen-
tation can adopt the new version with reasonable development cost and extend
their experiments to use larger scale factors in a matter of days. Therefore, we
expect users to quickly migrate to the new version upon its release.
Future Work. As the next step in the Interactive v2 workload’s develop-
ment process, the SNB task force will finalize the workload, conduct standard-
establishing audits on two reference implementations and submit the workload
for acceptance by the LDBC Members Policy Council. Audits are expected to
commence in 2024. The task force will keep maintaining the workload in the
coming years. In future versions of SNB Interactive, we plan to incorporate long-
running transactions, schema constraints [3], and regular path queries [14].
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Abstract. Classical DBMS benchmarks cover a variety of use cases,
for example: microbatch in-line insertion and highly concurrent row-
level access (YCSB), batch offline loading into a data warehouse and
concurrently running complex analytical queries (TPC-H) and business
transactions (TPC-C). These use cases are still relevant in the cloud era,
where we build data pipelines of microservices. In this paper we adopt
the above benchmarks and four popular tools to the cloud-native pat-
tern. On the one hand, this helps in assessing the performance of data
pipelines that have a DBMS at their core. On the other hand, it makes
benchmarking a scalable, elastic and observable process that can be auto-
mated. In a series of experiments, we (1) inspect Kubernetes jobs and
benchmarking tools and whether they are suitable for combination, (2)
monitor resource consumption of all components, i.e., also the drivers,
(3) inspect scaling behaviour and look for peak performance points. We
show that tools and workloads respond differently to scale-out and that
the cloud-native pattern is fruitful for benchmarking.

Keywords: Database Management Systems · Performance Evalua-
tion · YCSB · HammerDB · Benchbase · TPC-H · Benchmarking ·
Virtualization · Docker · Cloud-based Systems · Kubernetes ·
Microservices · Tools · Amazon Web Services

1 Introduction

There is an increasing significance of data pipelines in the cloud. The cloud-
native pattern supports scaling out components and deploying them indepen-
dently. This helps in combining, completing, scaling and observing components,
that may be written in a mix of languages and by different teams of engineers.
The modular nature also helps in speeding up development cycles. Testing in
the cloud refers to not only having the system-under-test (SUT) in the cloud,
but also the other components of the benchmarking process. In cloud-native
benchmarking, the components are organized as microservices in containers and
orchestrated for example by Kubernetes (K8s) [7,8,15,16,20] or Cloud Foundry
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[28]. One main advantage of this pattern is to have reproducible and close-to-real-
world testbeds. This also means relief in the tedious and complicated process of
setup and it means easy repetition for statistical confidence and to isolate depen-
dencies. Moreover it minimizes inbound and outbound traffic. Another advantage
is flexibility. Last but not least this allows elastic scale-out of the components
that represent parallel clients in a cost sensitive manner. In this paper, we regard
the process of running the benchmarks YCSB, TPC-H and TPC-C as in Fig. 1.
We pursue the question, if we can benefit from the cloud-native pattern in terms
of making the process of benchmarking scalable, elastic and observable. We are
also interested in finding out, if established tools fit in and if horizontal scaling
(scale-out) and vertical scaling (scale-up) yield similar results.

Fig. 1. Components of a Benchmarking Experiment

1.1 Contribution

We motivate research questions to design and evaluate a cloud-native implemen-
tation of classical DBMS performance benchmarks. We adopt YCSB, TPC-H
and TPC-C (HammerDB and Benchbase version) to a cloud-native architecture.
We therefore containerize benchmarking tools, deploy them as microservices to
build data processing pipelines and orchestrate components with Kubernetes.
This involves (synthetic) data generation, ingestion and processing. We focus on
scaling properties, i.e., parallel loading and execution of workloads. We address
throughput, latency and resources and report some rough numbers. We inspect
scale-up vs. scale-out behaviour and scaling of drivers beyond single machines.

1.2 Related Work

Cloud-native systems in general are an active area of research. This also covers
seeing those systems as objects of benchmarking. This in particular involves
attributes that are specific to this setting like scalability, availability and fault
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tolerance for example in chaos testing. In our approach however the subject
of benchmarking (the framework) is cloud-native. This simulates a situation
where the components that generate the workload are scaled-out (instead of
a monolithic driver). This perspective has come more and more into focus in
recent years. However, to our knowledge, no research has been done to compare
scale-out to scale-up, about the influence of the drivers or about implementing
benchmarks of the TPC.

In [7,8] we introduce Bexhoma, a Python package that helps to deploy com-
ponents of a benchmarking experiment, that is the SUT, monitoring, an executor
and an evaluator, to Kubernetes (K8s) and that serves as an orchestrator. In [8],
we test 14 DBMS at 7 clouds to show this approach is broadly applicable. We
only use standard K8s objects like services, deployments, jobs and labels. Python
is more flexible and interactive than a declarative language like YAML. We use
our Python package DBMSBenchmarker [9] to inspect details of the power test
of TPC-H and to connect it to monitoring. We also show a data profiling bench-
mark on TPC-DS can be used to detect changes in the nodes of the cluster. In
the experiments, execution comes from a single driver only and loading is not
handled by drivers that push the data, but the DBMS pulls data from disk.

In [15] the authors introduce Theodolite, a framework that uses the Kuber-
netes operator pattern in order to produce reproducible and verifiable bench-
marking results. The authors provide some implemetational details: It uses K8s,
Prometheus, Apache Kafka and Helm on the technical side. The basic K8s
objects are extended using customer resource definitions (CRD) for benchmarks
and executions. This means the definitions and exections of benchmarks are
given als YAML files for versioning and sharing, and the benchmarker can inter-
act with these resources using the standard command line tool kubectl. In
[14,16] the authors use this framework to benchmark and compare the scala-
bility of the distributed stream processing engines Kafka and Flink in different
workloads and use cases. They use Grafana as monitoring dashboard and Jupyter
notebooks for evaluation. The experiments are conducted in a private cloud with
fixed nodes. In [17] the authors stress the framework can be used to evaluate scal-
ability (demand vs. capacity). The approach is shown to be fruitful for stream
processing engines, not DBMS.

In [20] the authors introduce Frisbee. They use Telegraf, Prometheus and
Grafana for monitoring and alerting. Frisbee has a declarative YAML-file-based
language and CRD. The authors can define dependencies, events, actions and
alerts and complex workflows as a DAG incorporating sequential and parallel
executions. The authors run experiments with Redis and YCSB in two clouds
of fixed shape, mainly in a cluster of four nodes. The demonstrations cover
load tests (cascading mixed workloads), failover tests (network partition) and
saturation tests (adding injectors).

In [19] the authors present Kobe. It consists of three subsystems: a deploy-
ment subsystem (K8s), a logging subsystem (EFK logging stack) and a network
subsystem (Istio). Kobe has declarative YAML specifications and can handle
sequential and parallel workloads. It aims at benchmarking federated query pro-
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cessors. The authors report Kobe is extensible and can already be used with two
database systems, Virtuoso and Strabon, and two federators, FedX and Sema-
grow. Two benchmarks are implemented, LUBM and FedBench. The concept
deals with federated query processors, not DBMS. At the state of publication
no experiments are included.

In [28] the authors present ISABEL. The authors aim at performing the
complete workflow with a single command to simplify the process and achieve
Benchmarking-as-a-Service in the end. In experiments they inspect MySQL using
the benchmark tool Sysbench on three VMs. The framework is based on Cloud
Foundry (not Kubernetes).

In a series of publications, the authors of [11,24–27] present the framework
Mowgli and extensions. They aim at establishing Benchmarking-as-a-service.
The framework is used to inspect cloud-typical properties of DBMS like scal-
ability, elasticity and availability. On the technical side, Java is used for the
components, Python for configuration templates, Cloudiator as COT and to
distribute the DBMS in the cloud, InfluxDB for monitoring and Docker com-
pose for managing the multi-container application. Experiments are run at AWS
and Google Cloud. The authors for example benchmark Apache Cassandra and
Couchbase with YCSB.

The authors of [30] presented a scalable Benchmark-as-a-Service platform.
Although technically very different (they benchmark the auction system RUBiS
on VMs at Grid’5000), the platform is organized in the same spirit in similar
components: several load injectors, a supervision (monitoring) tool, a SUT and
a service running a (web site) benchmark.

1.3 Motivation

TPC-C, TPC-H and YCSB are classical benchmarks, that are still widely used
to assess DBMS performance and when comparing DBMS [29]. The driver is
an important component of a benchmark and should be watched closely. Even
details of the Java configuation of a driver may affect measured latencies [10].
Recently, a TPC-C result has been published that uses 400 hosts for the driver
[34]. Industry also “noticed that the TPC-C tool itself was becoming a bottle-
neck in terms of the CPU and the memory it consumed” and thus sharded the
benchmark tool OLTPBench, so that “partial benchmarks were run concurrently
from multiple nodes” [23]. It is clear, that when we have a very powerful SUT,
the driver becomes a bottleneck and we have to add power to it. At some point
scale-up is not an option anymore. Moreover we want to have a testbed, that rep-
resents a real-world setting, and scaled-out drivers represent distributed sources
and users of data.

There is an increasing popularity of the cloud-native pattern in software engi-
neering. For example, it is desirable to elastically scale a single (web) service or
function of an e-commerce application to meet business needs without having to
scale all components or the entire application. The pattern promises to enable
scaling (as well as design and development) of a specific workload processing
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component independently of others. Investigating a complex network of compo-
nents, each with different scales, is very complicated. We are only interested in
components that communicate directly with a DBMS and we want to focus on
the drivers. To control effects and avoid mutual dependencies, we choose a fixed-
size, single-host DBMS as the SUT. PostgreSQL is a general-purpose DBMS
that can cover all the benchmarks considered. Furthermore, we can easily reach
an area where the DBMS is performing well, as well as reach a peak performance
point and then overload the system.

Although the definiton of cloud-native just refers to technologies that
empower organizations to build and run scalable applications in public, private,
and hybrid clouds [2], broadly accepted best practices cover decomposition of
(monolithic) applications into small (micro-)services that are run in containers.
Key features of this approach are scalability, elasticity, observability, flexibil-
ity and automation. Containerized applications in a cloud environment can be
managed for example by the open source platform Kubernetes1 (K8s). K8s is
a project of the Cloud Native Computing Foundation (CNCF) and the major
cloud providers offer it as a managed service. As K8s evolves to become the
operating system of the cloud, we think it is a good candidate for backing the
experiments.

These considerations lead to the following research questions:
RQ1: Is Kubernetes suitable for powering such a setup?
RQ2: Can we make use of key benefits of a cloud-native architecture?
RQ3: Is scale-out possible for the given benchmark tools?
RQ4: How does performance for scale-out and scale-up compare?

2 Solution Concept

We use Bexhoma2 [7,8] for automation and to run the experiments as sequences
of loading and benchmarking with increasing stress. This also allows us to get
a clean copy of the SUT for each run. For hardware monitoring we deploy a
daemonset of cAdvisors3 to have a metrics exposer running on each node. We
also deploy an instance of Prometheus4 per SUT, that collects metrics every
10 seconds. It aggregates the metrics per object (driver and SUT) by summing
over all cores and machines. We in particular collect metrics about CPU, RAM
(active and cached), network and disk access. We also compute CPU time (in
CPU seconds), that is the total time all involved CPUs are processing. As a
heuristic, we assume CPU time is constant for a given workload, no matter how
many parallel clients are processing. Metrics are collected over time and get
linked to the corresponding driver and workload. The observability paradigm
states we should combine metrics, logging and tracing to understand the state of

1 https://github.com/kubernetes/kubernetes.
2 https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager.
3 https://github.com/google/cadvisor.
4 https://prometheus.io/.

https://github.com/kubernetes/kubernetes.
https://github.com/Beuth-Erdelt/Benchmark-Experiment-Host-Manager.
https://github.com/google/cadvisor.
https://prometheus.io/.
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a complex system as fully as possible [18]. Additionally to monitoring, we read
outputs of all containers and fetch information about performance metrics, errors
and deadlocks from there using regex. The benchmark tools will be presented in
more detail in the following sections. By the flexibility of the pattern, we use the
same procedure for all tools: In general, we containerize the operating system
process of a benchmark tool by packing executables and a bash script into a
Docker image. The script receives basic parameters from environment variables,
configures and runs the tool and adds output about the runtime of the container.
Moreover the bash script communicates with a Redis server for synchronization
of jobs. K8s has the concept of jobs for workloads, that terminate after finishing
(contrary to permanently running servers). Jobs can be used in various ways
[31]. What comes closest to our use case is a job that keeps starting pods (i.e.,
containers attached to eachother) up to a maximum number of parallel pods.
Pods are restarted if they fail. The job runs until a predefined number of pods
has finished successfully (i.e., exit 0). We define the job span time τspan as the
span from the start of the first pod to the end of the last pod. This corresponds
to the measurement of parallel executions as suggested by the TPC for TPC-H
[33]. It takes into account that pods do not start perfectly at the same time.
Moreover we log the start and end time for each pod p to have the pod run time
τrun(p), the time the pod p needs to process it’s portion of the data. In an ideal
situation, τspan = τrun(p) for all pods p of the same job (K8s starts all pods at
the same time and workload distributes equally). Kubernetes does not guarantee
start times of pods and we in fact observe time intervals of up to minutes between
pods of the same job. We thus use Redis to number the pods of a job (so each
pod knowns which portion of data it is supposed to generate) and to optionally
synchronize the pods of a job by enforcing a common start time (every pod
of a job waits for the last to be ready). This helps to get meaningful results
about scalability, since pods supposed to be parallel really run in parallel. The
cluster is hosted at AWS as an instance of EKS5 and defined in a YAML file. We
in particular predefine node groups at creation. The components SUT, drivers
(loaders, benchmarkers), monitoring and evaluation can be guided to only use
corresponding node groups. We do not want the SUT to be installed on a node
dedicated to hosting drivers. We use the AWS command eksctl for scaling of
the node groups before the experiment starts and to reduce the groups to size
0 after the experiments have finished. Depending on the type and size of an
experiment, we need more or less resources. This approach helps to benefit from
elasticity.

3 Experiments

In order to evaluate the scaling behaviour, we limit our experiments to mid-size,
so that scale-out and scale-up can be compared. We take PostgreSQL 15.0 as
the DBMS in the system-under-test. As a general purpose DBMS, we expect
it to cope well with all use cases. We slightly adjust configuration (worker and
5 https://aws.amazon.com/eks/.

https://aws.amazon.com/eks/.
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wal settings) and deploy it as a Docker container. The database is stored inside
the Docker container space on a local SSD. We use JDBC driver version 42.5.0.
We mark the peak of performance in plots by a dashed line at the elbow of
throughput (no significant increase in performance, but only in costs).

3.1 YCSB: Threads vs Processes

YCSB is a transactional stress test for DBMS [4] and has been widely used since
its introduction in 2010. YCSB runs a configurable mixture of read and write
queries and distinguishes between a loading and a transaction phase. YCSB
provides a tool written in Java [3]. As it is conceptually a key/value benchmark,
it is particularly suitable for NoSQL DBMS, but it also provides an interface
to JDBC. The tool does not create the schema. It has parameters for vertical
scaling, in particular threadcount and target ops (operations per second).
YCSB generates random keys and values, but in a deterministic way, so parallel
execution of the same container would generate the same data again. However
the provided tool has a corresponding parameter to split workloads into parts, so
it is well prepared for horizontal scaling, too. In the original paper [4], the authors
load a 120 GB database into several systems on 6 servers with 8 GB RAM each.
The driver runs 500 threads on an 8 core. The authors observe the driver is
mostly idle and waits for the DBMS, so in this situation, the driver clearly is
not a bottleneck. In our setup, we use the following machines: SUT and drivers
one c5d.9xlarge (36 vCPUs, 72 GiB RAM) each, and one r5dn.xlarge (4
vCPUs, 32 GiB RAM) for monitoring and evaluation. The scaling is set to 30M
rows at loading (= 30 Gb) and 30M operations at execution. We run a series of
experiments, where we increase target ops and compare scale-out and scale-up
and monitor resource consumption. Each run operates on a clean copy.

Loading Phase. Generation and loading is the same process (in-line load). We
load data and compare splitting into 8 pods (4 threads each) to not-split (32
threads). The split is made into equal parts (rows, targets, operations), so we
expect each part to bring about 1

8 of performance of the unsplit variant. The
plots in Fig. 2 show the comparison split / not-split. Peak performance is at
about 32, 000 ops/s. At the splitted setup, we aggregate throughput by summa-
tion, mean latency by averaging and maximum and percentiles of latencies by

Fig. 2. YCSB Loading - PostgreSQL for 32 threads at driver
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maximum. This is a conservative assumption, as mathematically the maximum
of 95th percentiles not necessarily yields a 95th percentile again. We observe
throughput is almost the same for split (processes) and not-split (threads). Also
latencies are very similar.

Fig. 3. YCSB Workload A - PostgreSQL for 32 threads at driver

Execution Phase The plots in Fig. 3 show the results for workload A (50%
READ/UPDATE). Peak performance is at about 60, 000 ops/s. It is particularly
interesting in Fig. 3 a), that throughput varies strongly, if we do not fix the host
of the SUT to be the same node in each run. If we fix the node as in the
other plots of Fig. 3, split and not-split show similar throughput and latencies.
However the driver is more involved in the split situation: CPU cores are less
utilized and this costs more compute in the end. Another interesting aspect is
that the SUT is stressed more in the not-split scenario. For workload A, splitting
the driver does not affect the performance. This does not hold for all workloads.
In Fig. 4 we show some results for workload C (100% READ). Here, the not-split
setting seems to be superior. It shows higher throughput and lower latency. Peak
performance is at about 115, 000 ops/s.

Evaluation YCSB splits very well. Scale-up and scale-out behave quite similarly
when loading the data. The effect of scale-out on performance in the execution
phase however may depend on the workload. It shifts compute from the SUT to
the driver (Fig. 5).
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Fig. 4. YCSB Workload C - PostgreSQL for 32 threads at driver

Fig. 5. YCSB component resources for 30 Gb at peak performance

Processes do cost more resources than threads in terms of RAM and compute.
It is absolutely crucial to fix the host of the SUT to be the same node in each
benchmark run for comparability.

3.2 HammerDB’s TPC-C

TPC-C is a transaction processing benchmark [32]. It runs a mix of 5 concur-
rent transactions on 9 tables representing an E-Commerce situation. TPC-C is
actively supported since 1992. The TPC also supports a (simplified) version,
TPROC-C, a transaction processing benchmark derived from TPC-C, and an
implementation, HammerDB [13]. HammerDB is written in Tcl due to its good
multithreading properties and currently supports 11 DBMS [12]. A command-
line version was introduced in version 3.0 and a Docker image in version 4.5.
TPC-C expects a number of warehouses and a number of virtual users interact-
ing with the warehouses. HammerDB recommends to try 200− 500 warehouses
per server CPU socket and 4−5 warehouses per vuser. The vusers are similar to
threads, so that helps vertical scalability. In our setup, we again use the following
machines: SUT and driver one c5d.9xlarge (36 vCPUs, 72 GiB RAM) each,
and one r5dn.xlarge (4 vCPUs, 32 GiB RAM) for monitoring and evaluation.
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Loading Phase In the generation phase schema, indexes and procedures are
generated and data is loaded. HammerDB does not support horizontal scaling
for loading: Schema creating is fixed and the same data is generated by each
instance of loaders. We fix the number of warehouses to 320 in the following.
We can see an ascending performance of up to 1400 warehouses per hour in
Fig. 6, but also some quick saturation. There is no improvement of the ingestion
speed although more resources are used. When looking at more details of the
SUT in Fig. 7, as an example for 10 loader threads, we see peaks of 800 Mb/s
at network, 100% at utilization of CPU cores and 200 Mb/s at disk, but these
peaks are reached only occasionally. Compute usage is increasing constantly. It
is not obvious, where the saturation comes from. As a test, we also exchange
the server to a more powerful one, but this gives a similar picture. This means
performance is limited by something we do not see here, e.g. by settings of the
VM like swap or hugepages or by the PostgreSQL configuration.

Fig. 6. HammerDB TPROC-C ingestion of 320 warehouses, peak at 8 threads

Fig. 7. HammerDB TPROC-C - 10 loader threads for 320 warehouses

Execution Phase In the benchmarking phase the transactions are run ran-
domly at a fixed ratio on existing data. The tool uses procedures in DBMS for
execution. NOPM (New Orders per minute) is a performance metric independent
of any particular database implementation. It is computed by counting created
orders inside the database, i.e., server-sided. We increase the number of threads
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from 1 to 40 to query the same database. NOPM goes up to 40, 000 for 10 threads
and then drops dramatically in Fig. 8. This corresponds to an explosion of CPU
utilization. Apparently this puts the configured system to a limit.

Fig. 8. HammerDB TPROC-C execution at 320 warehouses

Evaluation We expect the loading phase to benefit from scale-out. Although
peak performance is reached fairly quickly here, it is noticeable that the driver is
computationally more challenged than the SUT. The execution of the benchmark
is not to be expected to put the driver host to a limit easily, since it uses only
low resources., about 100 Mb of RAM and 0.3 of CPU.

Fig. 9. HammerDB component resources for 320 warehouses

3.3 Benchbase’s TPC-C

Benchbase is a Java-based collection of 17 mostly transactional benchmarks. It is
the successor of OLTP-bench [5] and is available as a Docker image. Benchbase
connects via JDBC and can be used for any DBMS that offers such an interface.
In the following we focus on the implementation of TPC-C. We set isolation level
to READ COMMITED (HammerDB’s default) and we use the same machines.
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Loading Phase As with HammerDB, each loading instance tries to install the
schema and the same data. The tool automatically uses as many threads for
loading as the driver has cores (but maximum number of warehouses). We run
TPC-C with 48 warehouses on the same hardware as before. Loading takes ca.
220 seconds, that is we can load about 800 warehouses per hour, with 36 threads
fixed by the tool.

Execution Phase The tool has parameters for vertical scaling, in particular
terminals (threads) and rate (target operations per second). Business logic
is implemented on client side. We assume this puts more stress to the driver
than HammerDB does. As the workload is running transactions randomly (and
independently), parallel execution of several drivers is possible. We compare the
results for cascading terminals running in a single driver (not-split) to termi-
nals split into 2, 4 and 8 drivers running simultaneously. Each of the four runs
operates on a clean copy. In Fig. 10 we see a very mixed result. In terms of
throughput and latency, the not-split and splitting into up to 4 process behave
quite similarly. Splitting into 8 processes shows significantly lower performance,
but also fewer deadlocks and compute consumption.

Fig. 10. Benchbase TPROC-C execution at 48 warehouses, target 16384 req/s

Evaluation Loading with Benchbase is more intensive computationally than
with HammerDB, Fig. 11, and the tool would definitely benefit from scale-out
here. At execution phase, efficiency clearly drops with increasing scale-out. We
assume the handling of connection pools dominates this setting. It clearly uses
more resources than HammerDB on the client side and more RAM than YCSB.
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Fig. 11. Benchbase component resources for 48 warehouses at peak performance

3.4 TPC-H: Throughput of Loading and Execution

TPC-H is a Decision Support Benchmark [33]. It sets up 8 normalized tables
and runs 22 complex analytical SQL queries. TPC-H is actively supported since
1999. The benchmark has a scaling factor SF, that corresponds to the size of
data in GB. The loading phase simulates filling a data warehouse in a batch load.
The execution phase consists of a power test and a throughput test. Typically,
benchmarking focuses on the power test: The database is loaded and we are
interested in how fast the DBMS can process the workload of the 22 queries.
TPC-H is known to include some choke points [1,6], that make it notoriously
hard for the optimizer to find the best execution plan. As it involes no scaling,
we skip the power test and instead focus on the throughput test.

Loading Phase The TPC provides a tool for generating data [21,22] in parts of
almost the same size each in a single process per part. This supports horizontal
scalability. The schema is not generated by the tool and data loading and driving
the benchmark must be done externally. We use the following machines: SUT
c5d.9xlarge (36 vCPUs, 72 GiB RAM), up to 10 driver nodes r5dn.xlarge
(4 vCPUs, 32 GiB RAM) and another one for monitoring and evaluation. We
test the common load from stored records approach with an increasing number of
parallel pods. We therefore couple a generator as an initcontainer with an injector
container in a pod. Ingestion starts when generation has been completed. The
generator contains TPC’s dbgen and stores data in the distributed file system
EFS. Moreover it transforms the data (removes the last character in each line).
The injector uses psql to send \copy commands to the DBMS to load data
that is local to the injector. In Fig. 12 we see ingestion rate depends on the size
and plateaus at around 150−200 Gb/h. The loader takes up to 1 Gb of RAM per
SF, no matter how many nodes are involved. The RAM usage of the generator,
on the other hand, scales linearly with the number of pods, regardless of the SF.
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Fig. 12. TPC-H - PostgreSQL generate and load from disk

Execution Phase We use x1e.16xlarge (64 vCPU, 1952 GiB RAM) for
the SUT now. After ingestion has finished and to prepare for the execution
phase, we run a sequence of scripts: 1. apply unique indexes (PK) and non-
unique indexes (on FK columns) at about 200 Gb/h, 2. apply FK-constraints
at about 130 Gb/h, 3. let the DBMS analyze the tables to update statistics for
the query optimizer at about 200 Gb/h. In the throughput test the driver runs
several streams at the same time. We use DBMSBenchmarker as driver. It has
a parameter for vertical scaling. This spans a pool of subprocesses per query
to avoid Python’s GIL. The subprocesses connect to the DBMS in parallel to
simulate parallel clients. Here however we establish a single connection from Q1
to Q22 and run a single client per container. Specifications of TPC-H require for
example at least 4 parallel streams for SF 30. They also require reordering and
reparametrization in a predefined manner for each stream. We however run the
queries with the same parameter and in the same natural ordering, since this
should reduce resource consumption. We run a cascading sequence of parallel
streams on the same database. For evaluation we use the official TPC-H metric
TPX@Size(n,SF). In Fig. 13 we show some results. Throughput is in fact close
to linear. Naively we can expect the memory consumption is equal to the size
of the database, maybe scaled by the number of streams. We however see that
the maximum is 46 times the size at 10 streams for SF=30, i.e., ca. 1400 Gb.
Also remarkable is the total compute time scales almost perfectly being around
100 ·n ·SF each time. The only clear difference is at SF=30. Throughput is much
lower there, too. We assume this comes from cache misses because of the size.

Fig. 13. TPC-H - PostgreSQL throughput test
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Evaluation Loading benefits from scaling. Even for PostgreSQL, that is not
optimized for such a setting, we see an improvement at throughput of up to
100%. The loading driver’s total RAM usage depends on SF, not on n, while for
the data generation component it is the other way around.

Fig. 14. TPC-H component resources depending on SF and number n of pods

4 Discussion

We used Kubernets to successfully set up a cloud-native benchmarking environ-
ment (RQ1). The presented approach allows us to benefit from key features of
this pattern (RQ2), since it provides

1. automation. We run scripts that perform predefined experiments from start-
ing cluster nodes to evaluation of results.

2. flexibility. The same pattern can be used for different benchmarks and tools.
This implies we can reduce human workload, since we can reuse most of the
components like installing SUT, adjusting monitoring and collecting results.

3. elasticity. We predefine a cluster and use AWS eksctl to scale nodegroups
per experiment to match requirements. Limitations we have noticed are

– The SUT node should be fixed, otherwise results are not reproducible.
– We cannot access parameters of the hypervisor in a simple way by just

relying on predefined node groups and this may affect performance.
4. scalability. Kubernetes jobs are suitable to run concurrent synthetical work-

loads. It is important however to synch pods of a job, for example by using a
Redis counter. Otherwise there might be a noticable shift between pods and
expressiveness is reduced.

5. observability. We monitor hardware metrics of all components and addi-
tionally collect information from container logs. This provides a significant
amount of information that sheds light on the performance of the system.
Bexhoma is Python-based, so we have access to a variety of evaluation pack-
ages. We also found performance limitations, that cannot be explained by the
data we collected. It may be helpful to also include application metrics of the
DBMS to explain all aspects.

Except for the loading phase of HammerDB and Benchbase, all tools and
phases support scale-out (RQ3). We assume that these two steps would also
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benefit from scale-out, since the data generation is computationally intensive.
HammerDB’s server-side and Tcl-based design is very lightweight and low in
resources. Benchbase client-side logic and Java implementation is more flexible,
but also uses more resources. The effect of scaling-out (RQ4) depends on the
use-case.

We reported some rough numbers of hardware metrics without variation.
This should give the reader an idea of the resource consumption to be expected.
Further experiments would be necessary for fixing the validity ranges of the
values. We did not pay attention to the size of the Docker containers. Small
components are suitable for a serverless approach. We also ignored the key fea-
ture of resilience in this report. Care must be taken to ensure that a distributed
system responds to all possible disturbances like lost connections or pods failing
to start or running out of resources.

For the transactional workloads of YCSB and TPC-C, we split operations
across parallel K8s pods. We primarily observed nice scaling, predictable perfor-
mance and similar results for split / not-split setups. As a general trend, scale-out
shifts compute from SUT to driver. Simply adding power to the driver in terms
of threads or processes may lower performance of the SUT. At YCSB the SUT
may detect scaling-out vs. scaling-up, depending on the workload. HammerDB
is very lightweight, so we could only compare 1 and 2 processes, showing almost
the same results. The SUT is put to a limit quickly. Benchbase showed a slightly
decreasing performance that drops significantly at 8 processes.

The analytical benchmark TPC-H differs in that it supports loading from
stored records. The plain vanilla PostgreSQL ingestion mechanism we used here
requires the driver to have RAM up to the scaling factor, that is the size of
the data source. On the one hand, this also allows huge amounts of data to be
read in if we have enough nodes, which can even be small. On the other hand,
PostgreSQL does not load the data “all at once”, so RAM in the size of the data
source is certainly exaggerated and the mechanism is therefore not optimal in
terms of resource management. The generator uses CPU and RAM depending
on the number of pods, not the scaling factor. We did not follow all TPC specifi-
cations. For example we did not implement the update streams that change the
database during benchmarking. We are convinced that the presented approach
can also be used for more complex workflows. The throughput test, although
we used identical streams, takes a lot of RAM. The driver DBMSBenchmarker,
although Python-based, uses only little resources.

All results surely depend on the concrete PostgreSQL configuration, which
we did not include. PostgreSQL is a general purpose DBMS, that is suitable
for all regarded workloads, but it is rather not optimal. The intention of this
research was not to find optimal configurations of PostgreSQL, although this is
an interesting aspect. We chose smaller scales to be sure that we can hit and
assess performance plateaus, with both horizontal and vertical scaling of drivers.
Nevertheless it will be interesting to test more specialized DBMS like distributed
SQL for transactional workloads or NewSQL for sharded analytical workloads.
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We have implemented benchmarks in the cloud-native pattern, but only in
the classic form as is. The next steps could be to further exploit the features, for
example to mix drivers for transactional and analytical workloads for a HTAP
scenario or to include cloud-native DBMS and to measure how the scale-out
behavior of the DBMS reacts to a scale-out of the driver. However, it is important
to compare scale-out and scale-up before running extensive benchmarks. At least
with the JDBC-based drivers we use, the DBMS can be sensitive to the difference.

5 Conclusion

The cloud-native pattern can be applied fruitfully to different clouds and var-
ious DBMS, as in [7,8], and also to various benchmarks and driver tools as
presented here. We deduced some research questions to design and evaluate a
cloud-native implementation. We presented a solution and how to benefit from
the key features of the pattern in terms of scalability, elasticity, observability,
flexibility and automation. We implemented and discussed the benchmarks and
tools YCSB, TPC-C (HammerDB, Benchbase) and TPC-H. We have shown that
we can collect comprehensive data on the performance of the drivers. Our consid-
erations were guided by the idea that scale-out benchmarking is an interesting
approach because it better represents a distributed system than a monolithic
driver. The presented pattern allows a practically infinite scaling in a relatively
simple way. We pursued the question of what effects one has to deal with and
what to measure. In the end this also affects the costs. Hopefully this is helpful
for the classical use cases presented, but it may also be helpful for more complex
applications and the development of future benchmarks and tools. This project
has been partly supported by an AWS Research Grant.
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