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In this paper, we present a novel communication scheme called zero-sided RDMA, enabling data exchange as
a native network service using a programmable switch. In contrast to one- or two-sided RDMA, in zero-sided
RDMA, neither the sender nor the receiver is actively involved in data exchange. Zero-sided RDMA thus
enables efficient RDMA-based data shuffling between heterogeneous hardware devices in a disaggregated
setup without the need to implement a complete RDMA stack on each heterogeneous device or the need for a
CPU that is co-located with the accelerator to coordinate the data transfer. As such, we think that zero-sided
RDMA is a major building block to make efficient use of heterogeneous accelerators in future cloud DBMSs.
In our evaluation, we show that zero-sided RDMA can outperform existing one-sided RDMA-based schemes
for accelerator-to-accelerator communication and thus speed up typical distributed database operations such
as joins.
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1 INTRODUCTION
Disaggregation and the need for RDMA. In the past decade, cloud computing and the landscape
of database systems have undergone a significant transformation. Notably, there has been a shift
towards disaggregation, separating compute and storage or even accelerator pools from traditional
compute [5, 9, 25, 43] because disaggregation offers improved resource utilization, as each resource
can be scaled independently based on demand. This trend has been transformative for cloud-
native DBMSs, which all build on top of such disaggregated architectures. Since, in disaggregated
∗Authors with equal contribution.

Authors’ addresses: Matthias Jasny, Technical University of Darmstadt, Germany; Lasse Thostrup, Technical University of
Darmstadt, Germany; Sajjad Tamimi, Technical University of Darmstadt, Germany; Andreas Koch, Technical University of
Darmstadt, Germany; Zsolt István, Technical University of Darmstadt, Germany; Carsten Binnig, Technical University of
Darmstadt & DFKI, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM 2836-6573/2024/2-ART36
https://doi.org/10.1145/3639291

Proc. ACM Manag. Data, Vol. 2, No. 1 (SIGMOD), Article 36. Publication date: February 2024.

https://doi.org/10.1145/3639291
https://doi.org/10.1145/3639291


36:2 Matthias Jasny et al.

0B/s

2GiB/s

4GiB/s

6GiB/s

8GiB/s

10GiB/s

1 CPU 4 CPUs 0 CPUs

D
a
ta

 b
a
n
d
w

id
th

CPU-driven RDMA Zero-sided RDMA

(a) GPU-to-GPU transfers, CPU-driven vs.
network-driven transfers.

0s

1s

2s

3s

W/o Load-bal. W Load-bal.

R
u
n
tim

e

Naive Execution Zero-sided RDMA

(b) Perfect utilization in heterogeneous execution
environments.

Fig. 1. Motivating examples of using zero-sided RDMA for a GPU-to-GPU shuffle of 4KiB data items. (a)
Zero-sided RDMA provides equal or better performance than traditional CPU-based schemes without the
need of co-locating a CPU per accelerator. (b) Zero-sided RDMA enables seamless load balancing of data
transfers in case accelerators consume data at different speeds.

architectures, the rate at which data can be moved across nodes is one of the most important factors
to performance, there has been considerable attention on developing fast network solutions. Remote
Direct Memory Access (RDMA) is deployed by major cloud vendors to enable efficient resource
disaggregation [2, 37]. In database use cases, RDMA has successfully improved the performance
for distributed join operators [3, 41], reduced the cost of concurrency control [9], and made storage
access [51] possible at unprecedented speeds.

The need for heterogeneous compute. Another significant trend in cloud data centers is that,
in response to the performance stagnation of CPUs due to the end of Moore’s Law and Dennard
Scaling, heterogeneous accelerators are becoming commonplace as an alternative to CPU-based
compute resources [31]. Accelerators have been shown to provide significant speed-ups for DBMS
workloads [22, 27]. However, looking ahead, a major question for future cloud DBMSs is how to
efficiently use disaggregated heterogeneous compute resources such as GPUs or FPGAs. Similar to
disaggregated CPU-based compute resources, these accelerators should be deployed as network-
attached accelerator pools, but today this is not the case. Accelerators depend on the presence
of a host CPU for both control and moving data in and out of the accelerator. As we show in
this work, if we continue to keep the CPU on the critical path of data movement, we will not be
able to take advantage of fast networks and RDMA-based communication. Instead, we propose
zero-sided RDMA as a solution to remove the CPU from the critical path and enable efficient
accelerator-to-accelerator data movement powered by a smart switch.

The pitfalls of RDMA today for accelerators. To explain how zero-sided RDMA works, it is
important to see how RDMA involves CPUs today. In addition to two-sided operation, where the
CPUs of both the sender and receiver nodes are involved, it already offers one-sided primitives,
namely READ and WRITE operations. These primitives solely involve the CPU of the initiator
node rather than the target node. As a result, nodes can read from and write to remote memory
locations without requiring the remote CPU to be actively involved, as the remote NIC handles the
read and write operations. This offloading of network overhead to the NIC enables efficient scaling
and improved performance [53]. However, if we want to fully utilize accelerators in the cloud, the
involvement of CPUs, even if just on the sender side, will lead to bottlenecks (as seen in Figure 1a,
multiple CPU cores need to be dedicated to coordinating data transfers).
Accelerator-driven RDMA as an alternative? One way to remove the CPU would be to

implement RDMA-based operations directly on the accelerators. Even though this is technically
possible [21], it is challenging for the following reasons: (1) RDMA primitives, such as one-sided
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RDMA verbs, might not be available for a given accelerator, requiring a full RDMA stack to be
implemented per accelerator type. Beyond the engineering cost, the additional problem is that
executing communication logic on specialized hardware devices consumes compute resources that
could otherwise be utilized for processing. (2) Implementing advanced RDMA-based communication
schemes, such as many-to-many data shuffling or multicast, on top of the RDMA stack on each
accelerator type requires re-implementing features and has different challenges and limitations on
each hardware type.

The case for network-driven RDMA. To remove the CPU from the critical path of performance
and to reduce the engineering effort in disaggregated accelerators, in this work, we propose a novel
network-driven scheme where neither a CPU co-located with an accelerator is actively needed
nor the GPU/FPGA has to implement the RDMA stack. Our approach fully offloads the RDMA
stack and the RDMA-based communication logic between devices to the network, particularly to
a programmable switch. The main idea of offloading the communication logic to the network is
that the switch acts as a coordinator of data transfers; i.e., it issues an RDMA READ to a sender
and rewrites the read response into an RDMA WRITE for the receiver using the programmable
data plane of the switch. Since this does not involve the sender or receiver actively, we term this
communication scheme zero-sided RDMA.

Why use a programmable switch? To implement zero-sided RDMA, a programmable switch
presents an excellent choice due to its placement as an intermediate in the network, which allows it
to support complex data transfer operations, such as distributed data shuffling used in databases, and
optimally schedule data transfers. Important is that zero-sided RDMA is not limited to point-to-point
communication (1:1) and, as we show later in this paper, we can support various communication
flows for common distributed data management use cases, namely N:M shuffles, as well as complex
distributed operations such as network-driven reliable multicast or seamless load-balancing. From
a complexity perspective, this is much more efficient than implementing the RDMA stack and
shuffling logic in each instance of an accelerator (i.e., FPGA, GPU). Finally, switches can process
at the aggregated line-rate of all connected devices [17] and thus provide a scalable solution to
zero-sided RDMA, as we show in our evaluation.

Motivating examples. Figure 1 shows the main benefits of our novel switch-driven scheme that
uses zero-sided RDMA for data transfers. First, compared to the CPU-driven scheme (Figure 1a),
zero-sided RDMA can achieve close to the maximum network bandwidth without requiring a
co-located CPU per accelerator. In fact, the CPU-driven scheme requires multiple CPU cores to
achieve the same bandwidth for transferring messages. Moreover, zero-sided RDMA provides many
other benefits, such as seamless load-balancing (Figure 1b). Load-balancing is important if multiple
(heterogenous) receivers consume data while one of the receivers is slower than the others. As we
later discuss, our switch-driven scheme can detect such cases by monitoring the progress of a data
shuffle and seamlessly redistributing data.

Relevance for DBMSs & contributions. The database community continuously seeks ways to
adapt to the complexities of disaggregation and the integration of RDMA with diverse accelerators.
In this context, zero-sided RDMA presents a practical solution by enabling network-driven data
transfers between heterogeneous accelerators in DBMSs. We evaluate our idea on specific DBMS use
cases focusing on OLAP scenarios, including data shuffling (i.e., 1:1, N:M), a core task in distributed
query processing. In addition to the chosen shuffle scenarios, zero-sided RDMA can be applied to
many more, including data replication or efficient data transfers in disaggregated databases to and
from compute. As our experimental results on latency indicate, it will be possible in the future to
extend zero-sided RDMA to also support latency-critical distributed workloads beyond OLAP, such
as OLTP or data streaming.
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Fig. 2. Network-driven communication with zero-sided RDMA vs. alternative communication schemes. (a) In
a CPU-driven scheme 1○, the CPU is responsible for carrying out the communication. In the accelerator-driven
scheme 2○, the RDMA stack is realized directly on the accelerator. With zero-sided RDMA 3○, the RDMA
stack and communication scheme are fully offloaded into the network, removing the need for CPUs, while
only one RDMA stack (e.g., on the switch) is needed. (b) In zero-sided RDMA, producers/consumers interact
only with their buffers in local memory. The switch reads items from the sender buffer (step 1) and moves
them to the receiver buffer (step 3) by converting RDMA READS into WRITES (step 2). The switch coordinates
the communication using head/tail pointers (step 4).

In summary, our work on zero-sided RDMA brings the following contributions: (1) First, we
introduce our novel network-driven communication scheme — zero-sided RDMA — which allows
efficient accelerator-to-accelerator communication without CPU involvement. (2) We use zero-sided
RDMA to implement a network-driven data shuffling operator for distributed DBMS use cases. We
demonstrate that it achieves line-rate performance for different communication patterns (i.e., 1:1,
N:M shuffles). (3) We showcase how complex communications schemes, such as globally-ordered
replication and load-balancing for multi-producer to multi-consumer, can be implemented efficiently
in zero-sided RDMA. (4) Finally, we evaluate zero-sided RDMA through a set of DBMS-centric
scenarios, such as a distributed TPC-H query, shuffling, and a distributed join, as well as using
zero-sided RDMA for two different types of accelerators: GPUs and FPGAs.

2 BACKGROUND
2.1 Remote Direct Memory Access (RDMA)
RDMA has become the state-of-the-art communication method for distributed data-processing
systems over high-speed networks [5, 47, 49, 50, 54]. Its main benefit is that it removes the overhead
of traditional kernel-space network stacks such as TCP/IP. Major cloud vendors have already
adopted RDMA in their pursuit of faster networking with little CPU overhead. An example of this
is Microsoft Azure which reports that already around 70% of internal ToR traffic is RDMA [2].
Communication schemes in RDMA can be categorized as one-sided (READ / WRITE) or two-

sided (SEND / RECEIVE) operations, which refer to the involvement of the sender and receiver in
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the communication. For one-sided operations, only the sender is actively involved and thus has
to decide where the data should be placed on the remote node. With two-sided operations, also
the receiver is actively involved in the communication and decides where to place data by issuing
RECEIVE requests before SEND requests can be issued on the sender side. This simplifies remote
memory management.

Especially the one-sided RDMA operations have seen high adoption in distributed data process-
ing systems since they allow sender nodes to write into remote memory directly fully bypassing
CPU cores of the receiving nodes [4, 53]. However, even with one-sided RDMA, achieving di-
rect accelerator-to-accelerator communication is often not possible or infeasible. As such, the
communication control flow must be relayed over the CPU [42].

Finally, to understand our zero-sided RDMA contribution, which directly processes RDMA traffic
in the network layer, we want to mention that RDMA communication can run over different
transport types, such as Reliable Connection or Unreliable Datagram. The most commonly used
transport is the Reliable Connection which requires stateful connections between any end-points.
The reliability is provided through acknowledgments and re-transmissions. While Unreliable
Datagram has the lowest complexity and overhead, most systems require reliable data transfers
and need to implement it manually in the application with added CPU overhead [18, 19]. In
addition, Unreliable Datagram only supports two-sided operations. In this paper, we exclusively use
Reliable RDMA Connections, as one-sided operations are essential to achieving network-initiated
communication, and reliability is vital for most systems.

2.2 Programmable Switches
Programmable switches have gained traction in data centers for many years. Unlike traditional
fixed-function switches, they offer flexible, line-rate packet processing capabilities of up to billions
of packets per second. These are primarily attributed to the programmable packet processing
pipeline. In networking, the control plane and data plane are two fundamental components that
handle different responsibilities. The control plane, usually running on a CPU, is the brain of the
network device, making decisions about where traffic should be directed. In contrast, the data plane
is responsible for to carry out actual operations on network packets and routing traffic to different
destinations.

The programmability of the data plane is given by utilizing a reconfigurable architecture based on
match-action tables, extending the utility of switches beyond data routing to include the offloading
of application logic via customized match-action rules. The programming of this data plane pre-
dominantly employs P4 (Programming Protocol-Independent Packet Processors) [6], a high-level
language that allows users to draft match-action rules to define packet processing in the data plane.
Initially conceived for programmable network switches, P4 is now applicable to numerous systems
that process packets, including SmartNICs and FPGAs. P4 programs, in general, manipulate packet
headers and specify their rewriting while adopting a C-like syntax without allowing complex
constructs such as pointers, floating-point numbers, or loops for line-rate processing. Besides these
constraints, however, many new opportunities can be used when engineering new algorithms for
this platform. The most important thing to note is that every compiled P4 program can run at
line-rate in the switch, which is an important aspect of implementing zero-sided RDMA in the
switch.
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3 OVERVIEW OF ZERO-SIDED RDMA
3.1 Why Network-driven Communication?
Hardware accelerators are increasingly used for data-intensive processing tasks as they provide
very high processing power compared to the stagnating performance of CPUs. As such, a lot of work
is put into incorporating accelerators such as GPUs and FPGAs into DBMS [11, 38, 39]. However,
when considering the trend of disaggregation and the adoption of fast RDMA-capable networks in
data centers, the challenge of bringing these two trends together is of growing importance.
CPU-driven data shuffling. When looking at how distributed accelerator communication

is typically done today, we see that it is predominantly CPU-driven. We illustrate this in 1○ in
Figure 2a. Here, the CPU handles communication control flow while processing tasks are offloaded
to the accelerators. This design makes sense because accelerators are typically built with specific
processing tasks in mind and do not cope well with the control-flow-heavy type of communication
handling, and in addition, the RDMA library stack is readily available and built for the CPU.
However, this configuration causes a tighter coupling between the CPU and accelerator, which can
hinder accelerator utilization due to stalling and CPU-to-accelerator communication overhead. At
the same time, it increases the CPU load, which can be substantial considering the task of saturating
fast networks and accelerator processing.
Accelerator-driven data shuffling. A common solution in related work to overcome the

limitation of design 1○ is to implement the RDMA stack (i.e., libibverbs library) directly in the
accelerators as illustrated in 2○ in Figure 2a. This allows the accelerators to directly execute RDMA
and communicate over the network without CPU involvement [1, 8, 21]. While this approach has
strong merits as it removes the strong coupling between the CPU and accelerator, we argue that in
many cases, such a configuration might be suboptimal or even impossible for the following reasons:
(1) As previously mentioned, accelerators are built with a specific processing architecture, e.g., the
massively parallel SIMT execution model by GPUs. Therefore, they might perform very poorly on
the control-heavy and often non-parallelizable task of coordinating the communication. (2) In many
cases, the RDMA stack might not even be available for a particular type of accelerator. Developing
a new RDMA stack requires high efforts that not only slow down the adoption of accelerators in
data centers but might also consume a significant fraction of the available hardware resources on
accelerators. This is in particular problematic for FPGAs since this limits how much resources are
available for the actual application. (3) Realizing distributed operations, such as shuffling, with
one-sided RDMA on an accelerator is non-trivial and requires the re-implementation of the same
logic for each accelerator type leading to increased system complexity.
Network-driven data shuffling. For these reasons, it is a highly complex task to develop

a communication system that relies on implementing the communication logic directly in the
heterogeneous accelerators. We take a different approach by separating the data processing and
communication logic by offloading the whole communication scheme into the network. This
overcomes the challenges mentioned above by taking away the burden on the accelerator side and
providing a clean separation of concerns. Moreover, with programmability in the network, CPUs
can be removed from the critical path of communication between accelerators. Programmable
network components typically come in the form of SmartNICs or programmable switches. While
both types can be used to drive communication on behalf of the accelerator, a programmable switch
has many benefits over SmartNICs. Among these reasons is guaranteed line-rate processing for all
connected nodes and the possibility of realizing coordination-free communication schemes due to
the centralized position of the switch. We further discuss this in Section 6.3.
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Fig. 3. Sequence of network packets for a switch-driven 1:1 data flow. The switch transfers data by reading
from the producer and converting the READ response into a WRITE to persist the data in the consumer
memory.

3.2 How Does Zero-sided RDMAWork?
Our approach to achieving zero-sided RDMA builds on the ability of the centralized programmable
switch to initiate and direct data traffic directly in the data-plane at the aggregated line rate of all
connected accelerators — called processing units (PUs) in the sequel. By placing the communication
scheme in the switch data-plane, the switch can initiate one-sided RDMA operations (READ &
WRITE) to PUs. At the same time, the PUs are completely oblivious to the network communication
scheme, which not only has the benefit that the PUs do not have to issue communication primitives
actively but also removes the distributed coordination for communication flows such as data
shuffling or even replication.
Communication abstractions. On the side of the PUs (i.e., accelerators), a circular buffer is

the core abstraction to participate in zero-sided RDMA data transfers. The design goal of the buffer
is to allow PUs to push and pop items with only simple local memory operations while the switch
transfers data fully asynchronously without any sender/receiver PU involvement. The coordination
between the switch and PU is handled with two pointers to the buffer, a head and tail pointer. The
head pointer indicates where the next data item can be written, and the tail pointer indicates where
the next data item can be read.
Flow of data transfers. The overall flow of transferring a data item between one producer

and one consumer using zero-sided RDMA is illustrated in Figure 2b. The switch mirrors the state
of the producer and consumer buffers (head and tail pointers) to know when a producer has an
item to send and whether the consumer has free space. To transfer an item, (1) the switch first
issues an RDMA READ on data in the producer buffer. (2) The READ response is then converted
on the switch into an RDMA WRITE and (3) written into the next free slot at the consumer. When
converting a READ response into a WRITE request, the switch does not need to buffer or modify
the data payload. (4) After the remote NIC acknowledges the RDMA WRITE, the head pointer
of the consumer is incremented to indicate the new item. The tail pointer is incremented on the
producer, which frees up the item in the buffer for reuse. We cover the detailed design in Section 4
to enable zero-sided data transfers.

Hardware requirements. Zero-sided RDMA can easily be used by many heterogeneous devices
since only a few requirements must hold for participating in zero-sided RDMA: (1) the device must
have memory in which to store the buffer data structure (2x 4 bytes for head/tail pointers and
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memory for data items), (2) the memory must be accessible by an off-the-shelf RDMA-enabled NIC
and (3) the memory consistency model must ensure that a write to an item and the subsequent
update to the head pointer is executed in order. In the case of weaker consistency models (like
GPUs and ARM CPUs), memory fences can be used to ensure the ordering of writes. (4) In addition,
to avoid stale reads, accelerators with caches must ensure that local reads and writes to the head
and tail pointers of the buffer are directed to the RDMA-registered memory. For Nvidia GPUs this is
achievable with the volatile keyword. We support accelerators with both little and big endianness.
The switch processing pipeline operates in big-endian and as such to support little-endian systems,
we perform endian conversion (if needed) on the switch in order to process the head and tail pointer
values.

Software requirements. In order to enable zero-sided RDMA from the software side, it must
be possible to register the accelerator memory of the zero-sided buffers to the RDMA-enabled NIC
and establish an RDMA connection between the switch and PU. This is not a performance-critical
task and only has to be done once in the setup phase. Hence, a rather small CPU is sufficient to
carry out these management-related tasks. Important is that this CPU is not involved in the actual
data transfers.

As an example, we discuss the details to enable zero-sided RDMA for an FPGA (or any other PCIe
device): The memory of an FPGA can be exposed through a PCIe bar register and registered to the
RDMA NIC. Registering external memory of PCIe devices as RDMA-enabled memory is supported
by the libibverbs library using PeerDirect [32]. This requires a kernel driver that implements
peer_memory_client [28] for the given device. With that, the RDMA NIC can directly access the
FPGA’s memory through PCIe without the involvement of the CPU or operating system using
peer-to-peer DMA.

3.3 Integration into a DBMS
Wenow cover the basic steps needed to integrate zero-sided RDMA into DBMSs. Themost important
question is when a zero-sided communication flow between accelerators is set up and torn down in
a DBMS. Moreover, other important aspects of cloud DBMS are the support for elasticity of flows
as well as the use of zero-sided RDMA in different DBMS architectures.
Setting up and tearing down zero-sided flows. Here, different variants are possible. One

variant is that the communication flows are instantiated when a DBMS cluster is launched, and
different buffers are reserved, allowing a cluster node to send data to any other node. However, we
also support variants where flows are instantiated and deployed ad hoc. In such a scheme, before
query execution, a coordinator node (e.g., using a CPU) has to initialize the communication flow by
setting up the buffers on the processing units. Subsequently, it initializes the communication flow
by sending the buffer locations to the switch. During execution, we stress that no involvement is
needed by the coordinator (i.e., no CPU is involved anymore). The switch handles the tear-down of
flows. Once it detects that all producers are finished, it propagates the information to consumers
and closes the RDMA connections.

Supporting elasticity in zero-sided flows. In order to support elasticity, we additionally allow
producers and consumers to seamlessly be added or removed anytime from the communication
flow during execution. We show an experiment for this in our evaluation in Section 7. The benefit of
switch-driven communication is that changes to the communication flow will not incur any connec-
tion changes to already connected processing units. In fact, in e.g., a load-balancing communication
flow adding another consumer at runtime will be completely oblivious to the producers.

Support for different DBMS architectures. Zero-sided RDMA integrates well into common
DBMS architectures such as shared-nothing and shared-storage. For shared-nothing architectures,
data is predominantly shuffled between nodes storing partitioned tables. Zero-sided RDMA can
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effortlessly interconnect processing units through the provided communication schemes while
saving communication-related overhead and complexity at the connected nodes. Shared-storage
architectures are gaining traction in the cloud due to their flexibility to scale in and out by placing
tables on specific storage devices. This architecture can also benefit a lot from zero-sided RDMA in
the way that it facilitates direct storage-to-accelerator communication.

4 SWITCH-DRIVEN DATA TRANSFERS
To realize zero-sided RDMA, we have to enable a switch-driven data transfer scheme that transfers
data from producers to consumers without their active involvement.
Core challenges of realizing zero-sided RDMA. A core challenge of realizing zero-sided

RDMA is to map the data transfer logic to the pipelined execution model of a switch, which provides
a limited set of instructions and memory per stage. In addition, since all connected PUs are not
directly connected to each other but are connected to the switch, the switch must adhere to the exact
protocol to be compliant with off-the-shelf RDMA NICs. This includes managing stateful RDMA
connections with reliability and correctly propagating congestion- and flow-control information
from the consumers to the producers within the switch’s data-plane to guarantee execution at
line-rate.

The following explains how zero-sided RDMA can be implemented on the switch for a 1:1 data
transfer. In subsequent sections, we will explain how to extend zero-sided RDMA to more complex
flows (e.g., N:M flows or load balancing).
Overview of a 1:1 flow. The overall sequence of network messages for a data transfer from

a single producer to a single consumer is depicted in Figure 3. The switch logic can be grouped
into five steps: in 1○, the switch evaluates whether it is possible to initiate a data transfer, next 2○,
the response of the read, which can be in multiple fragments, is rewritten into an RDMA WRITE
to the consumer, in 3○ the ACK from the data write triggers a new RDMAWRITE to increment
the head pointer of the consumer buffer. In 4○, the tail pointer of the producer is incremented, and
the subsequent ACK packet 5○ is recirculated back to the head of the switch processing pipeline
to step 1○. With that, the switch continuously evaluates whether it is possible to issue a data
transfer for a given producer-consumer pair. Recirculation is a technique that virtually connects
an output port in the switch with an input port, such that packets can pass through the pipeline
multiple times. This resembles a looping construct. We initiate this main control loop per flow upon
successful completion of the connection setup of the PUs. In the following, we present how we
initialize the data transfer in step 1○ and rewrite the RDMA READ into an RDMAWRITE in step 2○.
Furthermore, we discuss which state is needed on the switch for achieving RDMA communication.

1○ Initiating data transfers. As a first step ( 1○ in Figure 3), the switch evaluates whether it
is possible to initiate a data transfer. The control flow for this step is illustrated in Figure 4. The
switch uses a pipelined processing model which operates on a per-packet basis and executes logic
in a sequence of stages. By accessing registers and applying simple match-action-rules (i.e., actions
can be arithmetic operations in each stage), we can express the logic needed to decide whether a
data transfer can be initiated by letting a packet traverse the pipeline.
In the ingress pipeline, the switch first checks whether the producer has items in the buffer

to send and whether the consumer has space. If neither the producer has data nor the consumer
space available, the packet is recirculated. Recirculating the packet back to the ingress is necessary
because while-loops are not supported in the pipelined processing model. We use unique indexes
for all producers and consumers to identify a connection between a specific producer & consumer
and to access their respective registers, e.g., pointer values and packet-sequence numbers (PSNs).
PSNs are used to detect missing or duplicate packets. With that information, we can construct
communication schemes between multiple producers and consumers. We apply adaptive batching
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Fig. 4. Switch state needed to initialize a data transfer using a pipelined execution model in the switch. The
steps of reading head/tail pointers of the producer and consumer, deciding on the batch size of elements to
transfer, and sending the data need to be mapped to a sequence of stages in the switch. All steps are executed
sequentially.

such that if a producer has generated multiple items that fit into the consumer, all the items will
be transferred in one big RDMA READ. This optimization yields better efficiency as the overhead
from control messages is relatively reduced. If these checks pass, the packet is forwarded to the
egress pipeline, where necessary header fields are set to create an RDMA READ request which
adheres to the RDMA protocol.

2○ Data payload rewrite. In the second step ( 2○ in Figure 3), the read response, containing the
data payload to be transferred to the consumer, is streamed through the switch. Here the switch
rewrites the response of the RDMA READ into an RDMA WRITE. Rewriting the RDMA operation
type entails updating the relevant header fields and making it adhere to the correct packet sequence
numbers and virtual address expected by the consumer. In terms of bandwidth consumption of the
payload transfer from the producer to the consumer, rewriting the RDMA READ into an RDMA
WRITE consumes the exact same bandwidth as a CPU-driven transfer would. Figure 3 step 2○
shows this rewrite by the switch for three fragment transfers of a payload.

The read response might be fragmented into several packets if the payload exceeds 1024 bytes, as
this is the default maximum payload size (MTU) for RoCEv2. The challenge here is that each packet
from the read response must be assigned a new packet sequence number (PSN) according to the
consumer connection. Instead of naively assigning new PSNs to the RDMA WRITE packets in the
order they arrive, we calculate an offset between the producer-side and consumer-side sequence
numbers such that our protocol is resilient to any network reordering of fragments (e.g., a fragment
with PSN 0x101 arrives on the switch after fragment 0x102). As such, the assigned PSNs on the
consumer side will correctly map to the right fragments, allowing the target consumer-side NIC to
assert the right order for the memory write.
Memory requirements on the switch. The programmable switch in zero-sided RDMA does

not need to buffer data items in its memory. This is because data transfers are only initiated when
there is enough free space in the consumer buffer in step 1○. In fact, the switch only rewrites
the headers of incoming packets in a streaming manner (at line rate) such that data items are
immediately transferred to the consumer’s buffer.
To enable zero-sided RDMA on the switch, we need to maintain the necessary metadata infor-

mation in the switch. We can group the state needed on the switch into the static connection state
which does not change during communication and the dynamically changing state. For RDMA, the
static connection state includes a remote key and destination queue-pair number to identify the
remote RDMA queue-pair, along with its IP and MAC addresses. Since none of these header fields
change during the course of communication, we store this information in the static switch tables
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Fig. 5. Communication flows supported with zero-sided RDMA. All flows are completely switch-driven
and require no processing or coordination by connected processing units. The core challenges per flow are
highlighted in the text boxes.

upon connection setup. However, for the dynamically changing state, such as packet sequence
numbers (PSNs) and virtual remote addresses, we need to change these values on a per-packet basis,
and they need to be stored directly in registers on the data-plane. Since the switch is in the middle
of the communication channel between the PUs, the switch must maintain PSNs and addresses for
all connected end-points. In addition to the RDMA-specific state, we also store the buffers’ head
and tail pointer values in switch registers. This sums up to around 50 bytes in register memory and
around 700 bytes of static table data for one producer-consumer pair connection. Concretely, more
than 1500 concurrent flows can fit on the first-generation Tofino switch which is typically sufficient
for most single-rack use cases. We estimate that with more recent programmable switches with
longer pipelines and bigger state, the number of supported concurrent flows will be substantially
higher.
5 COMPLEX FLOWS & USE CASES
5.1 N:M Data Shuffling
Data shuffling between multiple senders and receivers (i.e., an N:M shuffle) is very common in
typical distributed DBMSs, due to the need for re-partitioning of tables in, e.g., distributed joins.
However, these types of communication flows can be challenging due to the connection complexity
of many sender/receiver combinations, which typically can even result in RDMA queue-pair cache
thrashing on the NIC [9].
With our centralized switch design, instead, we can reduce the connection complexity signifi-

cantly as each communication end-point is only connected to the switch. Specifically, the switch
can connect multiple producers to one consumer by handling the coordination of multiple writers
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into the same consumer-side memory directly in the data-plane of the switch. As such, at the
consumer side, only one connection is needed for all incoming data, which both reduces memory
overhead and also has the benefit that the PU only has to poll one memory location for incoming
messages for multiple producers. In a key-based shuffle flow with N producer end-points and M
consumer end-points, where each producer needs to send to multiple destinations based on, e.g., a
join-key, we need 𝑁 ×𝑀 producer-side buffers and connections. In contrast, on the consumer-side,
only 𝑀 buffers are needed. The composition of client-side buffers and connections is shown in
Figure 5a.

To handle this coordination between multiple producers connected to one consumer, we imple-
ment switch-side logic, which initiates data transfers for each producer separately in a round-robin
manner. While a round-robin scheme might seem inefficient at first glance, the switch can iterate
over a single producer in a matter of nanoseconds. As such, the latency overhead of iterating each
producer round-robin to detect when a data transfer can be initiated is negligible, considering
normal RDMA microsecond network latency. Moreover, this scheme has the benefit that producers
are treated fairly and ensures a fair bandwidth share among producers.

5.2 Advanced Flows & Features
Switch-driven data transfers can also provide more advanced flows (i.e., load balancing, replication)
and features (i.e., fine-grained quality of service guarantees), which open up interesting applications
in cloud DBMSs.
Load balancing. Distributing work evenly across processing units in a distributed DBMS is

non-trivial, given unforeseen network congestion or processing contention. Multiple schemes have
been devised to overcome this [10, 24, 52], which require additional coordination overhead, e.g.,
through work-stealing or a centralized server-side dispatcher.
With zero-sided RDMA, we provide a communication flow between N producers and M con-

sumers, providing automatic load balancing across all consumers. This flow is realized without any
form of producer- or consumer-side coordination since the switch will transparently initiate the
data transfers between producers and consumers. The overall buffers and connections needed for
this are only 𝑁 +𝑀 as illustrated in Figure 5b.
The key to achieving this communication flow is introducing consumer-specific thread-like

processing on the switch, where it is evaluated when a data transfer can be initiated from any
of the producers, essentially adapting the data transfer rate from all producers to each consumer
independently. We provide more details on how we realized this in Section 6.1.

Replication with ordering. Lastly, zero-sided RDMA also provides a replication-based commu-
nication flow in which items from each producer are multicasted out to all consumers.
Multicast has many applications in distributed DBMSs, such as replicated joins [41], or state

replication [13, 26] for providing availability. While RDMA already has multicast capabilities, it is
only supported through the Unreliable Transport and two-sided verbs. As such, it comes with the
cost of higher CPU overhead at the communication endpoints due to the two-sided communication
and the cost of ensuring reliability. With zero-sided RDMA, we realize replication without any
coordination or computational involvement on the processing units by initializing, steering, and
multicasting the data directly in the data-plane of the switch.
Traditionally, effects like reordering of packets in the network can cause the received data at

each consumer to observe a different order. However, as our zero-sided approach transfers data
sequentially with separate acknowledgments from each consumer, we can ensure globally ordered
data transfers to all consumers without introducing any overhead at the processing units.

Fine-grained quality of service. Finally, another important aspect is that many DBMSs wish
to prioritize certain processing jobs or queries over unimportant background jobs, e.g., to provide
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certain SLAs. However, ensuring a certain quality of service (QoS) or prioritization of parts of the
network traffic (e.g., for a time-critical query) is hard to achieve as the available Priority-based
Flow Control (PFC) requires network reconfiguration and only provides a means of prioritizing
different classes of traffic. As such, PFC does not allow setting fine-grained prioritization (e.g., for
each zero-sided RDMA flow) and adapting these settings at runtime.

To address this, we allow systems to adjust the QoS on per-flow granularity. The key to achieving
this is to throttle down any zero-sided data transfers to a desired rate through congestion control
primitives native to RDMA over Converged Ethernet (RoCE). With this feature, splitting up the
available bandwidth for contending flows into any ratio desired is trivial. We show the ability to do
fine-grained flow prioritization later in Section 7.2.

5.3 Use Cases
Zero-sided RDMA offers DBMSs with easy-to-use flow abstractions that integrate well into typical
DBMSs use cases. We iterate a set of common use cases that can be trivially realized with zero-sided
RDMA over various hardware accelerators.
Distributed joins (OLAP). In analytical data processing, distributed joins account for a sub-

stantial amount of the runtime as they have to shuffle big tables over the network. Due to their
popularity, they have seen a lot of work to accelerate with hardware devices such as GPUs and
FPGAs in the last decade [7, 27, 39]. Through our key-based shuffle communication flow, we simplify
the join implementation by abstracting away all communication complexity from the processing
unit. As such, the only task for the processing unit is to execute the actual join logic, as the producer
and consumer buffer abstraction only has a few simple reads and writes into local memory for
pushing or popping items.

Scan operators (OLAP). Table scans with filters are an interesting operator to accelerate due to
their computational simplicity but high bandwidth demands, making them a great fit for specialized
accelerators that meet these demands. In disaggregated compute and storage setups, it is often
desirable to push down the table scan as close to the data to reduce the amount of data to ship
over the network. We argue that zero-sided RDMA fits this use case well since the CPU can be
completely avoided on storage nodes, making it possible to directly interface with Near Data
Processing devices which carry out the table scan on the storage servers [44].

Replication (OLTP & OLAP). Lastly, with the zero-sided replication flow, we trivially support
use cases involving data replication. These entail database replication [20], state-machine replication
[13, 23, 26, 45], or even joins that rely on replication of tables.

6 IMPLEMENTATION DETAILS
In this section, we take a closer look at how we realized the more complex communication flows
involving load balancing or replication in N:M scenarios. We conclude with advanced challenges
and a discussion of alternative zero-sided implementations.

6.1 Load Balancing and Replication
In the following, we take a look at a set of unique technical challenges when realizing load balancing
and replication on the switch.
Many-to-many load-balancing. First, we present how we realize load-balancing between

multiple producers to multiple consumers. This communication design aims to enable an even
distribution of data to the consumers based on their individual processing speeds, without requiring
any additional coordination or overhead at the processing units. We cannot simply extend the 1:1
scheme by alternating between different consumers because a single data transfer done by a switch
thread can only saturate the bandwidth of a single consumer. Therefore we identify two challenges
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associated with this flow from the switch’s perspective: (1) ensuring efficient scaling in line with the
number of processing units, and (2) preventing race conditions that could occur due to simultaneous
data transfers.

To provide efficient scaling, we extend the switch threading mechanism (i.e., continuous packet
recirculation after data transfers) to not only transfer data between a specific producer-consumer
combination but instead we spawn a switch thread packet per consumer which each iterate over
all producers for the communication flow. With this, we can concurrently issue data transfers for
each consumer. However, as previously mentioned, it comes with the challenge of avoiding race
conditions in the producer-side switch registers. The reason for this is that the switch threads
per consumer might try to issue a data transfer from the same producer at the same time, which
would result in a race condition and inconsistent register state. To avoid this, we introduce a lock
per producer such that only one switch thread can initiate a data transfer from a producer at any
given time. We introduce this lock in a register of the switch pipeline and let each switch thread
test-and-set the producer lock. If a switch thread fails, it will recirculate and try the next producer.
If it succeeds, the lock will be taken, and a data transfer will be initiated for the producer and
consumer pair.
By employing this design, each switch thread, specific to a consumer, will aim to read from all

producers in a round-robin fashion. This ensures a fair distribution of data from all producers to
each consumer. Additionally, it allows each consumer to process and remove data from its buffer at
its own pace, independent of the other consumers.

Many-to-many replication. For the replication communication flow, the goal is to do switch-
driven multicast to all consumers without any overhead or coordination at the processing units. The
challenge here is twofold: (1) how to accumulate the global minimum space available at all consumers
and (2) how to ensure atomic & consistent transfer for all consumers. In our implementation, the
replication of packets to be multicasted happens between the ingress and egress of packets in the
programmable switch. Therefore any logic and state needed to modify packets specifically for each
consumer have to be placed in the stages of the egress pipeline.
Computing the global minimum buffer space available for all consumers cannot be trivially

implemented using a for-loop over the head and tail registers because a packet can only access a
specific register (e.g., all consumer head values) once per pipeline. To work around this constraint,
we recirculate a packet 𝑁 − 1 times to accumulate the minimum space over all consumers in the
communication flow. The recirculating packet contains a temporary header that stores the current
consumer index and the minimum space value between the pipeline passes. Once the head and
tail values for the last consumer have been read, the switch asserts that the current producer has
something to send and sends out the RDMA READ request. Each response fragment of the RDMA
READ is then multicasted 𝑁 times (step 2○ in Figure 3) and rewritten to RDMAWRITEs that target
the appropriate consumer buffer memory. These 𝑁 write requests generate 𝑁 acknowledgments
coming from each consumer connection. The switch then counts all acknowledgments before
it increases the consumer-heads. We accumulate all acknowledgments to ensure that either all
consumers see a new item or none of them in case a drop occurred for a data transfer. Upon
receiving the last ACK from write data, the switch multicasts 𝑁 times the Incr-Head RDMAWRITE
to each consumer. After receiving 𝑁 acknowledgments as before, the switch increases the tail from
the current producer and starts the sequence again.

6.2 Further Challenges
The key to achieving zero-sided RDMA is that the PUs do not directly communicate; instead, all
communicate with the switch. This introduces unique challenges such as handling of queue-pair
state, ensuring reliability, and congestion control, which we will address in this section.
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Buffer-state updates. One challenge of zero-sided RDMA is how to propagate the local buffer
changes of PUs (i.e., when a producer pushes a new item or a consumer frees an item) to the switch.
The switch uses this information to determine when new data transfers can be initiated. Here, there
are two different mechanisms to consider: poll-based or doorbell-based switch state updates. In the
poll-based mechanism, the switch polls the head and tail pointers of the PUs with RDMA READ
operations issued by the switch. This has the benefit that neither the producer nor the consumer
has to execute any RDMA operations actively. However, it naturally comes with the downside
of added latency. To this end, we expose the polling interval as a configurable parameter as it is
very application specific what the requirements for latency or throughput are. However, for PUs
that already have the possibility of issuing RDMA WRITEs themselves (e.g. a network-enabled
FPGA or CPU), the doorbell-based mechanism allows PUs to directly send out an update to the
switch to indicate changes in their buffer state (i.e., new items or free space). One could contend
that now the PUs could potentially handle all communication, taking charge of the communication
scheme and data transfers. However, doing so would negate the advantages of network-driven data
transfers, which include high-level communication flows such as load-balancing, replication, and the
distinct separation between control and data paths. While the introduction of an additional doorbell
mechanism might increase the complexity of the PUs it can significantly decrease communication
latency, as demonstrated in Section 7.1.

Ensuring reliability.While the RDMA Reliable Connection transport already provides network
reliability, since the switch is operating on the Data Link Layer (L2), any packet can be dropped in
the network, and it is up to the switch to adhere to the RoCEv2 protocol [34] when this happens.
In essence, any of the network packets illustrated in Figure 3 can be dropped, which, without any
further action, would cause the data transfer to halt. If a drop occurs, the switch either detects it
through a configurable timeout or gaps in the sequence numbers. If the drop happened during
data transfers (i.e., step 2○), the switch reissues the data transfer request (i.e., RDMA READ on the
producer device). However, if the drop happened after receiving the ACK from the data transfer
from the consumer, the transfer was successful, and it only reissues the subsequent RDMAWRITEs
for the head and tail pointers.
Congestion control. Furthermore, to handle incast scenarios (e.g., two producer nodes with

2x bandwidth and a consumer node with 1x bandwidth), we integrate congestion control into our
zero-sided communication scheme on the switch. The switch emits explicit congestion notifications
whenever a link becomes congested, similar to RoCEv2. When the NIC of the producer receives the
congestion notification, it throttles down the rate of outgoing packets, removing the congestion
bottleneck.

6.3 Discussion
Offloading the network communication from the hardware processing units can be realized in
different ways. We now discuss the centralized or decentralized approaches, compare their strengths
and weaknesses, and subsequently touch on the possibility and challenges of single vs. multi-rack
setups.
Decentralized SmartNIC-driven approach. Instead of using the main CPU to carry out the

communication, an approach is to use a SmartNIC to issue RDMA operations on behalf of the
accelerator, such as the CPU-based Nvidia BlueField or FPGA-based Mellanox Innova SmartNICs,
or even FPGA-based SmartNICs that implement the RDMA stack directly in the FPGA [21, 46].

The benefit is that a specialized compute unit embedded in the NIC carries out the communication
instead of the main CPU. Concrete examples of this approach are Lynx [42] and FpgaNIC [46].
Lynx and FpgaNIC aim to enable direct GPU communication by letting the GPU communicate
without any CPU involvement or need for RDMA operations directly on the GPU.
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However, a decentralized SmartNIC-driven approach has several downsides. First, realizing
one-sided RDMA communication schemes is highly complex due to the distributed coordination
for remote memory accesses. Adding to the fact that typical CPU-based SmartNICs are too weak to
saturate line-rate throughput for many scenarios properly [40], SmartNIC-driven communication
schemes are best realized on more performance-efficient compute architectures such as FPGAs. This,
in turn further adds to the complexity when considering decentralized one-sided communication
schemes. Second, since a dedicated SmartNIC is needed per server, the hardware cost is directly
proportional to the number of servers. As the cost of a SmartNIC can be up to 10× more expensive
than a normal RDMA-enabled NIC for the same link speeds, the added cost for a disaggregated
solution is non-negligible.

Centralized programmable switch-driven approach. We argue that a switch-driven design
of direct accelerator communication is preferable. The reasons for this are: First, a programmable
switch provides the unique possibility of doing line-rate processing for all connected nodes. In
terms of realizing a zero-sided RDMA communication scheme, the switch can natively scale out
to full link throughput for all connected devices without hitting any performance bottlenecks.
Switch-driven communication is different from, e.g., CPU-driven communication, where with in-
creasingly faster networks, saturating the throughput of just one link becomes increasingly difficult.
Second, the centralized position of the switch in the network allows us to realize communication
flows (as covered in Section 5) without expensive distributed coordination. Lastly, offloading the
communication onto a programmable switch with many ports results in a cheaper overall hardware
cost for typical scale-out solutions compared to decentralized per-server solutions.
Data center deployments. In many cloud deployments, the jobs for query processing are

scheduled on compute nodes within a single rack connected by a Top-of-the-Rack (ToR) switch to
increase locality [15, 48]. This is crucial for distributed operators (e.g., joins) to have high all-to-all
shuffle bandwidth.
In this paper we focus on a single-switch setup to mirror a typical rack setup but cross-rack

communication is supported by zero-sided RDMA out of the box. Regular RDMA communication
between end hosts (and initiated by end hosts) can be used across racks, traversing multiple
switches. This is the same for switch-initiated RDMA traffic. Nontheless, there are several aspects
left for future investigation: e.g., the added latency between the switch and connected accelerator
devices, asymmetric bandwidth, and possible implications to congestion control. Moreover, with
multi-switch setups, we envision the possibility of graceful failover between switches in case of
failures. This is possible since the runtime state stored on each switch, e.g. fill-levels of the buffers
and connection state, can be recovered by reading them out from participating PUs.
Finally, a limiting factor for many in-network processing ideas is that data streams are often

encrypted in data centers, making payloads opaque to the processing element. This is however
not an issue for zero-sided RDMA: the switch does not need to read or modify the payload of the
transferred data items, but merely modifies the header and forwards the packets.

7 EXPERIMENTAL EVALUATION
With our zero-sided RDMA contribution, we mainly target distributed analytical workloads, which
is the focus of the evaluation. We first evaluate the efficiency of zero-sided RDMA through a
set of microbenchmarks that vary in different performance-related parameters. Subsequently,
we investigate the benefit of switch-driven data transfers in the context of distributed database
systems by evaluating two DBMS use cases (i.e., a distributed join and a full TPC-H query) using a
disaggregated accelerator setup.
Setup and implementation. We evaluate our zero-sided RDMA communication scheme in

a cluster of 4 nodes running Ubuntu 18.04 LTS with Linux kernel 4.15.0. Each node is equipped
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Fig. 6. GPU-to-GPU transfer: Zero-sided RDMA vs. a CPU-driven one-sided RDMA baselines for 1:1 GPU
data transfer with persistent GPU kernels. The CPU-driven baselines use 1 or 4 CPU cores; our approach
does not use the CPU.

with an Intel(R) Xeon(R) Gold 5120 2.2GHz CPU, an Nvidia V100 GPU, and a Mellanox ConnectX-5
that is connected to an Intel Tofino switch [30] via 100G RoCEv2. Our code written in C++20 is
compiled with gcc-12 and CUDA-12. The switch’s control-plane logic is implemented in C++, and
the switch’s data-plane logic is implemented in P4 and compiled using Intel SDE-9.11.0 [14]. For all
experiments, unless otherwise stated, the polling-based mechanism is used for detecting new data
items on producers and fill-grade on consumers. The source-code is available at [16].

7.1 Efficiency of Zero-sided RDMA
Zero-sided vs. CPU-driven transfer (GPU-to-GPU). In this experiment, we focus on accelerator-
to-accelerator communication across two nodes. As accelerators in this experiment, we use a
homogeneous setup (GPU-to-GPU) to provide the same execution speeds on all senders and
receivers. At the end of the evaluation, we also show heterogeneous setups with GPUs and FPGAs.

The data transfers for all variants in this experiment (i.e., CPU-driven and zero-sided RDMA data
transfers) are all directly from GPU-to-GPU without intermediate copies over the main memory.
Moreover, in both the CPU-driven baseline and our zero-sided communication, we execute the exact
same GPU kernels and use the same buffer abstraction on the GPUs. However, for the CPU-driven
baseline, we let the CPU detect new items in the buffer and issue the RDMA data transfers on
behalf of the GPU. The GPU kernels are executed as persistent kernels to minimize any kernel
launch overhead for both variants.
Figure 6 shows the bandwidth between CPU-driven and network-driven communication in

our experiment. The CPU-driven baseline issues asynchronous RDMA data transfers and utilizes
persistent GPU kernels to reduce synchronization overhead between the CPU and the GPU. We
report the data bandwidth for varying item sizes. In addition, we test with a different number of
parallel producer and consumer communication flows to evaluate different communication loads of
realistic scenarios (e.g., multiple concurrent queries running at the same time or one query using
multiple flows for intra-query parallelization).
For small item sizes (4 KiB), we can see that multiple CPU cores are necessary to achieve

comparable performance to the zero-sided approach when increasing the concurrent flows. In
fact, with small item sizes, one CPU core is not sufficient to handle all flows (see the red bar in
Figure 6, left-hand-side). This indicates that even for persistent GPU kernels that overcome the
GPU kernel launch overhead data transfers are inherently CPU bound. In our zero-sided approach,
the switch instead handles all flows completely independently and as such scales perfectly with the
number of flows without the need to use a dedicated CPU per flow as in the CPU-driven scheme
(red and green bars). Moreover, for the CPU-driven scheme and zero-sided RDMA, another effect is
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Fig. 7. GPU-to-GPU transfer: 1:1 GPU data transfer with adaptive batching for different tuple sizes. Bigger
batch sizes yield more efficient data transfers.

that the communication overhead is reduced for larger item sizes, which enables higher transfer
bandwidths with fewer concurrent transfers.

Adaptive batching. In the next experiment, the main objective is to understand how adaptive
batching implemented in the switch can improve the performance of zero-sided RDMA. This
optimization mitigates the overhead of smaller transfers by seamlessly grouping multiple items into
a single transfer. We measured throughput across a variety of batching factors and three distinct
item sizes: 4 KiB, 64 KiB, and 1 MiB. The results are depicted in Figure 7 and show how the data
bandwidth is influenced by item-size and batch-size. The results reveal that the use of adaptive
batching can minimize the overhead of smaller transfers. However, the effect of batching becomes
less pronounced as the item-size increases. This is because a data transfer only with one large
item is enough to almost saturate the network. The performance still increases slightly with larger
batches as the overhead of buffer head and tail pointer updates are amortized further. However,
choosing a too-large batch size can have detrimental effects on data transfer latency, especially in
scenarios with network congestion. The reason for this is that larger data transfers will consist of
a higher number of fragments, increasing the probability that one fragment is lost and the data
transfer has to be reissued. We found that a batching size no larger than 4 MiB can help to saturate
the available network bandwidth even for just one producer and consumer, but at the same time
performs very stable under congestion.
Comparison with CPU-less shuffling (GPU-to-GPU). Shuffling data between nodes is

crucial for many distributed database operators such as joins or aggregation. In Figure 8, we report
the data bandwidth for a GPU-to-GPU shuffle scenario where we compare against NVSHMEM
(version 4.0.2) [33]. NVSHMEM is the only commercial library that supports GPU-initiated data
transfers to remove the CPU from the control-path and is as such a comparable baseline to zero-
sided RDMA. For the experiment, we use the non-blocking PUT primitive of NVSHMEM for
efficient one-sided data transfers. We use item sizes of 512𝐾𝑖𝐵 and execute 2 shuffle kernels on
each GPU node. After launching the GPU kernels, no CPU cycles of the host system are spent on
communication primitives for either zero-sided RDMA or NVSHMEM. Both setups use RDMA
(RoCE). For simplicity, we compare against NVSHMEM without any distributed coordination and
use a non-skewed workload and thus report the best-case bandwidth for NVSHMEM.
As can be seen in Figure 8, the reported bandwidth is almost equal since both NVSHMEM and

zero-sided RDMA manage to fully utilize the link bandwidth. However, an important difference
between zero-sided RDMA and NVSHMEM is that while zero-sided RDMA can integrate many
different types of heterogeneous accelerators, NVSHMEM works exclusively for GPU-to-GPU
transfers. Furthermore using NVSHMEM requires a decentralized protocol between GPUs to
coordinate data transfers which is provided in zero-sided RDMA by the switch along with other
functions for load balancing not available in NVSHMEM.
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Fig. 8. GPU-to-GPU shuffle: Comparison of zero-sided RDMA GPU-to-GPU shuffle bandwidth with NVSH-
MEM [33], that only allows GPU-to-GPU communication and requires custom coordination.
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Fig. 9. CPU-to-CPU shuffle: Comparison of RDMA-based data shuffling with zero-sided RDMA vs. CPU
baselines (DFI, MPI, Spark UCX) for various tuple sizes.

Comparison with existing CPU baselines (CPU-to-CPU). In this experiment, we shift
our attention from a GPU-to-GPU to a CPU-to-CPU shuffle (i.e., data resides in CPU memory),
in order to show that zero-sided RDMA can also be beneficial in such a setting. In particular, we
compare zero-sided RDMA against three CPU-based baselines for CPU-to-CPU data shuffling:
(1) Spark (UCX) [35] which is a baseline for RDMA-based data shuffling in a production-ready
system (Apache Spark v3.0 with UCX Plugin), and two isolated CPU-based data shuffling baselines
- (2) a DFI-based shuffle [41] as well as (3) an MPI-based shuffle that uses MPI collectives (Nvidia
HPC-X v2.17) for shuffling [12, 29]. DFI and MPI are both state of the art open-source libraries that
enable data shuffling using RDMA. In this experiment, we report the bandwidth of a data shuffle
between 4 nodes for varying tuple sizes. On each node, we use four worker threads (cores) as data
producers/consumers for the shuffle for zero-sided RDMA and all baselines.

As shown in Figure 9, zero-sided RDMA achieves constantly higher throughput than the others.
The reason for this is twofold: First, zero-sided RDMA frees up sender/receiver threads from issuing
RDMA primitives and thus CPUs can use their cycles solely for producing/consuming data. Second,
zero-sided RDMA applies adaptive batching on the network level leading to transfers that are
efficiently larger than the tuple sizes, which further improves the bandwidth usage.
Ping-pong latency (polling vs. doorbell). Finally, in the last experiment of this section, we

focus on transfer latency. We first analyze on the impact of switch polling intervals in the context
of buffer updates (i.e., new items pushed or popped at the PUs). As these updates are detected
on the switch via polling the buffers at the PUs, the duration of polling intervals can potentially
influence the transfer latency of items. Understanding this relationship can assist in determining
the optimal polling intervals for various applications with different requirements for throughput
and latency. In the experimental setup, we report half round-trip time on the y-axis across various
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Fig. 10. One-way median latency over different throughput and polling intervals. In "Doorbell" mode PUs
actively signal the switch for available data.

polling intervals, denoted by different line symbols. We use two CPU nodes as PUs, each with both
a producer and consumer, which the switch connects to form a bi-directional communication flow
to measure the round-trip time.
Additionally, we analyze the effect of the doorbell mechanism in zero-sided RDMA. Clearly,

polling for state updates using the switch enables data transfers without any involvement from
the PUs. However, this potentially comes with the cost of increased latency. Zero-sided RDMA
thus also allows a PU to actively signal the switch when it has data available for transfer, referred
to as doorbell mode. To send out a doorbell message, the PU simply sends out a network packet,
containing the new buffer state, signaling an update to the switch. If the PU lacks this capability, a
small co-located FPGA could also be used to perform this task.

The experimental results of our polling and the doorbell mechanism are illustrated in Figure 10
for 64B and 1KiB item sizes. The transfer rate, specified in items per second, is fixed to certain
values denoted on the x-axis. As we see in Figure 10 for the polling scheme, the median latency is
slightly less than the polling interval. This is because, on average, an update to the producer buffer
is detected in half of the polling interval plus the latency of the data transfer. Enabling the doorbell
mechanism, the median latency is reduced to ∼15𝜇𝑠 since the producer can immediately signal the
switch that an item can be transferred. This optimization is, however, only possible on PUs with
RDMA capabilities as discussed before in Section 6.2.

Important is that latency remains stable across various throughputs, demonstrating consistency
in performance irrespective of the transfer rate. For 64 B item sizes, the throughput scales up to
around 27 million items per second due to the adaptive batching optimization. However, for the
larger 1 KiB sizes, the latency stays stable up to around 10 million items per second which almost
matches the link’s capacity resulting in full buffers and high latency. Interestingly, for the slower
polling intervals, e.g., 200𝜇𝑠 , the higher rate of pushing items to the producer buffer results in more
items being batched for each data transfer resulting in a slightly higher latency.

7.2 Benefits of Switch-driven Data-transfers
Utilizing network-driven data transfers from a centralized switch provides significant advantages.
Given its overarching view of all network traffic, the switch allows for streamlined management of
data transfers. In particular, we enable fine-grained Quality of Service (QoS) via flow prioritization,
facilitate load-balancing, and promote elasticity for efficient resource scaling. These benefits,
challenging to achieve in decentralized data-flow solutions, underscore the value of centralized,
network-driven data transfers.
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Fig. 12. 1:N zero-sided replication compared to DFI [41] with or without global ordering. Zero-sided replication
always ensures a global order observed by all consumers.

Fine-grained flow prioritization. In this experiment, we investigate the fine-grained (per flow)
prioritization capabilities provided by our zero-sided communication scheme. Figure 11 shows the
individual data bandwidth for three active concurrent flows between two nodes over 20 seconds,
with the ratio altered every 5 seconds. Our system demonstrates a swift and efficient response to
changes in the prioritization of different flows, with the processing units remaining oblivious to
the adjustments. Centralized initiated data transfers allow fine-grained prioritization of different
flows, which is not supported natively within RDMA.

Replication with ordering. The subsequent experiment, presented in Figure 12, centers on the
effectiveness of zero-sided RDMA replication which by design ensures global ordering for each
consumer. For the baseline, we use the Data Flow Interface (DFI) [41], a state-of-the-art library that
enables replication using RDMA multicast with two-sided SEND/RECEIVE operations. We present
results for DFI both with and without software-based ordering. For the experiment, we use CPUs
as PUs to be able to compare against the CPU-only DFI baseline.
The results show the aggregated data bandwidth of each consumer for a different number of

nodes that receive data from a single producer. Across all scenarios, zero-sided replication with
ordering consistently demonstrates superior performance, nearly saturating the link bandwidth at
each consumer node. In addition, zero-sided replication does not infer any overhead at the PUs. In
stark contrast to native RDMA multicast that only supports two-sided SEND/RECEIVE operations
and, as such, introduces communication overhead at not only the sender but also the receiver.

Elasticity of flows (TPC-H Query 1). In this experiment, we demonstrate the elasticity of our
system. For this experiment, we execute TPC-H Query 1 in a disaggregated setup. In particular,
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Fig. 14. Per producer & consumer bandwidth for multicast with an increasing number of producers (from
left-to-right) and four consumers (C1-4). P1-2 refers to a scenario with two producers.

storage nodes (using CPUs) stream data to GPUs as processing units in the compute layer. We scale
up the compute layer from one to four nodes (each having one GPU).
Figure 13 represents the aggregated bandwidth of each consumer in an area plot, with each

consumer distinguished by different colors. This experiment shows that the processing capability
can dynamically be scaled up from a single node to four nodes and scaled down when required.
Important is that the producer nodes (i.e., the storage) remain completely unaware of the compute-
layer elasticity. The entire coordination of this scaling operation is managed by the switch. This
experiment illustrates the ability of our system to efficiently adjust and manage resource allocation
dynamically, offering significant potential for enhanced scalability and efficiency in distributed
accelerator environments.
Fairness between producers. In this next experiment, we explore the fairness of bandwidth

distribution among multiple producers, each producing data to the same multicast flow. Producer
fairness is crucial to ensure producers are given an equal share of the consumer-side available
link bandwidth. In Figure 14, we report the bandwidth separately for producers and consumers.
Important to see is that in every scenario (1-4 producers from left to right), all consumers receive
a fair share of the bandwidth. When more producers are added to the system, the bandwidth is
divided evenly among them. The barely noticeable error bars in the figure for the producers denote
the low degree of unfairness, emphasizing the fairness between multiple producers.
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Fig. 15. Distributed Join. Tables are shuffled from CPU-based storage nodes to GPU nodes for joining. Zero-
sided RDMA achieves better performance with fewer CPU cores compared to [39].

Distributed join. Distributed joins represent a fundamental and often performance-critical
operation in DBMSs. In light of this, we evaluate the performance of a distributed join using
zero-sided RDMA. We mirror a typical disaggregated setup, where tables are residing on CPU-based
storage nodes and are shuffled on the join key to GPUs for join processing. As a baseline, we
use a state-of-the-art pipelined GPU join implementation where the shuffling is CPU-driven [39].
Both the zero-sided join and the baseline implement the same optimizations for shuffling such
as software write combine buffers (SWWCBs) and non-temporal streaming hints [36? ], We use
two synthetic and uniformly distributed relations with 16-byte tuples of sizes 10M and 10B for the
workload.

We apply an N:N shuffle flow and measure the throughput in tuples/sec for configurations with
up to 4 nodes. The experiment includes both the build phase for the hash table and the probe phase.
Similar to the baseline implementation, we overlap the shuffling with the building or probing such
that the join is executed overlapped on the GPUs [39]. For the zero-sided join, we use 4 producers
and 4 consumers per node, totaling up to 256 producer buffers and 16 consumer buffers for 4 nodes.
Each producer pushes tuples based on the join key into separate buffers from which they are
transferred to the corresponding consumer using zero-sided RDMA. In the CPU-driven GPU join
baseline we report numbers for 4 and 8 active CPU cores shuffling to 4 GPU buffers per node.
Our results in Figure 15 showcase a near-linear speed-up for the zero-sided RDMA join as the

number of nodes increases and performance that is on par with the baseline. As an important
effect, we additionally see the benefit of offloading the communication scheme into the network
and thereby freeing up CPU resources by letting the CPU-based storage nodes focus solely on table
scanning and shuffling. This is apparent since the zero-sided RDMA join only needs 4 CPU cores
to achieve comparable performance to the CPU-driven join baseline.

7.3 Heterogeneous Communication
Scheduling processing jobs across a wide range of heterogeneous processing devices with different
and varying throughputs is a challenging task that requires careful coordination between all
participants. Therefore in this section, we evaluate the load-balancing communication flow in a
setup that mimics a cloud data center with disaggregated storage and heterogeneous compute
resources that consist of CPU, GPU, and FPGA.

Load balancing (TPC-H Query 1). In this experiment, depicted in Figure 16, we explore load-
balancing for a disaggregated setup using a heterogeneous computing environment comprising a
CPU, a GPU, and an Xilinx Alveo U55C FPGA as consumers. We expose the FPGA’s local HBM
memory to the RDMA NIC through the PCIe bar for peer-to-peer DMA (see Section 3.2). Data
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Fig. 16. Static partitioning vs. load balancing for TPC-HQuery 1 with SF 100 executed on CPU, GPU and
FPGA. The thickness of the lines indicates the speed of the consumers.

producers on the storage are spread out on 2 (CPU) nodes. The workload is based on TPC-H Query
1, as in the elasticity experiment before. The system’s performance is assessed under two distinct
scenarios: static partitioning and load balancing.
In the scenario with static partitioning, the input TPC-H table lineorder is partitioned into two

equal sizes at both producers which send the data in equal portions of the data to three consumers:
an FPGA, a GPU, and a CPU. Without load-balancing (Figure 16, upper part) in the switch, the GPU
completes its tasks more rapidly than the CPU, which is faster than the FPGA as the slowest device.
Overall, the FPGA takes in total 3.2 seconds, which dominates the end-to-end latency of the query.

In contrast, with load balancing (Figure 16, lower part), the lineorder table is dynamically divided
to each consumer based on each device’s processing speed. This arrangement enables the CPU,
FPGA, and GPU to finish their tasks simultaneously, thus reducing the total runtime of the query
to 2.1 seconds and ensuring optimal utilization with no idle time for either processing unit.

These results underscore the potential of load balancing in zero-sided RDMA: it allows for optimal
utilization of different processing units without the need for complex partitioning or work-stealing
schemes, leading to more simple query execution code.

8 CONCLUSIONS
In this paper, we presented zero-sided RDMA as a way to enable direct RDMA-based accelerator-to-
accelerator communication, which does not require CPUs to coordinate the communication because
the communication scheme is driven from the network. Moreover, with zero-sided RDMA, we
enable efficient RDMA-based data shuffling between heterogeneous hardware devices without the
need to implement a complete RDMA stack on each heterogeneous device. Our evaluation showed
that zero-sided RDMA can outperform CPU-driven one-sided RDMA schemes for accelerators and
in addition, provide a set of useful and efficient communication flows targeting disaggregated cloud
DBMSs.
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