GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP

NILS BOESCHEN, Technical University of Darmstadt & hessian.Al, Germany
TOBIAS ZIEGLER, Technical University of Darmstadt, Germany
CARSTEN BINNIG, Technical University of Darmstadt & DFKI Darmstadt, Germany

In this paper, we suggest a novel GPU-in-data-path architecture that leverages a GPU to accelerate the I/O
path and thus can achieve almost in-memory bandwidth using SSDs. In this architecture, the main idea is to
stream data in heavy-weight compressed blocks from SSDs directly into the GPU and decompress it on-the-fly
as part of the table scan to inflate data before processing it by downstream query operators. Furthermore, we
employ novel GPU-optimized pruning techniques that help us further inflate the perceived read bandwidth.
In our evaluation, we show that the GPU-in-data-path architecture can achieve an effective bandwidth of up
to 100 GiB/s, surpassing existing in-memory systems’ capabilities.

CCS Concepts: « Information systems — DBMS engine architectures; Online analytical processing engines.
Additional Key Words and Phrases: DBMS GPU-Acceleration; OLAP; SSD Storage

ACM Reference Format:

Nils Boeschen, Tobias Ziegler, and Carsten Binnig. 2024. GOLAP: A GPU-in-Data-Path Architecture for High-
Speed OLAP. Proc. ACM Manag. Data 2, 6 (SSIGMOD), Article 237 (December 2024), 26 pages. https://doi.org/
10.1145/3698812

1 Introduction

Recent trend towards SSD-based Databases. Over the past decade, in-memory database systems
have become prevalent in research and academia, typically outperforming traditional disk-based
systems. This trend was primarily possible by falling DRAM prices from 2000 to 2010 [9]. However,
recently, memory prices have plateaued [9], making in-memory databases economically unattractive
for large data sets. Therefore, modern analytical systems increasingly favor SSD-based storage,
as the cost per terabyte has decreased 30-fold over the past decade. The price reduction in flash
storage has driven a transition towards high-performance SSD-backed database systems [12, 15].
However, while SSDs are very cost-effective, they unfortunately cannot match the performance of
in-memory systems.

Limited bandwidth of SSD-based Databases. As shown in Figure 1 (green and violet bar),
there is still a "performance gap" between in-memory systems and SSD-based systems. In fact, when
running SSB query 1.1 on recent hardware, in-memory systems still achieve a bandwidth 3.5 times
higher than a DBMS on modern SSDs. One way to bridge this performance gap could be to compress
data on SSD and decompress it once a portion of data is loaded into memory. Loading compressed
data will let a system load more disk-resident data in the same amount of time, thereby increasing

Authors’ Contact Information: Nils Boeschen, nils.boeschen@cs.tu-darmstadt.de, Technical University of Darmstadt &
hessian.Al, Germany; Tobias Ziegler, tobias.ziegler@cs.tu-darmstadt.de, Technical University of Darmstadt, Germany;
Carsten Binnig, carsten.binnig@cs.tu-darmstadt.de, Technical University of Darmstadt & DFKI Darmstadt, Germany.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/12-ART237

https://doi.org/10.1145/3698812

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

HTTPS://ORCID.ORG/0000-0001-8654-5738
HTTPS://ORCID.ORG/0000-0002-1602-4512
HTTPS://ORCID.ORG/0000-0002-2744-7836
https://doi.org/10.1145/3698812
https://doi.org/10.1145/3698812
https://orcid.org/0000-0001-8654-5738
https://orcid.org/0000-0002-1602-4512
https://orcid.org/0000-0002-2744-7836
https://doi.org/10.1145/3698812

237:2 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

0 150 a
o a o_
© 125 W~ W
= g2 a5
% 100 z3 x 3
g Yo =z
= =2 (@]
5 75 5= oL
o
o 50

25

0 In-Memory +Pruning SSD SSD +Pruning Golap +Pruning
Compressed SSD
Compressed
L] L] L J
CPU (In-Memory) CPU (SSD) GPU (SSD)

Fig. 1. The effective bandwidth (calculated as processed uncompressed bytes divided by runtime) of SSB query
1.1 is shown here. We compare a hand-coded CPU-optimized implementation for in-memory and SSD-based
execution with and without compression and our GPU-accelerated, SSD-based system, GOLAP. Both the CPU
and GPU systems using compression achieve a compression ratio of approximately 2.8. Additionally, we
illustrate the impact of pruning on these configurations. Overall, the GPU system improves on SSD-based
CPU performance and is competitive with the CPU In-Memory architectures.

the perceived read bandwidth. This, of course, necessitates that the time it takes to decompress data
in memory does not negate the advantages of loading compressed data. In particular attractive to
such an approach are heavy-weight compression schemes, which often achieve higher compression
ratios than light-weight compression schemes. However, when integrating such an approach into a
CPU-based DBMS, unfortunately, it fails to significantly improve query performance, as evidenced
by Figure 1 (brown bar).

GPUs as enablers for a new Architecture? In a CPU-based DBMS, the limitation for heavy-
weight compression is the CPU’s limited computational power to decompress data at line rate.
Compared to CPUs, GPUs have orders of magnitude more computational power, and we thus argue
that they are a much more interesting alternative to enabling analytical query processing on heavy-
weight-compressed data. Moreover, with recent advances such as GPU Direct Storage’, data can be
directly read into the GPU memory from the SSD without first loading it into CPU memory. Overall,
we argue that GPUs thus are a highly attractive platform for building an SSD-based analytical
database system which can provide much higher bandwidth than a CPU-based DBMS by storing
data in highly compressed form on SSD and uncompressing it only on-the-fly for query processing
after loading data into GPU memory.

A novel GPU-in-data-path Architecture. Based on these observations, we propose a novel
GPU-in-data-path architecture for analytical query processing in this paper. In this architecture,
the main idea is to stream data in heavy-weight compressed blocks from SSDs directly into the
GPU and decompress data on-the-fly as part of the table scan, which inflates data for query
processing by downstream operators. In our scheme, it is essential that the GPU directly consumes
the decompressed blocks and executes query processing operators that overlap with decompression.
As a main contribution, this paper presents a first prototype for the GPU-in-data-path architecture
which implements these ideas for analytical query processing. As shown in Figure 1 (blue bar), GOLAP
can process data efficiently and not only achieve much higher bandwidths compared to SSD-based
DBMS using CPUs but is, in fact, much closer to the performance of in-memory databases.

We refer to NVIDIA hardware and terminology in this work.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:3

Further opportunities improve the I/O efficiency. This paper demonstrates that the GPU-
in-data-path architecture offers more than just on-the-fly decompression. It capitalizes on the
computational resources available on GPUs to improve analytical query processing and I/O effi-
ciency when accessing data from flash. In particular, as a second direction in this paper, we present
how more computationally intensive pruning schemes can be integrated into a GPU-in-data-path
architecture. The core idea is that, in contrast to existing schemes for block-based pruning, such
as storing min-max values per block, we can store more expensive summaries per block (e.g.,
full histograms) and use them for pruning. In fact, when including such pruning schemes, GOLAP
(yellow bar) can achieve an effective bandwidth of over 100 GiB/s. Interesting is that compared to
pruning in both CPU variants (orange and pink bar), pruning in GOLAP provides a higher benefit
even though data is sorted in the same way due to our novel GPU-based pruning schemes.

Contributions. This paper introduces GOLAP, our prototype of a GPU-in-data-path architecture
for analytical query processing. The core of our contributions are: (1)The first contribution is a novel
GPU-based table scan operator that utilizes the GPU’s high computational power to decompress
data on-the-fly from SSDs. This approach loads data directly from SSDs into the GPU using GPU
Direct Storage and decompresses data as part of the scan. (2) As the second contribution, we
show how the GPU-based table scan can be efficiently integrated with further downstream query
processing operators such as joins and aggregations. Important for achieving a high read-bandwidth
is that we overlap direct I/O using GPU Direct Storage, decompression, as well as the execution of
query processing operators. For this, we present a simple yet efficient scheme that uses multiple
decompression buffers. (3) As a third contribution, to further increase the effective bandwidth, we
explore GPU-optimized data pruning techniques, enabling selective data block processing. This step
happens before even loading the data into GPU memory and is thus an additional opportunistic
optimization that yields substantial benefits for many workloads. Importantly, the pruning scheme
does not adversely affect the query execution speed if pruning potentials are low. (4) Finally, while
our GPU-in-data-path architecture allows us to execute many queries completely on the GPU,
GPUs still have limitations regarding the amount of memory they provide and thus restrict which
state (e.g., hash tables of joins) can be kept on the GPU. As such, GOLAP in addition implements
GPU-CPU co-execution strategies. In particular, we present a novel hybrid approach that allows
the system to handle very large data sets in a robust manner.

Outline. The remainder of this paper is structured as follows: In the next section, we will provide
an overview of the architecture of a GPU-accelerated SSD-based OLAP system. Section 3 then
discusses the details of how to implement an efficient table scan over compressed data in a GPU
that can read data directly from SSD. Section 4 afterwards then describes GPU-optimized pruning
techniques and how to incorporate them into our system. GPU-CPU-based co-execution for queries
that exceed the memory capacities of GPUs is detailed in Section 5. The experimental evaluation of
our system is given in Section 6. Section 7 discusses challenges and opportunities for optimizing
query plans for GPU-in-data-path systems. We conclude with a review of related work and final
remarks in Sections 8 and 9, respectively.

2 System Design Overview

This section outlines the core concepts of GOLAP, which is based on the GPU-in-data-path architec-
ture. The primary components, illustrated in Figure 2, include all contributions mentioned before,
such as the opportunistic pruning scheme and the novel GPU-based table scan on heavy-weight
compressed data as well as our GPU-CPU-based co-execution for queries which exceed the memory
capacities of GPUs. The basic idea is that by applying all these concepts, the effective bandwidth
of processing data on SSDs is inflated to up to 100GiB/s (from 20GiB/s on our SSD devices), thus
significantly improving OLAP query processing speeds on SSDs.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:4 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

Query Kernel Ef'feCtI.VG
L /— . mlegrated. AVG } CPU Operator \ Bandwidth
in Data Pipeline
4)GPU-CPU
(4] uery P Query @ } GPU Operators
Co-Execution] Processing * A A A * |
EPU qty | 5 3 4 price| 4 2 1
L J \)
(T oacrunks
On-the-ﬂ_y oﬁ- Lz4 43| Deflate
Decompression - 3% | Decompress o.n Decompress
:T Compressed
‘ ‘ - Scan compressed compressed
qty price
D'rect 1o N Reduced Number A A J
! ¢ of Data Chunks
‘ ‘ Opportunistic | T | | | | T |
Pruning
- Attt ot o -
(1) Opportunistic eavy-Weight T - T
. Pruning — Compressed j GPU Direct Storage :
~— — Chunks f f
sSSD _Storae o e s
M | SESES

Fig. 2. The GPU-in-data-path architecture, comprised of an opportunistic pruning step, a compressed scan
that uses direct storage /O to read data chunks directly into GPU memory, and GPU-CPU co-execution of
query plans. Each step increases the effective processing bandwidth past the flash read bandwidth.

2.1 The Core Building Blocks

In the following, we explain the key concepts mentioned above in the order of how they are applied
during query processing to provide an intuition of how GOLAP - our prototype of a GPU-in-data-path
architecture - works. The subsequent sections will then dive deeper into each of the concepts.

Compressed Storage and Opportunistic Pruning. In GOLAP, data is maintained on SSD storage
using a heavily compressed columnar chunk format. This approach utilizes established heavy-
weight compression algorithms specifically optimized for GPU processing. However, choosing the
best compression setting remains a challenge. Our system implements an adaptive data compression
sampling strategy. This method assesses various compression parameters, including the compression
scheme and chunk size, to improve the efficiency of compressed data scanning and query execution.
Moreover, before reading compressed blocks of data for processing into GPU memory, GOLAP
evaluates metadata for each chunk to see if it needs to be loaded based on the query’s predicates.
This ensures that only relevant data chunks are loaded from SSD into GPU memory, further
increasing the effective bandwidth. Even when faced with less selective predicates and thus limited
pruning potential, GOLAP’s robust design allows us to opportunistically apply this step without
incurring a performance hit since the GPU-accelerated pruning has low processing overhead.
However, when pruning can be applied, as we will demonstrate, GOLAP has the potential even to
outperform in-memory database systems.

Compressed Scan: A key building block of GOLAP is the table scan on compressed data. A
naive implementation of I/O would be to copy a compressed chunk of data from SSD via CPU to
GPU. This would not be ideal since it adds latency for individual chunk accesses and increases
memory overhead for pinned buffers on CPU. In this paper, we leverage GPU Direct Storage, a
technology that allows us to avoid the additional overhead since data can be copied from SSD
directly to GPU memory and be decompressed there. However, leveraging GPU Direct Storage in
an efficient manner is not trivial since the I/O is still CPU-initiated, meaning that while the data
itself is directly copied into the GPU, the control flow is handled by CPU threads. A major problem

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:5

is that many concurrent I/Os are needed to saturate the I/O bandwidth. However, when done in a
blocking way (i.e., load data and decompress before the next block is read), then a high number of
concurrent I/O threads on the CPU are needed simply to trigger the I/O. In the paper, we present a
scheme that overlaps I/O and decompression in an efficient way such that the number of CPU I/O
threads needed for reaching high data processing bandwidths is minimized.

GPU-in-data-path optimized Query Execution: Once data is decompressed by our scan,
GOLAP executes downstream query operators such as joins and aggregates within the GPU. This
approach utilizes the GPU’s capacity for massive parallelism across various query operations. To
make this efficient, it is important to closely integrate query execution kernels with the data pipeline,
ensuring sustained concurrent I/O and compute operations. GOLAP achieves this by co-designing
the compressed scan and the query execution. To be more precise, query execution in GOLAP is
streamlined with I/O, processing table segments on-the-fly once decompressed to minimize the
memory footprint on the GPU. The rationale is to get the most use out of the GPU’s superior
compute power by doing as many operations as possible directly on device-resident data reducing
the memory footprint on the GPU until results are finally moved to CPU memory.

However, for some operations, such as hash-based GPU joins, intermediate state (e.g., hash-tables)
might exceed GPU memory. For such cases, we employ a novel GPU-CPU co-execution strategy
which is tailored to the GPU-in-data-path architecture. The main idea is that we then still use the
GPUs capacity for decompression and scanning through data and preparing downstream operators
while parts of query processing operations that exceed GPU memory are executed on the CPU.
This hybrid approach thus plays to the strengths of both types of processors and enables GOLAP to
analyze large datasets that do not fit into the GPU memory.

2.2 Discussion

To conclude the system design overview, we summarize why we think that the the GPU-in-data-path
architecture is attractive.

Robustness. Our first point centers on the robust nature of the GPU-in-data-path accelerator.
It ensures processing capabilities akin to those of an SSD-based system utilizing a CPU, at the
very least but typically surpasses CPU-based systems. A worst-case scenario for GOLAP arises
when no query processing can be pushed to the GPU since the first operator exceeds the memory
capacities of the GPU. In this case, only the scan can be executed, which necessitates transferring
all (decompressed) data to the CPU for further query processing via the GPU-CPU interconnect,
typically PCle, which effectively limits the bandwidth to the PCle bandwidth. In such worst-case
scenarios, GOLAP is however only as slow as (and never slower than) a CPU-based SSD system
without compression since it also needs to read the full uncompressed data via PCle, which is
the limiting factor then. However, for many real-world OLAP workloads, GOLAP will effectively
accelerate query execution since analytical queries are typically selective (i.e., always some data
can be pruned or filtered) and downstream operations such as joins can thus be executed on the
GPU, which results in a significant acceleration for OLAP as we show in our evaluation.

Cost-efficiency. As an additional reason for why this architecture is highly attractive, we argue
that it can be more cost-effective than an equivalent high-end in-memory CPU system. Costs for
in-memory systems increase rapidly for very large databases in contrast to SSD-based systems,
since DRAM has much higher costs per GiB than SSD storage. Moreover, the total size of data is
still limited for in-memory systems. In contrast, in a GPU-in-data-path architecture that builds on
SSDs, we have only the fixed cost of a GPU (independent of the data set size) along with the SSD
cost which are substantially lower than memory cost. Furthermore, as we show in our evaluation,
similarly high performance as in-memory systems can be achieved using economic flash storage
and a GPU instead. As such, we argue that the additional fixed cost that is not affected by database

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:6 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

| Without GPU Direct Storage | | With GPU Direct Storage |
[E - [l ol
CPU PU CPU GPU
pread LJ L | L J
1
1 (2)memcpy~ -
1
: Bounce Buffer : Destination chiIeRead Destination
1 L 1
: Data v | Data :
. '
T T
1 e
| - _) _)
“— Data Data
SSD SSD

—————— » Control flow
3 Data flow
Fig. 3. Options for reading SSD-resident data into GPU memory. Without GPU Direct Storage (left), data is

read into a CPU memory bounce buffer first and is then copied to GPU memory. With GPU Direct Storage
(right), we alleviate the need for CPU memory bounce buffers, but we still require CP U-initiated data transfers.

size and the high performance makes the GPU-in-data-path architecture a highly attractive platform
for data-intensive systems.

3 Compressed Scan on a GPU

The GPU-based table scan on compressed storage is the most important operator in GOLAP, since
the SSD read bandwidth is usually the bottleneck for SSD-based database systems. In the following,
we outline the cornerstones of an efficient GPU-accelerated table scan that uses direct transfers of
heavy-weight compressed data chunks between SSD and GPU memory with decompression on the
GPU to increase the effective data processing bandwidth.

3.1 Storage Format of Compressed Tables

Before we explain the scan approach, we first introduce the storage format used in GOLAP. GOLAP
uses a columnar storage layout since this is superior for OLAP workloads and is more effectively
compressible. In GOLAP, for storing a column on SSD, the column data is turned into chunks
containing a fixed number of tuples. The number of tuples per chunk is a configurable parameter,
but it is fixed across all chunks for the same column to allow the system to reuse fixed-size buffers
for inflating data chunks during a column scan. The number of tuples per chunk and consequently
the size of chunks, however, has implications on the effectiveness of data loading (too small requires
many I/O requests), the compression ratio (prefers large chunks), as well as the ability to prune
data (which prefers small chunks), which we discuss and evaluate in Section 6.4. At the end of this
section, we present a procedure for selecting chunk sizes to optimize compression ratios given
in a table. Next, we first explain how data can be read from SSDs into GPUs and decompressed
efficiently.

3.2 Reading Data with GPU Direct Storage

As a first step, we now explain how to access compressed chunks on SSDs and load them into GPU
memory. Until recently, accessing data on SSDs from the GPUs was only possible by a "detour” over
CPU memory: For reading, data had to be first moved from SSD to CPU memory using a "bounce
buffer" before it was then copied from there to the memory of the graphical processor (see Figure 3,
left). These kinds of indirect data transfers via CPU memory, however, suffer from high latency, use

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture

for High-Speed OLAP 237:7
mmmm Synchronous GDS Read —+— 16 Threads == SSD Bandwidth
Asynchronous GDS Read —#&- 4 Threads
20
0
o)
o 15
c
5
= 10
k)
C
©
@ g _a
_—‘.'——
-
0

64KiB 128KiB 256KiB 512KiB 1MiB 2MiB 4MiB 8MiB 16MiB 32MiB 64MiB

Chunksize
Fig. 4. SSD to GPU 1/O bandwidth using synchronous (blocking) and asynchronous (in CUDA Streams)
GPU Direct Storage. Asynchronous GDS in its current state and this setup can not fully exploit the full I/O
bandwidth.

up pinned memory on the host, and put unnecessary strain on the bandwidth-limited GPU-CPU
interconnect.

Unlike this data path, NVIDIA’s GPU Direct Storage (GDS) technology [19] allows to transfer
data directly between NVMe devices such as SSDs and GPU memory. To be more precise, the
DMA controllers on SSDs and GPUs can be instructed to move data from and to SSD devices
without involving CPU memory for data loads using memory bounce buffers (Figure 3, right).
However, while GDS enables direct transfer of data from SSD to GPU memory, the I/O is still CPU
controlled; i.e., the CPU is still necessary to control and initiate these direct data transfers from
SSD to GPU using specialized I/O API calls such as cuFileRead. Consequently, this means that a
GPU-in-data-path architecture still requires a CPU-side control flow capable of orchestrating data
loads from SSDs to GPUs.

Moreover, at practical I/O sizes, SSDs require multiple concurrent I/Os to saturate the available
I/O bandwidth. An important aspect of using GDS, concurrent I/Os can only be achieved using
multiple CPU threads issuing synchronous (blocking) GDS reads or writes, or, more recently, by
placing I/O calls to asynchronous GDS primitives into different CUDA Streams. Intuitively, the
asynchronous variant seems favorable for reducing the number of CPU I/O threads to reach peak
read bandwidth. We compare the bandwidth characteristics of both variants in Figure 4.

In this setup (and all others we had access to), the asynchronous variant, however, could not
exploit the full available SSD bandwidth, even with a significant amount of threads and large I/O
sizes. We attribute this to the fact that the asynchronous variant serializes parts of the necessary
CPU work in the GDS driver, which is a known limitation of the underlying cuLaunchHostFunc
APL In our system, we thus employ the synchronous GDS variant instead, which reliably reaches
peak SSD read bandwidths at a reasonable number of threads and I/O sizes as we see in Figure 4.

3.3 On-the-fly Decompression

Compressing data allows the same amount of information to be transferred in a shorter time.
Loading compressed data chunks from SSD and decompressing it on-the-fly therefore has the
potential to increase the perceived I/O bandwidth at which data chunks can be loaded to GPU
memory. However, an additional decompression step is necessary to materialize the uncompressed
data. If the added overhead of the needed decompression does not outweigh the reduction in I/O
time, this will not lead to an overall increase in the effective bandwidth at which uncompressed

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:8 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

ey partkey revenue Uncompressed
L J 0- 2047 0- 2047 Buffers
A A
13 Heavy-weight 13
Q* Decompression Q*
= P partkey = P revenue Compressed
Il 0-2047 I i 0-2047 Buffers
1 1
—~— |]
0| ! partkey 1 || revenue } Compressed
! 02047 ! 0 - 2047 Chunks
1_ partkey 1_ _| revenue
2048-... 2048-...

Fig. 5. The compressed table scan of two columns. Column chunks of multiple columns can be decompressed
concurrently using multiple fixed-sized decompression buffers.

chunk data is materialized in memory. However, as we show next, when carefully integrating
decompression with I/O, we can efficiently use the massive compute resources of GPUs and thus
significantly inflate the perceived (i.e., effective) bandwidth.

A compressed table scan that significantly inflates the bandwidth is implemented in GOLAP
using multiple so-called data pipelines over SSD-resident data chunks, combining direct I/O and
heavy-weight decompression. For each column of a table scan, the compressed bytes of the current
data chunk are first read by a data pipeline from the appropriate storage location into an allocated
GPU buffer by direct I/O (bottom part in Figure 5). When compressed data chunks from SSD are
fully read into GPU buffers, they are subsequently decompressed inside another GPU buffer for
uncompressed data. Decompression amounts to a kernel call parametrized by a given compression
configuration. While this is a highly parallelized and compute-intensive operation, even multiple
concurrent decompression kernels do not exhaust the compute resources of modern GPUs and
allow for further processing kernels (e.g., operators for downstream query execution) to be executed
as part of the same data pipeline.

Figure 6 (lower part) depicts the overall scheme in GOLAP: kernels for read and decompression, as
well as query kernels or any subsequent operations like data transfers to CPU memory, are being
enqueued in separate streams to maximize the use of the parallel GPU compute resources. To fully
utilize the I/O resources of a GPU and thus maximize data loading bandwidth, multiple pipelines,
as shown in Figure 6, need to be instantiated to orchestrate I/O and compute kernel calls to work
simultaneously on different chunks.

Moreover, since query kernels can only start once the required chunks of all relevant columns are
read and decompressed, synchronization between the data loading and query processing streams is
needed; i.e., query processing can only start once data is decompressed to ensure that data of all
involved columns is fully materialized uncompressed in memory when e.g., a query processing
kernel is executing (marked as dashed lines in Figure 6). What is important is, that the query
kernels (or transfers of uncompressed tuple data, e.g., GPU-CPU query co-execution) and next
direct I/O calls can be overlapped after this synchronization shown as intra-pipeline overlap in
Figure 6 . Overall, by overlapping I/O, decompression and query execution the number of CPU
threads needed to drive data pipelines can be reduced (see experiments in Section 6.3).

3.4 Data Loading and Compression

Finally, we discuss how new tables are loaded into GOLAP. Here the most important question is
how we find an optimal compression scheme and chunk size per column of a new table since

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:9

Synchronization

Read |Dec. 1 Read Dec.| ! Read
ColA, | A 1 ColA, A 1 ColA,

Compressed Read Dec. . Read Dec. Read
Scan Col By By : Col B, By Col B,
Read | Dec. Read | Dec. | : Read
ColCy Co ColCy; Cy | : Col C,
Query Kernels & Kernel N Kernel
Data Transfers AoBoCo . A1B;Cy
- —
>
. Compute Lo 1
|:| " Kernel Intra-Pipeline Time
. Direct 1/0 & Compute
10 Overlap

Fig. 6. Timeline of on-the-fly decompression of one data pipeline of a compressed table scan with direct I/O
and heavy-weight decompression, as well as possible query kernels working on decompressed data.

different heavy-weight compression schemes result in different compression ratios depending on
the data characteristics of a table. For compressing column chunks as described before, we use
NVIDIA’s nvcomp library [18] which provides GPU-optimized implementations of a variety of
lossless heavy-weight compression schemes.

We use a random sampling-based approach to choose the right compression scheme and block
sizes (for column chunks) for a given table in GOLAP. By selecting a ratio of random chunks of a
larger column, we can determine the best configuration (compression scheme and chunk size) for a
given objective for the sampled data using a grid search over available configuration parameters.
E.g., the heavy-weight "Deflate" compression algorithm with a chunk size of 4MiB and 8 pipelines
might have the highest decompression speed for a sample 1% of a column, while the "Snappy"
scheme with 8MiB chunks has the highest compression ratio.

4 Opportunistic Pruning

A compressed scan can inflate the effective processing bandwidth of an SSD-backed database
significantly. However, an efficient compressed scan might only improve performance up to SSD
bandwidth times the compression ratio. If a system is I/O bound this way, further computational
resources can be traded off to reduce the amount of data chunks that need to be read from storage,
which can be accomplished by data pruning. The following discusses how we leverage this idea in
GOLAP.

4.1 Inflating Bandwidth by Pruning

The key idea of pruning techniques is to save additional metadata of the contents of each data block
separately to the table data (in storage or memory). Before a potentially scanned data block is read
from storage, the metadata (e.g., minimum and maximum values) can be consulted first. Together
with the given query predicates, a pruning decision can be made if the data block is irrelevant for
answering the query at hand (i.e., the selection will not hold for any tuple in the block). The data
block will only be read from storage if it cannot be ruled out that a contained tuple might qualify for
the predicate. Since storage access is usually the performance bottleneck for any disk-based system,
skipping otherwise unnecessary I/O on this path can greatly improve overall system performance.
However, as opposed to acceleration by a compressed scan, pruning is workload-dependent and
the predicate selectivity and the data storage layout influence the expected gains. In the following,
we detail how GPU-optimal pruning decisions can be integrated in CPU-orchestrated I/O control
flow and how the compute power of GPUs allows for more fine-grained pruning.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:10 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

(2JPrune Bitmap ([LParallel

(2]sorting on Dimension Attributes

Transfer Prune Check
[nilin] E 3 lo_key|lo_tax |d_year c_age
CPU, PU
L L 1
< 5] 1 1980 | 55
3
@ 3 7 1980 | 56
= Chunk
7 4 1980 70 MinMax Metadata
\ | tax [1,9]
(3)Pruned 9 5 | 1981 | 18 year [1980,1981]
Sclan Data Data age [19,70]
2 6 1981 | 18
F— > *| tl (3]Metadata of
‘ * 1 9 |1981| 19 Dimension Attributes
—— I — -
sSD SEESEES U J
SOX x X T
Fully Joined Fact Table
(a) Execution flow for GPU-accelerated pruning, exem- (b) A fully joined fact table can be used to sort on di-
plary for a single predicate. While the pruning decisions mension table values (year, age) and inflate fact table
can be made efficiently on many chunks in parallel by the metadata with information on dimension attributes [34].
GPU, the bitmap of which chunks need to be loaded has Depicted is a chunk that is prunable with histogram meta-
to be copied to the CPU’s main memory, since 1/Os are data for predicates that filter for age’s between 20 and 54,
initiated on the CPU. which is not detected with MinMax pruning.

Fig. 7. GPU-based pruning and optimizations.

4.2 GPU-based Parallel Pruning

All pruning schemes can be massively parallelized over large amounts of chunk metadata, which
can be exploited by GPUs parallel compute. Instead of checking (possibly intricate) predicates on
the CPU during query execution, we add a parallel prune check of involved chunks before starting
any data loading (Figure 7a): For each simple predicate, its satisfiability is checked against the
metadata of multiple chunks in parallel on the GPU before loading the blocks.

The resulting decision bitmaps per simple predicate are then bitwise combined (using bitwise
AND/OR) to create a final pruning bitmap, which is a task that profits from the GPU’s high memory
bandwidth. Afterward the prune bitmap has to be transferred to CPU main memory, since the GPU
table scan needs to be steered by I/O threads on the CPU as described in Section 3. The CPU I/O
threads initiate the CPU-controlled data pipelines for the actual table scan, but in contrast to the
normal scan, we can now skip loading unnecessary data chunks based on the pruning bitmaps
available on the CPU.

4.3 GPU-based Fine-grained Pruning

In addition to parallelized pruning decisions, GPUs offer ample compute power to also afford
more expensive (fine-grained) pruning techniques. While MinMax metadata is a classical pruning
technique which efficiently allows to prune uniform and sorted data distributions, more detailed
metadata that is more expensive to check against can offer an additional trade-off of storage and
compute for reduced I/O pressure.

In our system, we implement GPU-accelerated variants of bloom filter and histogram pruning
approaches that allow robust pruning decisions with tunable impacts on metadata storage and
compute resources: Histogram pruning allows for trading off additional storage as well as additional
compute resources at pruning time for possibly more prunability by increasing the number of

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:11

buckets for histogram metadata. Bloom filter-based pruning instead allows GOLAP to trade off
additional storage (by using more bytes per Bloom filter) and additional compute (by using more
hash functions).

Finally, since even fine-grained metadata (like a histogram or bloom filter) is much smaller than
the full chunk data, metadata is usually gathered for all columns to be able to do a prune check for
all possible predicates. Those fine-grained schemes provide many benefits, especially for unsorted
columns, while MinMax pruning would not help much for unsorted columns.

4.4 Sideways Pruning on GPUs

Typically, OLAP workloads use a relational star schema, comprised of small dimension tables and a
large fact table with foreign keys to all dimensions. For these databases, the fact table scan is the
most data-intensive and the best candidate for acceleration by pruning. The predicates of OLAP
queries will however usually filter the dimension table attributes. Even the fact table columns rarely
allow significant pruning for unsorted data.

For these situations, we employ the optimizations for sideways pruning as described in [34] for
data warehouse schemas (see Figure 7b) and adapt it to GPUs: To prepare the metadata creation for
pruning, in an offline phase we therefore join the fact table with all dimension tables. This makes it
possible to create fact table metadata for the values of the dimension columns referenced by each
fact table tuple. This clearly increases the metadata since fact tables can be large, but given the
parallel pruning, as discussed before, the overhead for scanning metadata is negligible, as we will
see in our evaluation.

To determine the order on which to sort the set of columns on, which is important for pruning
efficiency, we use the number of unique values of a column as a simple heuristic. This means fact
table data is sorted by the column with the least number of contained values first, and inside groups
of the same column values sorting is repeated recursively based on the next column (with the
second least number of unique values). For example, as shown in Figure 7b, the fact table can be
sorted on c_region first (5 different values), then by d_year (7 values), etc.

After gathering the metadata for sideways pruning, the denormalized output of the join is
discarded since it might cause high storage overheads. For query processing, we only use the much
smaller (derived) metadata to eliminate chunks of the fact table based on filters on dimension
attributes.

Non-Star Schemas: The techniques discussed before can be applied for non-star schema joins
without modifications. However, finding sort orders for efficient metadata-based pruning in general
schemas is more difficult, but this is an orthogonal problem for any system that uses pruning.
Similarly, for N-M joins, the metadata for pruning can be captured similarly. Since metadata of N-M
join can also be represented as histograms or bloom filters, the size of metadata can be reduced by
sizing these data structures appropriately. However, when reducing metadata’s size w.r.t data size,
the impact of the metadata on the ability to prune is expected to be lower.

5 GPU-CPU Query Co-Execution

In this section, we explain how the GPU-CPU co-execution scheme of GOLAP works to enable
the processing of queries with intermediate result sizes that exceed GPU memory. For example,
using a (unpartitioned) hash join to join two large tables will produce large hash tables as part
of the build phase. Since current datacenter-grade GPUs still have around 10x-50x less memory
than what is available as CPU main memory, out-of-memory scenarios should be considered for
GPU-accelerated systems. In this section, we focus on scenarios for which large intermediate join
results are expected (e.g., as detected by cardinality estimation); similar techniques also apply to
other operators (e.g., group-by aggregates).

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:12 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

"
jon
nifie
I‘PJ iemor
r
. K
o

A
LC L
I'%-I
L

Custome:
ey
a
Suppller Supplier o
Supplier
pate tineorder

(a) Naive Strategy (b) CPU Fallback Strategy (c) Hybrid Join Strategy
Fig. 8. Co-Execution Strategies in GOLAP. In case hash join tables exceed the GPU memory GOLAP provides
the two strategies in (b) and (c). The strategy in (a) is a naive baseline.

Customer Lineorder

[

We present a basic strategy (CPU Naive) for a partitioned query plan that moves whole sections
of query plans that create large intermediate results to CPU. Specifically for GPU-in-data-path
architecture, we propose a strategy how these parts of a query can still benefit from compressed
scan performance on the GPU (and subsequent operators), even if results are moved to CPU memory
afterward (called the CPU Fallback). Then, we show how even more parts of query processing
can be GPU-accelerated by employing unified memory and splitting join hash tables into key and
tuple data parts in a strategy we call Hybrid Join. While the techniques presented in this section
generalize, we use the plan for query set 3 of the star schema benchmark [21] as a running example.

5.1 CPU Naive

As a first alternative to a fully GPU-accelerated query, the parts of the query plan that directly
lead to the large intermediate result can be scheduled for full CPU execution. In the running
example of SSB query 3, the large hash table for the join of Lineorder and Customer table would
be identified as exceeding GPU memory capabilities, planned as the last join in the deep query plan,
and scheduled for CPU execution. The table scan, filtering and hash join build phase of Customer
tuples can then be done by the CPU (Figure 8a). All operations until the last (large) join can be
done with high bandwidth on the GPU. For SSB query 3, this means pruning and compressed scans
of Lineorder, Supplier and Date tables, as well as filtering and joining of the three tables until
intermediate results need to be materialized and transferred to a CPU main memory buffer right
before the join with Customer. CPU threads will then finish the last join and aggregation and
produce the results.

5.2 CPU Fallback

Notice that while a fully GPU-resident join of two large tables might not be feasible, previous
operators on both sides might still benefit from the inflated effective bandwidth of GPU-acceleration.
In the running example, a compressed scan of Customer table chunks, as well as the subsequent
filtering can both be done at high bandwidths by the graphical processing unit, shown on the
left side of Figure 8b. The key idea for this strategy is to delay a transition to CPU processing as
long as possible in every branch of the query to then fall back on subsequent CPU processing at
the uppermost operator that will not be fully executable on GPU. Depending on the maximum
GPU-CPU interconnect bandwidth and the filter selectivity this already promises faster processing
than the CPU Naive strategy, but in the worst case should still be able to match its query run time.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:13

5.3 Hybrid Join

Since in the CPU Naive strategy, the CPU executed data pipeline (for the Customer table) will
not profit from the increased effective bandwidth of GPU execution, the overall query run time is
bottle-necked by I/O read bandwidth and CPU compute capabilities. For increasingly large build
side tables, this degrades query performance. In the CPU Fallback strategy, a GPU-accelerated
compressed scan, as well as the filtering, can be pushed to the GPU. However, the insertion into
the CPU resident hash table is done by CPU threads.

We propose a strategy that allows scaling to much larger build side tables while still retaining
many of the benefits of a fully GPU-accelerated system. The goal is to make use of the abundant
CPU memory, while most of the processing is done on the graphical processor. Here, we built upon
the possibility of oversubscribing GPU memory using NVIDIA Unified Memory [20]. This feature
allows the GPU to directly access pages of specially allocated CPU memory in device kernels.
Accessing CPU-resident unified memory from GPU will generate a page fault and initiate a page
migration from host to device memory.

The main idea of a hybrid join is to split the hash join data structures into two parts: A material-
ization table containing the scanned tuple data of the build side table, as well as a build side join key
hash table. While the materialization table contains the largest part of necessary join information
(all necessary columns of the build side), writing into it can be done sequentially in dense blocks
of data. The actual join key hash table has far less deterministic access patterns (by definition),
since adding a join key is a random write access in the range of allocated hash buckets. However,
in comparison to the materialized tuple data, the join key hash table is limited in size. A hybrid
join will place the hash key table in unified memory (since it could still be too large for full GPU
memory residency) to benefit from the possible memory over-subscription. However, the build side
materialization table does not profit from unified memory the same way, since data is only written
once (a traditional pinned CPU memory buffer suffices).

After the build side has finished processing, all remaining join key hash table data in unified
memory can be prefetched to the CPU using a respective memory hint. For the probe side query
plan, similarly, as much as possible (compressed scan, filtering, previous joins) will be scheduled
for GPU execution. After tuples materialize in a CPU buffer, the last join can be executed by CPU
threads (same as for the other strategies).

This approach has two main advantages: First, it can profit from the very high effective data
loading bandwidths for both the build and probe side (not only the probe side, as CPU Naive).
Second, the processing required for a lock-free build side execution is much faster on the graphical
processing units, even with possible page migrations. While paging traffic over the GPU-CPU
interconnect will naturally increase for large build side tables, performance will degrade much
more gracefully for this Hybrid Join.

6 Experimental Evaluation

In this section, we investigate the performance of GOLAP. First, we report query end-to-end process-
ing performance of GOLAP. Then, we discuss in detail the effects of compression and pruning on
scan performance. Afterward, we report the results of experiments on GPU-CPU co-execution and
finally compare the overall query performance of our system against two other baseline systems.

6.1 Setup

System: All experiments are run on an NVIDIA DGX A100 machine running Ubuntu 22.04 with
CUDA library 12.2 and Linux kernel 5.15. The CPUs used are AMD EPYC 7742 64-Core processors,
and the GPUs are NVIDIA A100s with 40 GB device memory. CPUs and GPUs are connected via

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:14 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

== SSD I X Pruning X Compression B8 X Pruning v Compression
Bandwidth EZ@ v Pruning X Compression EEHE v Pruning v Compression

250

Effective BW [GiB/s]
&
=)

50

g
A 4 A 4

SSB SSB SSB TAXI TAXI TPC-H TPC-H TPC-H
queryl.l queryl.2 queryl.3 queryl.l queryl.2 queryl query3 query5
Fig. 9. The effective bandwidth of the system in different query processing settings: Processing uncompressed
data, adding pruning, processing compressed data without pruning and a setting with both compression and
pruning enabled.

16 PCle 4.0 lanes. The system uses 3 Samsung SSDs in a RAID 0 configuration for direct storage
access over 16 PCle 4.0 lanes with a maximum read bandwidth of 19.5 GiB/s measured by fio[2].
For every experiment, data is loaded from storage; i.e., no parts are cached in CPU or GPU memory.
If GPU-accelerated data pruning is enabled, it is explicitly stated in the respective experiments. The
main metric in many experiments is the Effective Bandwidth, which we define as the number of
uncompressed bytes processed (including pruned data) divided by the end-to-end system runtime
(from before any data is read from storage until query results are materialized in CPU main memory).
For a compressed scan, this is the same as the decompression speed; for an uncompressed scan, the
effective bandwidth equals the I/O read bandwidth.

Datasets: We use data from the star schema benchmark [21] (SSB, scale factor 200, 120GiB),
TPC-H benchmark [29] (TPC-H, scale factor 200, 130GiB without comments columns) as well as
real-world data gathered from the NYC yellow taxi trip records [27] (Taxi, 5 years worth, 60GiB).
Real-world data is in particular interesting for the effect of compression on those data distributions
which are typically different from (synthetic) benchmark data. For the SSB and TPC-H datasets we
use the queries of the benchmark specification, without orderby and 1imit. As workload for the
taxi data set, we use two query sets which are part of the Google BigQuery public workload: The
first query is an aggregation over the trips each taxi made each month. The second query computes
the average speed of taxis during each day. For both queries we vary predicates on trip distance
and fare amount, respectively.

6.2 Exp. 1: End-to-end Query Execution

We evaluate full queries from start to finish, measuring the time until results are available to the
CPU. To better understand the impact of GOLAP’s compression and pruning techniques on the
effective bandwidth, we execute the experiment workloads with and without enabling them. These
mechanisms are orthogonal and can be used either in combination or individually. For brevity, we
will focus on SSB query 1, the first Taxi query, and the TPC-H queries 1, 3, 5, and in this experiment.
At the same time, a comprehensive evaluation of the full SSB and Taxi benchmarks is presented in
6.6.

Figure 9 shows the effective bandwidth across the three datasets and various queries. Initially,
without pruning and compression, GOLAP’s effective bandwidth is constrained by the I/O bandwidth
of the storage device. When parallel pruning is enabled (as shown in the second bar), the amount of

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture

N
o

[y
o

1 2 3 45 6 7 8 9 1011121314 1516 17 18 19 20 21 22 23
Compression [ratio]

for High-Speed OLAP 237:15
—_ @ Taxi Dataset Column * TPC-H Dataset Column
% A SSB Dataset Column
&

g

300 »
o 200 A)
G gs N e

< 100

5 ¥

$ 50 Aﬁé{?

©

o

2 A SSD BW

" !

=

9]

L

=

iN)

Fig. 10. Effectiveness of Compressed Scan. Compression ratio and effective bandwidth of column scans in
SSB, Taxi and TPC-H datasets. The compression ratio and the flash device’s read bandwidth give the optimal
decompression bandwidth (green dashed line). Note the logarithmic scale of the bandwidth axis.

data accessed is reduced by approximately 4-9x, consequently increasing the effective bandwidth
by 3-8x. The impact of pruning largely depends on the selectivity of the queries; thus, SSB query 1.2,
1.3, and Taxi query 1.2 benefit most from pruning, as they are more selective. On the other hand,
TPC-H query 1 has very low selectivity and thus needs to scan all tuples in most chunks, leading
to small speedups from pruning. For TPC-H query 5, we see large speedups when employing
the sideways pruning techniques, by pruning lineorder tuples by joined order tuples metadata,
resulting in a roughly 3 time increase in effective bandwidth.

When using a compressed scan without a pruning phase (represented in the third bar), perfor-
mance improves by more than 2.5x, closely aligning with the compression ratios of 2.6 for Taxi and
2.8 for SSB. In this scenario, the variance in selectivity among queries does not affect performance,
as all data is read when pruning is disabled. Furthermore, the influence of selectivity on query
processing is minimal within GOLAP’s chunk-based query kernels since we stream the data through
the GPU and are not CPU-GPU interconnect bound in these queries. Consequently, TPC-H query
1, with its low selectivity, still sees significant performance speedups by the compressed scan.

When pruning and compression are enabled simultaneously (shown in the fourth bar), GOLAP
achieves an effective bandwidth approximately 8 times greater than the flash read bandwidth.
This bandwidth improvement stems from the compression factors (approximately 2.8 for SSB, 2.6
for Taxi queries and between 2.7 and 5 for the TPC-H queries) with the reduction in data loaded
post-pruning — typically three times less data for all queries, except for the highly selective Taxi
query 1.2, which loads seven times less data. For all tested queries, the combination of pruning and
heavy compression results in the highest effective query processing bandwidth. It is important to
note that the effective bandwidth is still constrained by the SSD bandwidth, not by our system’s
limitations.

In the following experiments we will zoom in on the individual contributions and analyze the
impact of various parameters.

6.3 Exp.2 Compressed Scan

This section delves deeper into how storage access and compressed table scans enable the system’s
efficiency.

Effectiveness of Compressed Scan: As discussed in Section 3, the optimal effective bandwidth
of a compressed column scan (without any pruning) is given by the maximum SSD read bandwidth

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:16 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

In-Flight Requests / Data Pipelines

——

o

@60 Qe

=

S

©

-§40

el

c

a

0 20— e

2

0

CI.)

£ ol &

w
64 128 256 512 1 2 4 8 16 32 64 128
KiB KiB KiB KiB MiB MiB MiB MiB MiB MiB MiB MiB

Chunksize

Fig. 11. Importance of Concurrent I/O and Decompression. Bandwidth for different chunk sizes and number
of concurrent 1/O requests triggered by the same number of CPU 1/O threads. Red dashed line marks the
maximum read bandwidth of the SSD. The Green dotted line marks the maximum possible bandwidth as the
compression ratio dictates.

times the compression ratio. For example, if the compression ratio is 2, the maximum attainable
bandwidth is 2 times the storage read bandwidth since twice the amount of original information
can be transferred simultaneously (but a decompression step is needed). In Figure 10, we show the
effective bandwidth of column scans of the SSB, Taxi, and TPC-H dataset columns. For each column,
we run a streamed decompressed scan using the combination of chunk size and compression scheme
reaching the lowest overall runtime. Plotted is the effective bandwidth (= decompression speed
for a scan) at the achieved compression ratio. We derive three key insights from this experiment:
First, the column compression ratios for both synthetic and real-world datasets suggest a promising
theoretical effective bandwidth exceeding 50 GiB/s, given realistic SSD read bandwidths. Second,
our system achieves bandwidths close to this theoretical limit despite the computational overhead
required for decompression. Additionally, it is noteworthy that even at lower compression ratios,
the added decompression task does not impede the scanning process, underscoring the robustness
of our approach. Finally, with compression ratios greater than 10 (as seen in low entropy columns
like those in the Taxi dataset, or some TPC-H columns), the heavy-weight decompression kernels
that we use as part of the nvcomp library struggle to maintain high effective bandwidths, although
the needed decompression bandwidth is still below the maximum GPU memory read and write
bandwidth. This scenario also presents an interesting avenue for further research into GPU-tailored
(de-) compression techniques, especially for highly compressible data.

Concurrent I/0 and Decompression: In our second experiment, we show the importance
of using multiple I/O threads on the CPU to maximize the bandwidth of the GPU scan. For this,
we study the effect of varying chunk sizes and the number of CPU-orchestrated data pipelines
doing I/O and decompression. We plot the achieved effective bandwidth over increasing chunk
sizes in Figure 11. We use a column with moderate compression, SSB data set column commitdate
with a compression ratio of around 3.2 (see Figure 10 for performance over different compression
ratios). Each plotted line corresponds to a setting where the system keeps up to 1, 2, 4, 8 or 16 I/O
requests of that specific chunk size in-flight (= number of data pipelines). We plot the theoretical
optimal data access bandwidth (green dotted line), computed as the column’s compression ratio at
this chunk size multiplied by the SSD read bandwidth. With fewer data pipelines (e.g., 4), larger
chunk sizes are needed (32 MiB) to reach effective bandwidths near the upper bound. With only 1
thread, we can not reach the full bandwidth at all. It becomes apparent that to reach close to optimal

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture

for High-Speed OLAP 237:17
In-Flight Requests / Data Pipelines Intra Pipeline Parallelism
—— 1 —— 4 —— Overlap
2 —A— 8 e No Overlap

w
o

N
w

GPU-CPU BW

N
o

=
o

Effective Bandwidth [GiB/s]
o &

64 128 256 512 1 2 4 8 16 32 64 128
KiB KiB KiB KiB MiB MiB MiB MiB MiB MiB MiB MiB
Chunksize
Fig. 12. Importance of Overlap of Data Access and Query Execution for a Compressed Scan with CPU
materialization. The results show that overlap significantly improves the effective bandwidth and allows
GOLAP to reduce the number of 1/O threads on the CPU, which trigger the scan.

effective bandwidths, concurrent requests are crucial to exhaust I/O capabilities and efficiently
schedule decompression kernels on the graphical processor.

Overlap of Data Access and Query Execution: The next experiment shows the importance
of overlapping I/O and decompression work inside a data pipeline with downstream operations
like GPU query kernel execution or data transfers. This is, in particular, important for GPU-CPU
co-execution since the GPU kernel in such cases, needs to transfer the result of a partial plan (e.g.,
the output of a filter) to the CPU memory before the CPU side of the plan is executed, as discussed
in Section 5. In such scenarios, overlapping is particularly important since the copy step can cause
significant overhead if it blocks subsequent I/O operations since we would start the I/O only once
the previous query kernel is finished. For the experiment, we use a simple setup to measure this
effect: We execute a GPU table scan, and the query kernel only copies the results of the GPU scan
to the CPU memory. We execute the same query as before (e.g., a scan of column commitdate) but
additionally copy the result in the query kernel to the CPU memory one time with and one time
without overlap.

Figure 12 shows the results. The dotted lines show results without overlap of data transfer
operations and I/O reads. While close to optimal performance is attainable in this setting, either
large chunk sizes or more than 4 concurrent data pipelines are necessary. Enabling intra-pipeline
overlap of I/O and data transfer improves this, especially for a smaller number of data pipelines,
reaching expected bandwidths much earlier. A noteworthy characteristic of a compressed scan with
data materialization in CPU main memory but no filtering is that while the effective bandwidth can
not possibly exceed the bandwidth of the GPU-CPU interconnect, it might still promise performance
gains over the SSD bandwidth. In our system, while the scan with CPU materialization is hard-bound
by around 23 GiB/s, this is still an improvement over the 19 GiB/s of raw SSD read bandwidth. With
increasing bandwidths of in-system interconnects, like AMD Infinity Fabric or NVIDIA NVLINK,
we suspect this might be an even more favorable source of performance improvement.

Quality of Sample-based Compression Selection: As we discussed before in Section 3, the
configuration parameters of a compressed data chunk, like the choice of compression algorithm
and size of the chunk, can vastly influence the overall data loading performance. In this experiment,
we evaluate the sampling-based configuration choice for GPU-accelerated decompression in our
system. We sample contiguous chunks of data of each column of a dataset up to a maximum ratio of

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:18 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

Table 1. Average relative deviation between optimal objective value and value reached by configuration chosen
by sampling. 1.0 is the optimal relative deviation, meaning the chosen configuration chosen by sampling
reached the optimal value for the objective on the full column.

Sampling Objective Best Time Best Ratio
Sampling Ratio 1% | 5% | 10% 1% | 5% | 10%
SSB AVG 1.26 | 1.13 | 1.06 1.01 1.0 1.0
MAX 241143 | 1.26 1.01 1.0 1.0
Taxi AVG 2.03 | 1.36 | 1.44 | 1.033 | 1.03 | 1.05
MAX 4.15 | 3.32 | 2.06 1.26 | 1.11 1.3
Il X Pruning X Compression EEA v Pruning X Compression
EZE X Pruning v Compression EEE v Pruning v Compression
100
@
o 80
g 60
2
@ 40
2
S 20
Q
i
0 1 16 64 256
MiB MiB MiB MiB MiB
Chunksize

Fig. 13. Average effective bandwidth of SSB set 1 queries over different chunksizes.

the total column size. We enumerate available compression configurations on the sampled column
and measure relevant metrics during compression and subsequent decompression of the sampled
data. Based on these results, we select the two best configurations relevant to decompression
speed and compression ratio objectives. Especially for this experiment, we run an enumeration of
configuration on the complete columns of the datasets. We then define the error as the relative
deviation between the actual best objective value reachable (time or compression ratio) and the
objective value is reached if the configuration chosen based on the sampled column data is applied
to the full column.

We report the average and maximum relative deviation for different datasets and sample ratios in
table 1. It becomes apparent that even for small sample sizes of 1%, close to optimal configurations
can be assessed for optimizing the compression ratio for both data sets. However, the configuration
for the best decompression time is harder to determine based on a reduced dataset. A reason for
this is that the absolute sizes of a sampled column are relatively small and, as such, do not allow
an efficient execution over a longer time period. For larger sample ratios of about 10%, this is not
the case and the average relative deviation ratios are close to optimal. For the taxi dataset, another
reason for larger average and maximum relative errors is that many columns have low entropy and
reach very high compression rates. Here, the very low decompression times skew the otherwise
close results of the moderately compressible columns.

In all experiments of this article that involve compressed scans, we use the selected compression
parameters that reach the best runtime on 10% of sampled data, if not stated otherwise.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:19

I Bloom Filter ZZ3 Histogram EEE MinMax

=
N

=
=)

o
©

©
>

Pruned data [ratio]
o
[e)]

©
N)

o
o

1 4 16 64 256
MiB MiB MiB MiB MiB
Chunksize

Fig. 14. Average ratio of pruned chunks for SSB set 1 queries over different chunksizes and pruning techniques.

6.4 Exp. 3: Opportunistic Pruning

Having thoroughly examined the efficiency of our compressed scan, we now explore opportunistic
pruning, another crucial technique within GOLAP to improve the effective bandwidth. We will
particularly focus on how compression, various pruning strategies, and chunk sizes interplay in
GOLAP. For the experiment, we use SSB query set 1, since it uses predicates on both dimension and
fact table attributes and only includes one join (minimizing unrelated effects of query execution).
First, we use MinMax, Bloom (for point predicates, 1KiB, 8 hashes) as well as histogram (256 bins)
pruning, with both dimension-based data clustering and sorting optimizations enabled (see [34]
and Section 4.4): The fact table is sorted based on the dimension attributes that are used as filter
predicates and metadata of these columns is gathered in the fact table.

We show the effective bandwidths achieved in Figure 13, and the prune ratios as an accompanying
figure in 14. Since pruning time has low overhead for all variants (less than 1% of total query time,
including metadata transfer) the ratio of pruned data chunks is the performance-defining metric.
Here, Figure 14 suggests that histogram-based pruning is a robust choice, reaching the highest
ratio of pruned data across all chunk sizes.

As a baseline, we plot results for not using compression or pruning (blue bar, Figure 13). The
system benefits from larger chunk sizes but can not pass the SSD bandwidth limitations. The
second light orange bar shows results for using compressed scans but no data pruning. Clearly,
larger chunk sizes benefit the compressed scan (better compression ratios, better I/O and compute
utilization). The apparent overhead of compression for small chunk sizes does not generalize to
other settings, since these configurations are sub-optimal, even for uncompressed accesses.

Results of using only pruning of data chunks and no compression are reported as the green bars
in Figure 13. Large chunk sizes understandably offer less pruning capabilities since the potential
amount of contained values per chunk increases, reducing the amount of prunable data. Small
chunks with limited data variety achieve this scenario’s best query runtimes. Even though the
amount of processing needed to make the pruning decisions increases, it has negligible latency
since it is done in parallel.

Finally, the orange bars in Figure 13 show the effects of pruning and compression together. Note
that the disadvantage of compression for small chunks and the ineffectiveness of pruning for very
large chunks dominate the respective edges of the chunk size range. To balance I/O sizes for both
efficient GPU-accelerated decompression and pruning, we suggest to optimize for decompression
first, since the expected worst-case gains are generally higher, and then study pruning techniques

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:20 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

I CPU Naive I Handcoded In-Memory
3 All GPU Scan Customer HT Build Time
I Hybrid Join
Query3.1 - Least Selective Query3.2 - More Selective Query3.3 - Most Selective
—_ 6
2
020 2.0
£
=}
515 4 15
-4
Fa
gl0 1.0
o 2
5 0.5
0 1 25 50 100 0 1 25 50 100 0.0 1 25 50 100
Customer table scaling Customer table scaling Customer table scaling

Fig. 15. Runtimes of SSB query set 3 with increasing join table sizes using different GPU-CPU co-execution
strategies. Note the different Y-Axes.

and data distributions. In our evaluation, we constantly saw that the shortest runtimes (i.e., the
highest bandwidths) can be achieved for setting the maximum chunk size to a value between 16
and 64 MiB. In this range, I/O and compute can be used efficiently for decompression, yet it is still
possible and beneficial for pruning.

6.5 Exp. 4: GPU-CPU Co-Execution

To study GPU-CPU co-execution of analytical workloads in scenarios with large intermediate
results, we use SSB query set 3 and augment the dataset with a scaled version of the Customer
table. We linearly scale this dimension table with a given factor (from 6 Million tuples at Customer
factor 1 to 600 Million at Customer factor 100) and update the fact table to reference tuples in
the updated table with the original distribution. When using a hash join to join the Customer
and Lineorder tables, this leads to a linear increase in the size of the build side hash table. We
implement and compare the CPU Naive, All GPU Scan and Hybrid Join strategy in GOLAP. runtimes
of the 3 strategies with increasing join hash table size is shown in Figure 15. Also depicted for
comparison are runtimes of a hand-coded in-memory version of the same data and queries. We
omit the results of SSB query 3.4 since selectivity and runtime are similar to query 3.3.

For all co-execution strategies, the last step of executing the large join on the CPU is similar.
The remaining runtime of the query after the Customer hash table for the join is prepared is
consequently similar (seen in the figure as the unmarked part of the bars). The time the Customer
build side takes varies highly between the strategies. As expected, the CPU naive query execution
strategy without the compressed scan spends more runtime on this part, slowing down overall
query execution. All GPU Scan and Hybrid Join can significantly reduce this large part of the query
runtime (by at least 3x across table scalings and selectivities).

The Hybrid Join solution employing paged memory and split hash tables can additionally gain
advantages in scenarios with increased computational need. Especially for SSB query 3.1, with low
selectivity and a high number of Customer tuples that need to be inserted into the hash table, GPU-
acceleration for the hash table insertion pays off, leading to the lowest query runtimes. For more
selective queries, it is not as beneficial to incur the additional memory page migration overhead,
leading to similar and even worse runtimes for queries 3.2 and 3.3, respectively. However, as for
highly selective queries, query runtimes are much lower already. The hybrid join is the preferred
strategy in general, offering robust query time improvements across selectivities.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:21

In comparison to our hand-coded CPU in-memory solution, CPU Naive is always slower except
for the highly selective scenarios. However, all GPU Scan and Hybrid Join are generally competitive
(for less selective queries) and even faster for highly selective queries, where the least amount
of data needs to be materialized to CPU memory. This leads us to conclude that these GPU-CPU
co-execution strategies will in the worst-case not slow down the system, but can exploit the GPU’s
acceleration potential in common scenarios to achieve considerable speedup.

6.6 Exp. 5: System Comparison

In this experiment, we benchmark against various GPU and CPU systems by comparing raw query
runtimes of different benchmarks (SSB, Taxi, and TPC-H). While available GPU-accelerated systems
such as CuDF [17] that support flash access and compression were also tested, they were not
competitive compared to CPU systems across all experiments and were thus excluded from the
reported results. As an existing GPU-accelerated system, we compare GOLAP against the Mordred
prototype [32] (which only supports SSB queries). Mordred is a GPU-CPU co-processing systems
for in-memory workloads and various caching strategies.

In addition, we include results from a commercial CPU system, referred to as "System X,' famous
for its robust performance with larger-than-memory data sets. This comparison is particularly
relevant as System X employs light-weight compression of columns, providing an interesting
baseline for our analysis.

Furthermore, we include DuckDB, an embedded CPU OLAP system, utilizing views of Parquet
files with optimized row group sizes. The setup ensures that no data is cached in memory at
the start of a query and allows to test different compression and metadata pruning scenarios.
We allocate 64 CPU threads and allow main memory allocations several times the size of the
datasets. Since DuckDB supports heavy-weight compression in Parquet files, we present runtimes
for uncompressed data and compressed data, noting that the best performance was achieved using
Snappy compression. Additionally, to show the effect of pruning, we generate Parquet files with
data ordered the same as GOLAP. We only show DuckDB with pruning on SSB since the gains are
similar on the other queries where GOLAP outperforms DuckDB.

Figure 16 displays the runtimes for query sets on the SSB, Taxi, and TPC-H datasets, the latter
two without pruned DuckDB and Mordred, as explained before. A consistent observation with
CPU systems, as seen in the DuckDB results, is that despite heavy-weight compression reducing
data sizes by approximately 2.5x, the difference in runtime between uncompressed (green bar) and
compressed access (yellow bar) is less than that, indicating that the execution is predominantly
compute-bound in both scenarios.

In comparison, System X demonstrates a consistent speedup across all query sets, utilizing
a database with light-weight compression (compression ratio around 2x). On the other hand,
GOLAP (depicted as the first, blue bar, without pruning) is capable of processing heavy-weight
compressed data at near-optimal bandwidth, achieving substantial speedups in query execution
runtime—ranging from 4x to 23x—over the CPU-based systems. Only the GPU-CPU system Mordred
matches the runtimes of GOLAP on the SSB queries but assumes that data is memory-resident and
even (partly) accelerator-resident.

6.7 Exp. 6: System Cost

As a last experiment, we evaluate the costs of a GPU-in-data-path system. Since the costs of
servers, CPU, and GPU hardware are hard to compare between different models, we choose a cloud
setting (and, in particular, AWS EC2 instances) to quantify the expected price metrics. For this,
we ranked the CPU/GPU instances from AWS EC2 with an SSD attached by their cost per I/O
operations per second (IOPS/$). For pure CPU-based execution, the instance type i3 offers the best

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:22 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

I Golap (Heavy Comp.) B DuckDB (Heavy Comp.)
[System X (Light Comp.) ESN DuckDB (Heavy Comp.) +Pruning
EE8 DuckDB (Uncompressed) E=3 Mordred (GPU/CPU In-Memory)
12000
10000
@
£ 8000
(9]
£ 6000
=1
S 4000
2000
0 SSB SSB SSB SSB TAXI TAXI TPC-H TPC-H TPC-H
queryl query2 query3 query4 queryl query2 queryl query3 query5
All Systems W/o Mordred and DuckDB+ pruning
Fig. 16. Query runtimes for different systems over synthetic and real world datasets.
I Golap EEE Optimal Uncompressed GPU Bl Optimal Uncompressed CPU
0.007 11487
ms
0.006
@
>0.005
g
&0.004
@
20.003
[V}
=
& 0.002
0.001
0.000

SSB TAXI TAXI
queryl query2 query3 query4 queryl query2

Fig. 17. Price per query on the GPU and CPU instances (bars). The optimal price is computed based on the
measured 1/O bandwidth. Query run times annotated above bars.

cost performance (in IOPS/$). For GPU-accelerated instances, the type g6.8xlarge with a single
NVIDIA L4 GPU and 32 vCPU cores is the most efficient one, with a three times worse IOPS/$ ratio.
As the CPU instance type, we choose the slice of the i3 instance that has at least as much SSD read
bandwidth as the GPU instance (4 GiB/s vs. 2.5 GiB/s).

For the experiment, we report the price in $ per query that a CPU and a GPU-based system causes.
For this, we use the following procedure: we first measure the maximum bandwidth of sequential
reads from the instance SSD storage for CPU and GPU instances. Afterward, we analytically
compute the runtime of SSB and Taxi queries (on scale factors 100 and 60, respectively, without
pruning) by dividing the data size by bandwidth. Subsequently, based on this, we derive the cost
per query a user would need to pay.

This analytical way to compute query cost for a GPU and a CPU-based system yields the lower
bound of the costs of running each query and removes incidental implementation details. We do this
for a CPU and a GPU-based system without compression since compression is harder to estimate.
For GOLAP (GPU-system on compressed data), we actually run all the queries on the GPU-enabled
I/O instance g6.8x1large and report the actual query prices, i.e., the costs incurred.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:23

The prices of running the SSB and Taxi queries are depicted in Figure 17. While the price of
processing the uncompressed data in the GPU instance (yellow bar) is roughly 3 times higher
than in the CPU one (green bar), the price of running GOLAP (GPU compressed) (blue bar) is way
lower than the optimal price of an uncompressed CPU system. The price decrease ratio between
optimal uncompressed GPU and GOLAP surprisingly even surpasses the compression ratio, which
we attribute to additional caches and optimizations inside the enterprise-grade SSDs in the cloud.
The query run times also favor the bandwidth-effective GPU compressed solution, even though for
the evaluated instances, the SSD read bandwidth is lower for the GPU-enabled instance.

7 Discussion: Query Optimization

In our evaluation, we have shown the benefits of a GPU-in-data-path architecture. However,
integrating this in full DBMS opens up additional challenges. One important challenge is query
optimization. In the following, we discuss potential routes for this.

The first challenge for query optimization is deciding on the operator placement (GPU vs. CPU).
Established statistics of query planners already offer valuable information for this. For example,
cardinality estimation can approximate the intermediate sizes of hash join build tables, which can
be used to decide if a plan can be fully executed in GPU or if CPU-GPU co-execution is needed.

Second, there is potential in rethinking join ordering. Instead of executing the join order, which
minimizes the aggregated sum of cardinalities, we also see potential for other join orders. The
intuition is that plans that maximize work that can be jointly executed on the GPU might be
beneficial instead of those that necessarily minimize cardinalities overall. An example would be a
plan starting with a huge join that prevents all upstream operators from executing on the GPU. An
alternative plan that starts instead with smaller joins that can be located on the GPU thus might be
beneficial since the processing on the GPU speeds up the overall query execution.

Third, as a consequence, we think cost estimation models need to change and cost estimation for
data paths thus needs to be made access bandwidth- (for CPU/GPU/interconnect) and compression-
aware since this allows us to better estimate the benefits of placing operators on the GPU. For
example, a column with a compression ratio of 5 can be accessed at five times the SSD bandwidth.
Integrating this information into cost models helps us to better estimate the overall runtime of
query plans in a GPU-in-data-path architecture.

Finally, we want to make the optimizer pruning aware since this further amplifies the bandwidth
of data access on the SSD from the GPU. For this, the sort orders of involved columns and the
existence of metadata for table chunks need to be taken into account to allow for estimates of the
data pruning opportunities for a given plan.

8 Related Work

For related work, we focus on three sub-areas of database research.

Analytical Query Processing on GPUs. The highly parallel execution model, as well as the high
memory bandwidth have made graphical processors most interesting for the data-intensive nature
of OLAP. Here, single operators like joins (e.g., [11, 26]) have traditionally seen the most active
research. There has also been substantial work on GPUs as accelerators of partial or complete query
plans for analytical processing. [24] analyzes the performance of GPU-based analytical workloads
given a tile-based execution model with minimal materialization. [33] discusses warehouse queries
on GPU-enabled systems and analyzes the effects of light-weight compression in these. [16, 32]
explore data placement techniques and analytical query execution for systems with GPUs and CPUs,
with the latter putting a focus on caching strategies for disk-based data access. The most closely
related previous work is [14], which also tackles the problem of analytical query processing of SSD-
resident data on GPUs using direct data transfers. In contrast to our work, they implement their own

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

237:24 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

primitives for direct I/O, which use heavy CPU processing, they study light-weight compression
techniques, do not include GPU-CPU co-execution, and require that intermediate query results fit
in GPU memory. [23] implements GPU-initiated SSD data transfers using custom Linux drivers
that map NVME data structures to GPU Memory using GPU Direct RDMA. They compare their
system against GPU Direct Storage (GDS) and show how it can benefit graph algorithms and other
analytical workloads. Finally, [3, 5, 6, 28] show the opportunities of GPU-CPU co-processing in
general. Unlike those results, we mainly focus on how to keep scans and decompression on the
GPU, which is important for an SSD-based GPU DBMS.

Compressed Databases. Significant work has been done on compression for disk-based, in-
memory, and GPU-accelerated DBMSs. with light-weight compression techniques, e.g., dictionary/
run-length encodings, null suppression, etc., and have seen the most active research and application.
[8] is a report on light-weight compression in disk-based database systems and the possible per-
formance improvements for various schemes and workloads. [30] discusses how to use the CPU’s
SIMD capabilities to enable fast filtering and decompression of null-suppressed data, reaching
high effective data processing bandwidths. The authors discuss that while their methods could
be integrated on GPUs, the limited CPU-GPU interconnect bandwidth can not sustain the band-
width advantage they achieve on CPUs in the in-memory scenario (see also Figure 12). [4, 10]
discuss compression-aware query optimization and processing respectively. [31] explores automatic
adaptive compression of cold column sections based on access statistics.

Light-weight compression on graphical processors has been explored in [7], in which the authors
detail the advantage of these approaches generally and the potential in light of limited CPU-GPU
bandwidth especially. [25] and [1] explore how light-weight GPU compression techniques can be
optimized to keep data in faster register or on-chip memory during a decompression and query
processing pipeline. All these approaches are naturally not data agnostic.

Processing near Storage. The authors of [22] envision a database running fully on a computa-
tional SSD. They report how such a system can significantly reduce I/O time (which takes up the
largest part of total benchmark runtime) for typical transactional workloads. The opportunities
and design space of co-designing applications and storage devices are detailed in [13].

While these advances in future hardware for data processing emphasize the need for further
optimizations of the I/O path, we regard these solutions as mostly orthogonal. For example, our
system can still benefit from light-weight near-storage pruning or selection mechanisms, while
computationally intensive operations do not seem to be feasible (or desirable in the case of heavy-
weight decompression) to be executed on SSDs.

9 Conclusion

In this paper, we outlined the potential of GPU-acceleration for analytical workloads over flash-
based data. We discussed how direct access to storage, heavy-weight compression, and GPU-based
data pruning techniques could be used to build a system that robustly achieves high process-
ing bandwidths previously unattainable for flash-based CPU and GPU systems. We investigated
how CPU and GPU can co-process queries that exceed the graphical device’s available memory
capabilities.

Acknowledgments

We gratefully acknowledge support by the Federal Ministry of Education and Research (BMBF)
under Grant No. 011S22091. We also thanks hessian.AI and DFKI for their support.

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

GOLAP: A GPU-in-Data-Path Architecture
for High-Speed OLAP 237:25

References

[1] Azim Afroozeh, Lotte Felius, and Peter A. Boncz. 2024. Accelerating GPU Data Processing using FastLanes Compression.
In Proceedings of the 20th International Workshop on Data Management on New Hardware, DaMoN 2024, Santiago, Chile,
10 June 2024. ACM, 8:1-8:11. https://doi.org/10.1145/3662010.3663450

[2] Jens Axboe. 2022. Flexible I/O Tester. https://github.com/axboe/fio

[3] Sebastian Bref3. 2013. Why it is time for a HyPE: A Hybrid Query Processing Engine for Efficient GPU Coprocessing
in DBMS. Proc. VLDB Endow. 6, 12 (2013), 1398-1403. https://doi.org/10.14778/2536274.2536325

[4] Zhiyuan Chen, Johannes Gehrke, and Flip Korn. 2001. Query Optimization In Compressed Database Systems. In
Proceedings of the 2001 ACM SIGMOD international conference on Management of data, Santa Barbara, CA, USA, May
21-24, 2001, Sharad Mehrotra and Timos K. Sellis (Eds.). ACM, 271-282. https://doi.org/10.1145/375663.375692

[5] Periklis Chrysogelos, Panagiotis Sioulas, and Anastasia Ailamaki. 2019. Hardware-conscious Query Processing in
GPU-accelerated Analytical Engines. In 9th Biennial Conference on Innovative Data Systems Research, CIDR 2019,
Asilomar, CA, USA, January 13-16, 2019, Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2019/papers/p127-
chrysogelos-cidr19.pdf

[6] RuiFang, Bingsheng He, Mian Lu, Ke Yang, Naga K. Govindaraju, Qiong Luo, and Pedro V. Sander. 2007. GPUQP: query
co-processing using graphics processors. In Proceedings of the ACM SIGMOD International Conference on Management
of Data. ACM, 1061-1063.

[7] Wenbin Fang, Bingsheng He, and Qiong Luo. 2010. Database Compression on Graphics Processors. Proc. VLDB Endow.
3,1(2010), 670-680. https://doi.org/10.14778/1920841.1920927

[8] G Graefe and LD Shapiro. 1991. Data compression and database performance. In 1991 Symposium on Applied Computing.
IEEE Computer Society, 22-23.

[9] Gabriel Haas, Michael Haubenschild, and Viktor Leis. 2020. Exploiting Directly-Attached NVMe Arrays in DBMS. In
10th Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020,
Online Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf

[10] Juliana Hildebrandt, Dirk Habich, Patrick Damme, and Wolfgang Lehner. 2016. Compression-Aware In-Memory Query
Processing: Vision, System Design and Beyond. In Data Management on New Hardware - 7th International Workshop on
Accelerating Data Analysis and Data Management Systems Using Modern Processor and Storage Architectures, ADMS 2016
and 4th International Workshop on In-Memory Data Management and Analytics, IMDM 2016, New Delhi, India, September
1, 2016, Revised Selected Papers (Lecture Notes in Computer Science, Vol. 10195), Spyros Blanas, Rajesh Bordawekar,
Tirthankar Lahiri, Justin J. Levandoski, and Andrew Pavlo (Eds.). Springer, 40-56. https://doi.org/10.1007/978-3-319-
56111-0_3

[11] Tim Kaldewey, Guy M. Lohman, René Miiller, and Peter Benjamin Volk. 2012. GPU join processing revisited. In
Proceedings of the Eighth International Workshop on Data Management on New Hardware, DaMoN 2012, Scottsdale, AZ,
USA, May 21, 2012, Shimin Chen and Stavros Harizopoulos (Eds.). ACM, 55-62. https://doi.org/10.1145/2236584.2236592

[12] Viktor Leis, Michael Haubenschild, Alfons Kemper, and Thomas Neumann. 2018. LeanStore: In-Memory Data
Management beyond Main Memory. In 34th IEEE International Conference on Data Engineering, ICDE 2018, Paris, France,
April 16-19, 2018. IEEE Computer Society, 185-196. https://doi.org/10.1109/ICDE.2018.00026

[13] Alberto Lerner and Philippe Bonnet. 2021. Not your Grandpa’s SSD: The Era of Co-Designed Storage Devices. In
SIGMOD °21: International Conference on Management of Data, Virtual Event, China, June 20-25, 2021, Guoliang Li,
Zhanhuai Li, Stratos Idreos, and Divesh Srivastava (Eds.). ACM, 2852-2858. https://doi.org/10.1145/3448016.3457540

[14] Jing Li, Hung-Wei Tseng, Chunbin Lin, Yannis Papakonstantinou, and Steven Swanson. 2016. HippogriffDB: Balancing
I/0 and GPU Bandwidth in Big Data Analytics. Proc. VLDB Endow. 9, 14 (2016), 1647-1658. https://doi.org/10.14778/
3007328.3007331

[15] Thomas Neumann and Michael J. Freitag. 2020. Umbra: A Disk-Based System with In-Memory Performance. In 10th
Conference on Innovative Data Systems Research, CIDR 2020, Amsterdam, The Netherlands, January 12-15, 2020, Online
Proceedings. www.cidrdb.org. http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf

[16] Hamish Nicholson, Aunn Raza, Periklis Chrysogelos, and Anastasia Ailamaki. 2023. HetCache: Synergising NVMe

Storage and GPU acceleration for Memory-Efficient Analytics. In 13th Conference on Innovative Data Systems Research,

CIDR 2023, Amsterdam, The Netherlands, January 8-11, 2023. www.cidrdb.org. https://www.cidrdb.org/cidr2023/papers/

p84-nicholson.pdf

NVIDIA. 2024. cuDF. https://github.com/rapidsai/cudf

NVIDIA. 2024. nvcomp Library. https://developer.nvidia.com/nvcomp

NVIDIA. 2024. NVIDIA GPU Direct Storage. https://docs.nvidia.com/gpudirect-storage/

NVIDIA. 2024. NVIDIA Unified Memory. https://developer.nvidia.com/blog/improving-gpu-memory-

oversubscription-performance/

Patrick E O’Neil, Elizabeth] O’Neil, and Xuedong Chen. 2007. The star schema benchmark (SSB). https://citeseerx.ist.

psu.edu/document?repid=rep1&type=pdf&doi=d500381f36e¢3599400db896173c21bd395dd090d

—

[17
[18

[i R

[20

[21

—

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

https://doi.org/10.1145/3662010.3663450
https://github.com/axboe/fio
https://doi.org/10.14778/2536274.2536325
https://doi.org/10.1145/375663.375692
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
http://cidrdb.org/cidr2019/papers/p127-chrysogelos-cidr19.pdf
https://doi.org/10.14778/1920841.1920927
http://cidrdb.org/cidr2020/papers/p16-haas-cidr20.pdf
https://doi.org/10.1007/978-3-319-56111-0_3
https://doi.org/10.1007/978-3-319-56111-0_3
https://doi.org/10.1145/2236584.2236592
https://doi.org/10.1109/ICDE.2018.00026
https://doi.org/10.1145/3448016.3457540
https://doi.org/10.14778/3007328.3007331
https://doi.org/10.14778/3007328.3007331
http://cidrdb.org/cidr2020/papers/p29-neumann-cidr20.pdf
https://www.cidrdb.org/cidr2023/papers/p84-nicholson.pdf
https://www.cidrdb.org/cidr2023/papers/p84-nicholson.pdf
https://github.com/rapidsai/cudf
https://developer.nvidia.com/nvcomp
https://docs.nvidia.com/gpudirect-storage/
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/
https://developer.nvidia.com/blog/improving-gpu-memory-oversubscription-performance/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d500381f36e3599400db896173c21bd395dd090d
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=d500381f36e3599400db896173c21bd395dd090d

237:26 Nils Boeschen, Tobias Ziegler, and Carsten Binnig

[22] Jong-Hyeok Park, Soyee Choi, Gihwan Oh, and Sang Won Lee. 2021. SaS: SSD as SQL Database System. Proc. VLDB
Endow. 14, 9 (2021), 1481-1488. https://doi.org/10.14778/3461535.3461538
[23] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeongmin Brian Park, Jinjun
Xiong, Chris J. Newburn, Dmitri Vainbrand, I-Hsin Chung, Michael Garland, William J. Dally, and Wen-Mei W. Hwu.
2023. GPU-Initiated On-Demand High-Throughput Storage Access in the BaM System Architecture. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems,
Volume 2, ASPLOS 2023, Vancouver, BC, Canada, March 25-29, 2023, Tor M. Aamodt, Natalie D. Enright Jerger, and
Michael M. Swift (Eds.). ACM, 325-339. https://doi.org/10.1145/3575693.3575748
Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study of the Fundamental Performance Characteristics of
GPUs and CPUs for Database Analytics. In Proceedings of the 2020 International Conference on Management of Data,
SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14-19, 2020, David Maier, Rachel Pottinger, AnHai
Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 1617-1632. https://doi.org/10.1145/
3318464.3380595
Anil Shanbhag, Bobbi W. Yogatama, Xiangyao Yu, and Samuel Madden. 2022. Tile-based Lightweight Integer Compres-
sion in GPU. In SIGMOD ’22: International Conference on Management of Data, Philadelphia, PA, USA, June 12 - 17, 2022,
Zachary G. Ives, Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1390-1403. https://doi.org/10.1145/3514221.3526132
Panagiotis Sioulas, Periklis Chrysogelos, Manos Karpathiotakis, Raja Appuswamy, and Anastasia Ailamaki. 2019.
Hardware-Conscious Hash-Joins on GPUs. In 35th IEEE International Conference on Data Engineering, ICDE 2019,
Macao, China, April 8-11, 2019. IEEE, 698-709. https://doi.org/10.1109/ICDE.2019.00068
TLC. 2024. Trip Record Data. https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
Diego G. Tomé, Tim Gubner, Mark Raasveldt, Eyal Rozenberg, and Peter A. Boncz. 2018. Optimizing Group-By
and Aggregation using GPU-CPU Co-Processing. In International Workshop on Accelerating Analytics and Data
Management Systems Using Modern Processor and Storage Architectures, ADMS@VLDB 2018, Rio de Janeiro, Brazil,
August 27, 2018, Rajesh Bordawekar and Tirthankar Lahiri (Eds.). 1-10. http://www.adms-conf.org/2018-camera-
ready/tome_groupby.pdf
Transaction Processing Performance Council (TPC). 1993. TPC BENCHMARK H (Decision Support) Standard Specifi-
cation Revision 3.0.1. http://www.tpc.org
Thomas Willhalm, Nicolae Popovici, Yazan Boshmaf, Hasso Plattner, Alexander Zeier, and Jan Schaffner. 2009. SIMD-
Scan: Ultra Fast in-Memory Table Scan using on-Chip Vector Processing Units. Proc. VLDB Endow. 2, 1 (2009), 385-394.
https://doi.org/10.14778/1687627.1687671
Leon Windheuser, Christoph Anneser, Huanchen Zhang, Thomas Neumann, and Alfons Kemper. 2024. Adaptive
Compression for Databases. In Proceedings 27th International Conference on Extending Database Technology, EDBT 2024,
Paestum, Italy, March 25 - March 28, Letizia Tanca, Qiong Luo, Giuseppe Polese, Loredana Caruccio, Xavier Oriol, and
Donatella Firmani (Eds.). OpenProceedings.org, 143-149. https://doi.org/10.48786/EDBT.2024.13
Bobbi W. Yogatama, Weiwei Gong, and Xiangyao Yu. 2022. Orchestrating Data Placement and Query Execution in
Heterogeneous CPU-GPU DBMS. Proc. VLDB Endow. 15, 11 (2022), 2491-2503. https://doi.org/10.14778/3551793.3551809
[33] Yuan Yuan, Rubao Lee, and Xiaodong Zhang. 2013. The Yin and Yang of Processing Data Warehousing Queries on
GPU Devices. Proc. VLDB Endow. 6, 10 (2013), 817-828. https://doi.org/10.14778/2536206.2536210
Mohamed Ziauddin, Andrew Witkowski, You Jung Kim, Janaki Lahorani, Dmitry Potapov, and Murali Krishna.
2017. Dimensions Based Data Clustering and Zone Maps. Proc. VLDB Endow. 10, 12 (2017), 1622-1633. https:
//doi.org/10.14778/3137765.3137769

[24

=

[25

[}

[26

—

[27
[28

—

[29

—

[30

[t

[31

—

[32

—

[34

=

Received April 2024; revised July 2024; accepted August 2024

Proc. ACM Manag. Data, Vol. 2, No. 6 (SIGMOD), Article 237. Publication date: December 2024.

https://doi.org/10.14778/3461535.3461538
https://doi.org/10.1145/3575693.3575748
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1145/3514221.3526132
https://doi.org/10.1109/ICDE.2019.00068
https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf
http://www.adms-conf.org/2018-camera-ready/tome_groupby.pdf
http://www.tpc.org
https://doi.org/10.14778/1687627.1687671
https://doi.org/10.48786/EDBT.2024.13
https://doi.org/10.14778/3551793.3551809
https://doi.org/10.14778/2536206.2536210
https://doi.org/10.14778/3137765.3137769
https://doi.org/10.14778/3137765.3137769

	Abstract
	1 Introduction
	2 System Design Overview
	2.1 The Core Building Blocks
	2.2 Discussion

	3 Compressed Scan on a GPU
	3.1 Storage Format of Compressed Tables
	3.2 Reading Data with GPU Direct Storage
	3.3 On-the-fly Decompression
	3.4 Data Loading and Compression

	4 Opportunistic Pruning
	4.1 Inflating Bandwidth by Pruning
	4.2 GPU-based Parallel Pruning
	4.3 GPU-based Fine-grained Pruning
	4.4 Sideways Pruning on GPUs

	5 GPU-CPU Query Co-Execution
	5.1 CPU Naïve
	5.2 CPU Fallback
	5.3 Hybrid Join

	6 Experimental Evaluation
	6.1 Setup
	6.2 Exp. 1: End-to-end Query Execution
	6.3 Exp. 2 Compressed Scan
	6.4 Exp. 3: Opportunistic Pruning
	6.5 Exp. 4: GPU-CPU Co-Execution
	6.6 Exp. 5: System Comparison
	6.7 Exp. 6: System Cost

	7 Discussion: Query Optimization
	8 Related Work
	9 Conclusion
	References

