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Abstract

Cloud databases have become prevalent, as evidenced by the rapid
growth of systems such as BigQuery, Snowflake, and Databricks.
Concurrently, there has been a significant increase in the require-
ments for secure data processing when outsourcing databases to
the cloud. For this, Trusted Execution Environments (TEEs) have
emerged as a key technology in the cloud, which is witnessed by
the fact that all cloud providers offer TEEs in their service portfolios.
However, Amazon Web Services’ (AWS) approach to TEEs based
on Nitro Enclaves fundamentally differs from that of other cloud
providers like Microsoft and Google or standard technologies such
as Intel SGX. In this paper, we thus set out the goal to understand
the implications of using AWS Nitro Enclaves for cloud databases.
Although Nitro Enclaves initially appear to be a promising platform
for pure TEE performance, they come with significant limitations
regarding communication with the Nitro Enclave. Our benchmark
results provide insight into the performance and practical chal-
lenges of deploying database workloads in AWS Nitro Enclaves,
offering valuable guidance for practitioners and researchers.
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Figure 1: Using Nitro Enclaves for Cloud DBMSs: Nitro En-
claves provide separation from application service providers,
but customers need to trust AWS. To enforce strong isolation,
Nitro Enclaves communicate solely through a local VSOCK.

1 Introduction

Secure data processing in the cloud. Public clouds have become
prevalent for database management systems (DBMSs), as evidenced
by the rapid growth of systems such as BigQuery, Snowflake, and
Databricks. While cloud DBMSs offer many benefits, including on-
demand scaling and access to immense compute and storage capac-
ity, the cloud model places a significant responsibility on the service
provider regarding data security [26]. Customers must trust service
providers to keep their data safe and protect against breaches or
data corruption — a trust that is not always warranted, as recent
attacks show [9, 30]. Such incidents are particularly concerning,
given the increasing cloud DBMS trend.

Trusted Execution Environments. A key technology to enable se-
cure and high-performance data processing in the cloud is Trusted
Execution Environments (TEEs) [1, 12, 14, 16, 21, 22, 33]. TEEs
create isolated environments, or enclaves, where sensitive data
can be processed securely, protecting data and code from poten-
tially privileged attackers. Various TEE technologies and implemen-
tations exist, including hardware-based solutions from Intel and
AMD and cloud-based offerings from Amazon Web Services (AWS).
These technologies provide different security guarantees, such as
hardware-enforced encryption, integrity protection, and freshness
verification [35], making it hard to navigate the TEE landscape.
Relevance of AWS Nitro Enclaves. While hardware-based TEEs
such as Intel SGX [14] and AMD SEV-SNP [1] have been widely
researched in academia and industry [13, 14, 16, 21, 22, 25, 27],
AWS Nitro Enclaves, announced in 2020, remain heavily under-
explored for cloud DBMSs. Unlike hardware-based TEEs, which
require customers to trust only the hardware and offer hardware-
level protections such as memory encryption, AWS Nitro Enclaves
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are built around the assumption of AWS as a trusted infrastructure
provider, leading to different security guarantees. Moreover, their
architecture and performance characteristics are still poorly under-
stood. Hence, this paper presents the first systematic analysis of
AWS Nitro Enclaves for cloud DBMS.

Lacking integrity & privacy guarantees. Nitro Enclaves are
virtual machines (VMs) based on AWS’ Nitro Platform [2]. AWS
controls the underlying hardware and software, including the hy-
pervisor, which impacts the security guarantees. In particular, AWS
can (in theory) inject modified firmware or hypervisor updates,
affecting system integrity. Unlike other TEEs, such as Intel SGX,
Nitro Enclaves do not encrypt data in memory, which opens up pri-
vacy attacks. For example, a compromised Nitro system could allow
AWS to extract a memory dump, compromising data confidentiality.
What do we get from Nitro Enclaves? Nitro Enclaves provide
separation from application service providers. For example, when a
cloud database service provider, such as Snowflake, runs its DBMS
software in Nitro Enclaves, it cannot — unlike today — access cus-
tomer data during processing. Additionally, like other major TEEs,
Nitro Enclaves support attestation, allowing customers to verify
the integrity of the software inside an enclave. In a data processing
scenario, this ensures that a client application connects to a trusted
DBMS instance before storing or processing data.

Using Nitro enclaves in cloud DBMSs. Figure 1 illustrates how
Nitro Enclaves could be used in a cloud DBMS. Notably, Nitro En-
claves do not support IP networking and persistent storage inside
the enclave [11]. Instead, they communicate solely through a local
socket (VSOCK in Figure 1) with the so-called EC2 host instance. To
communicate with external components, e.g., database clients or
I/O devices, developers must split their application into a trusted
component (running inside the enclave) and an untrusted compo-
nent (running on the host) handling all the external I/O traffic and
forwarding it to the enclave. The restriction to a local socket con-
nection has architectural implications and performance overheads,
which have not been studied thoroughly.

Contributions. This paper presents the first database-centric anal-
ysis of AWS Nitro Enclaves, systematically deriving implications
for database system design and implementation. To that end, we
provide the following contributions: First, since AWS Nitro En-
claves are not well understood in the database community, we
discuss their position in the TEE landscape and high-level archi-
tecture in Sections 2 and 3. Second, we conduct database-centric
benchmarks (macro- and micro-level) to reveal the performance
overhead of Nitro Enclaves and, particularly, the VSOCK approach
in different settings (Section 4). Third, we report on practical in-
sights for DBMS design beyond pure performance results (Sec-
tion 5). All code and data used in this paper are publicly available at
https://github.com/DataManagementLab/nitro-enclaves-benchmarks.

2 Trusted Execution Environments Landscape

Trusted Execution Environments (TEEs) provide isolated environ-
ments for securely processing data. However, TEEs differ in many
dimensions, including the size and scope of the Trusted Computing
Base (TCB), trust assumptions, threat models, memory encryption,
and the root of trust. These differences affect system design, partic-
ularly in the context of DBMSs. In the following, we discuss these
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Figure 2: Comparison of Trusted Computing Base (TCB)
of different TEE approaches. Cloud hardware and software
stack from left to right. TCB is marked green for the different
TEE technologies. Nitro Enclaves have the largest TCB.
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differences and compare AWS Nitro Enclaves with process-based
TEEs and confidential VM technologies.
Process-based TEEs like Intel’s Software Guard Extensions (SGX)
(Figure 2 top row) have the smallest TCB, limited to the enclave’s
code, the CPU, and its firmware (marked green in Figure 2). A
smaller TCB reduces the risk of vulnerabilities and improves secu-
rity assurance. However, because of the very small TCB that does
not include the operating system, system calls are not supported
inside SGX enclaves, making it difficult to integrate with existing
DBMSs without re-architecting them into a trusted and untrusted
component. To achieve their security guarantees, Intel SGX en-
claves are isolated at the CPU level, with the CPU as the root of
trust. The CPU ensures that only enclave code can access plaintext
data. Hardware-level memory encryption and access control protect
the confidentiality of enclave data even from privileged components
such as administrators, operating systems, or hypervisors.
Confidential Virtual Machines (VMs) (e.g., Intel TDX [12], AMD
SEV [1]) extend TEE protections to entire VMs. Unlike process-
based TEEs, confidential VMs (Figure 2 middle) support off-the-shelf
guest operating systems, facilitating DBMS deployment without a
re-design. These TEEs encrypt VM memory and isolate it from the
hypervisor and other VMs, preventing a compromised hypervisor
from accessing the VM’s memory. However, as shown in Figure 2
in green, their TCB includes the entire OS and software stack,
increasing the attack surface. As a result, confidential VMs cannot
protect against rouge VM administrators or backdoors in the OS.
AWS Nitro Enclaves combine aspects of process-based TEEs and
confidential VMs (Figure 2, bottom row). Like confidential VMs,
they run a full kernel and OS, which eases DBMS integration. How-
ever, instead of isolating the VMs from the hypervisor via special
CPU mechanisms and memory encryption, Nitro enclaves rely on
a trusted hypervisor to enforce isolation between enclaves and the
host. Like process-based TEEs, AWS Nitro Enclaves are further
isolated by design constraints such as the absence of persistent
storage and network access (see Figure 1). In contrast to existing
process-based TEEs and confidential VMs, Nitro Enclaves do not
inherently include memory encryption or hardware-based protec-
tion against physical attacks. Their security depends on the Nitro
infrastructure, including the hypervisor and management firmware.
If the underlying hardware supports memory encryption, such as
Intel TME-MK [10], Nitro Enclaves can inherit this functionality.
Overall, and as illustrated in Figure 2, Nitro Enclaves’ trust model
occupies a unique place in the TEE landscape. Unlike confidential
virtual machines, VM Admins (i.e., database service providers) do
not need to be trusted. In exchange, they require trust in the hy-
pervisor and the cloud operator. This is a valid trust model for
customers trusting AWS and looking for, e.g., database services
built on top of AWS’s infrastructure, such as Snowflake or Firebolt.
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3 How do AWS Nitro Enclaves Work?

To clarify how Nitro Enclaves can be used in DBMSs and provide
the required background for our benchmarks, we discuss the inner
workings of AWS Nitro Enclaves in the following.

3.1 The Nitro System

As a basis for their TEE technology, AWS uses the Nitro System
that offloads key functions for managing the cloud infrastructure to
dedicated hardware. The Nitro System consists of three key compo-
nents that enforce the security guarantees of AWS EC2 instances:
The Nitro Cards, the Nitro Security Chip, and the Nitro Hypervisor.
The Nitro Cards and the Nitro Security Chip are dedicated and CPU
vendor-independent hardware that enables AWS to create and man-
age VMs, update firmware, and keep control of their hardware even
if they give customers bare-metal access without a hypervisor. For
example, the nitro security chip prevents customers from chang-
ing CPU firmware [2]. The Nitro Hypervisor is an AWS-specific
hypervisor that manages the hardware resources between the EC2
instances as instructed by the Nitro Card. Overall, these three com-
ponents assure AWS’ control over their infrastructure and isolate
clients using their hardware [2].

3.2 AWS Nitro Enclaves

Next, we detail how AWS Nitro Enclaves are created and used.
Enclave creation & isolation. AWS Nitro Enclaves operate as
virtual machines with their own Linux kernel, independent of the
host VM. When the Nitro System launches a Nitro Enclave, it takes
configurable number of CPU cores and memory pages from the host
VM and assigns them to the enclave. This isolates and protects the
enclave from the host VM, ensuring that sensitive data processing
remains secure. As such, Nitro Enclaves inherit the isolation and
security properties of the Nitro system.

Programming model. Nitro Enclaves are created from enclave
images. Customers can create enclave images from Docker images
containing the enclave application. AWS provides a command-line
tool, nitro-cli [4], to compile Docker images into enclave image
files by adding a kernel. As mentioned before, Nitro Enclaves do
not have a normal networking interface or storage access. They
can only communicate with their EC2 host instance via a VSOCK
interface [5]. VSOCK was originally designed for communication
between a hypervisor and its virtual machines. AWS repurposed it
for communication between an enclave and its host EC2 instance.
VSOCK uses 32-bit context IDs and ports as identifiers and enables
streaming communication between two sockets, similar to TCP. Be-
cause of the restriction to VSOCK communication, enclave DBMS
require a host application as a proxy for networking and storage
access. This is similar to Intel SGX, which requires the application
to split into the secure enclave and the insecure host process com-
municating with the OS. If a DBMS does not support VSOCK, it
also requires a proxy inside the enclave that translates from VSOCK
to TCP/UDP.

To summarize, the following steps are required to run a DBMS
inside a Nitro Enclave: (1) Create a Docker image that contains
the DBMS and, if required, a VSOCK proxy for communication.
(2) Convert the Docker image to an enclave image using nitro-cli.
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Figure 3: Performance comparison of running the Redis
benchmark via local loopback without an enclave vs. inside
an enclave. Performance is the same in both cases.

(3) Run the enclave and a network and storage access proxy on the
host instance.

4 Performance Evaluation of Nitro Enclaves

In the following, we present the results of our performance anal-
ysis of database workloads in Nitro Enclaves. To the best of our
knowledge, we are the first to investigate the performance implica-
tions of AWS Nitro Enclaves in detail. We start by benchmarking
a full DBMS inside a Nitro Enclave in Section 4.1 and then in-
vestigate the underlying causes of performance regressions with
micro-benchmarks in Section 4.2. We used various standard AWS
EC2 instances for all our experiments, specifying the instance types
in the descriptions. Each experiment was executed at least 9 times,
and we report the arithmetic mean unless otherwise stated.

4.1 Running a DBMS in Nitro Enclaves

First, we provide a high-level picture of Nitro Enclave performance
for DBMS workloads. Since AWS Nitro Enclaves lack direct stor-
age access, we decided to use Redis [28]. Redis is an in-memory
key-value store with optional disk storage and has a standardized
benchmark suite — Redis benchmark - that is relatively network-
heavy [28]. First, we measure performance with the server and
clients inside the enclave, isolating any effects of the VSOCK in-
terface. We then move the clients outside the enclave and keep
Redis inside to account for VSOCK-based communication. For all
experiments in this section, we used c6in.16xlarge instances with
32 cores, 64 threads, and 100 Gbit/s network interface.

Client and DBMS inside Enclave. We compare the Redis per-
formance inside a Nitro Enclave to its performance on the host
instance (outside the enclave) using the same hardware. Figure 3
shows a representative subset of results. It compares the through-
put of four database operations between both settings. Because
Nitro Enclaves do not impose additional overhead for in-memory
processing, the throughput inside and outside the enclave is the
same (as expected).

Client outside Enclave. Next, we investigate the performance
effects of running the Redis server inside a Nitro Enclave while keep-
ing the clients outside - a setup resembling database-as-a-service.
Because Redis does not support VSOCK-based communication, we
use proxies, as suggested by AWS [4], to translate between VSOCK
and Redis’ TCP connections. Specifically, a proxy inside the enclave
connects VSOCK to Redis’ TCP interface, and another proxy on
the host forwards incoming TCP traffic to the enclave. We use the
general-purpose tool socat [15] as the proxy for our experiments.
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Figure 4: Experiment settings used in this paper. (C)lients
and (S)ervers are located either on a normal EC2 instance
(Host) or inside an enclave. The hatched (P)roxies are not
required in VSOCK-enabled applications.

The nitro-cli repository also contains a VSOCK to TCP proxy [3],
but it only allows outgoing connections and is thus unsuitable for
DBMS servers. To isolate the performance effects of the network,
the VSOCK connection, and the proxies, we vary the placement of
both client and server, as detailed below. The main settings for this
experiment are depicted in Figure 4:

e Local with Nitro Enclaves (LNE): The clients run on the host
instance, while the server runs inside the enclave and com-
municates with the clients via proxies. This setup does not
involve external network traffic.

o Networked with Nitro Enclaves (NNE): The server again runs
in an enclave, but the clients run on a different EC2 instance
in the same availability zone (AZ). This setup introduces
external network traffic.

To compare these settings against non-enclave scenarios, we use
the following baselines:

e Local without Nitro Enclaves (LL&LLP): Both client and server
run on the same instance and communicate only via local
loopback, either without proxies (LL) or with proxies (LLP).

e Networked without Nitro Enclaves (N): The Clients and the
server run on different instances in the same AZ and connect
via TCP.

We focus on Redis’ Set operation in this experiment because
its short latency reveals network overhead and it shows stable
performance across repeated runs. We configure the benchmark to
use 10 clients with a pipeline depth of 3.

The benchmark results are depicted in Figure 5. Comparing the
settings with Nitro Enclaves (green) to those without enclaves (blue)
reveals throughput (left) and latency (right) degradations of more
than an order of magnitude when enclaves are used. To analyze the
overhead source further, we examine the LLP setting that includes
a TCP to TCP socat proxy. It shows that the proxy only introduces
a minor reduction in throughput and a minor increase in latency.
Accounting for a network overhead with the N setting shows only
a slight performance degradation, too. Overall, it is clear that the
transition to the Nitro Enclave in the Redis benchmark introduces
a far larger performance penalty than the proxy or network alone.
Performance insight. Running the Redis server inside an enclave
reduces the benchmark throughput by up to 92.5 % and increases la-
tency by up to 20x. Data processing inside the enclave is not slower.
Thus, the slowdown must be caused by translating between TCP
and VSOCK and by the VSOCK transfer between the host instance
and enclave. The following section investigates the throughput
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Figure 5: Local Redis performance (without networking) vs.
with networking. Running the Redis server in a Nitro Enclave
(green bars) reduces performance by more than 10x compared
to running it without a Nitro Enclave (blue bars).

and latency of the VSOCK interface in more detail with micro-
benchmarks.

Practical insight. A notable side effect of the VSOCK proxy setup
in this experiment is its reduced stability: The higher the number
of clients, the more benchmark runs fail when proxied. We at-
tribute these failures to the implementation of socat. Consequently,
production-grade DBMSs running in Nitro Enclaves require a more
robust proxy implementation.

4.2 Micro-Benchmarks for VSOCK

As shown in the previous section, the VSOCK interface between
Nitro Enclaves and their host instance significantly decreases per-
formance for a full DBMS inside the enclave. Motivated by this
result, we quantify the performance characteristics of the VSOCK
interface in isolation. We investigate the interface’s throughput
using a VSOCK-enabled fork of the well-known network perfor-
mance benchmark tool iperf3 [29]. In addition, we implement a
VSOCK client-server application to measure the round-trip latency
for varying message sizes.

Influence of HW, connection count and direction. We begin
with analyzing the throughput depending on multiple potential
influence factors: (1) We vary the EC2 instance size influencing the
number of CPU cores and the instance network interface speed to
understand the effect of different hardware characteristics. (2) Since
multiple connections are often required to saturate client-server
interfaces, we also vary the number of VSOCK connections (po-
tentially multiplexing connections on a single CPU core for small
instance sizes). (3) We vary the communication direction to analyze
its impact on throughput. We always create one enclave per host
instance with half of the host instance’s CPU cores. Thus, enclaves
grow with instance size.

From the experiment results in Figure 6, we can draw four conclu-
sions: (1) Similar to communication over regular sockets, multiple
threads and connections are required to achieve maximal through-
put. In our experiments, the maximum throughput is generally
achieved with 4 to 8 threads, independent of the number of CPU
cores the host instance and the enclave have. (2) VSOCK through-
put does not increase with instance size. We measured the fastest
VSOCK throughput for the relatively small 2xlarge instances and
the lowest for the relatively large 8xlarge instances. Thus, the en-
clave performance of instances with high CPU core count will
likely be limited by VSOCK throughput. (3) When considering the
communication direction, we can observe that throughput into the
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Figure 6: Comparison of host-enclave VSOCK throughput
between different instance types. Throughput does not in-
crease with instance size and network capability. Throughput
increases with number of threads until 4-8 threads. Through-
put is asymmetric: ingress is faster than egress.

enclave is up to 2 times higher than throughput for communication
from the enclave to the host instance. (4) Because VSOCK’s internal
implementation is undocumented (i.e., through shared memory
abstractions or network interfaces), we tested the effects of NIC
speeds on VSOCK.As we see in our experimental results in Figure 6,
switching from the c6i.8xlarge instance with a 12.5 Gbit/s network
interface to the c6in.8xlarge instance with 50 Gbit/s slightly de-
creased the average throughput instead of increasing it. This sug-
gests that VSOCK is not implemented using network interfaces.
Consequently, a DBMS running in a Nitro Enclave will likely not
benefit from network-optimized instances if VSOCK remains the
bottleneck.

Performance insight. Overall, the achievable VSOCK through-
put of the tested instances lies between 10 and 15 Gbit/s on aver-
age. This is slightly faster than the minimum network connection
throughput in EC2 of 10 Gbit/s, yet an order of magnitude below
modern network hardware capable of 200 Gbits/s. As a result, when
a DBMS runs inside a Nitro Enclave, the VSOCK interface can easily
become the limiting factor: large or network-optimized instances
can deliver more data to the host than can be transferred into the
enclave, wasting available CPU and memory.

Varying message sizes. In addition to the effect of hardware con-
figurations on the VSOCK throughput, we investigate the impact
of message size. Message size is a relevant factor for DBMS de-
sign: OLTP DBMS generally communicate in small messages but
could try to batch messages for higher throughput at the cost of
latency. OLAP DBMS can increase their data access granularity
to optimize throughput. Message size can be varied in iperf3. For
this experiment, we use four communication threads and channels,
vary the message size from 64B to 1 MB, and split a c6in.8xlarge
instance into a host instance and an enclave. We run the experiment
between two EC2 instances via the local network as a baseline. The
results are depicted in Figure 7. The VSOCK throughput increases
with message size. It reaches an optimum at approximately 32 kB
message size. The observed pattern is similar to the TCP/IP base-
line, although the absolute throughput is higher via the network.
Thus, to achieve high throughput, OLAP DBMS will need to adjust
message sizes accordingly.

Varying number of enclaves. Since larger enclaves and instance
types with more CPU cores do not increase the VSOCK throughput,
we evaluate if the combined VSOCK throughput of multiple smaller
Nitro Enclaves on a host instance is higher than the throughput
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of a single large enclave. The AWS Nitro System allows one host
instance to create up to four enclaves [6]. Thus, we scale the number
of enclaves created concurrently and connect to each enclave with
one client. We use four communication threads per enclave and
execute the experiment on a c6i.4xlarge instance split into a host
instance with 8 cores and four enclaves with two CPU cores each.
Figure 8 shows the aggregated throughput of all enclaves split
by communication direction and number of enclaves. As we can
see, throughput into the enclaves increases until three concurrently
running enclaves. The throughput out of the enclaves increases
from one to two enclaves. Thus, if the throughput available via
one VSOCK interface limited a DBMS’ performance, one solution
could be to scale the DBMS to multiple Nitro Enclaves connected
to the same host instance on the same hardware. However, this
increases the asymmetry between ingress and egress that already
exists for a single enclave even further, which might be problematic
for communication between the enclaves and OLAP queries with
large result sizes. We also tried to run multiple iperf servers in one
enclave, but this did not increase throughput.
Latency of VSOCK. Next, we look at the latency of VSOCK com-
munication, which is especially relevant for OLTP databases like
Redis. To measure the latency, we wrote a VSOCK client-server
application in C++ that allows us to measure round-trip latency.
Since the server supports VSOCK, a proxy inside the enclave is
unnecessary. All proxies that are not required when compared to
the Redis setting are marked with hatches and dashed outlines in
Figure 4. We varied the message sizes from 64 B to 1 MB and com-
pare the two settings depicted in Figure 4 with the following three
baselines: (1) TCP/IP local loopback round trip (LL) (2) TCP/IP local
loopback including a proxy (LLP), and (3) TCP/IP round trip for
communication in the same availability zone (N).
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latency for small messages. Tail latencies (p999) for VSOCK
are significantly higher than for the other settings.

The results are depicted in Figure 9. They show that VSOCK
round trip latency for small messages is approximately 80 us. This
is 3 times higher than local loopback latency (LL) and approximately
50 % higher than network latency within an AWS availability zone
(N). The results also show that the proxy has a very high influ-
ence on latency. The latency in the network setting including a
proxy (NNE) is more than 10 times higher than both the network
baseline’s latency without proxy and Nitro Enclave (N) and the non-
network baseline proxying only TCP traffic (LLP). This indicates
that additional latency is introduced by translating between TCP
and VSOCK. Comparing the median latencies on the left with the
99.9th percentile on the right shows that the tail latencies of the
VSOCK connection are significantly higher than for other means
of communication.

Performance insight. From this experiment, we conclude that the
proxy latency is crucial for latency-critical applications like OLTP
DBMSs. A more detailed investigation on optimally implementing
TCP to VSOCK proxies is thus an important area of future work.
Different CPU architectures. Finally, we investigate the influence
of CPU generations and architectures on the throughput achievable
via the VSOCK interface. We compare instances with the same
number of CPU cores from Intel, AMD, and AWS (Graviton), as well
as three generations of Intel-based EC2 instances. Each experiment
uses 2xlarge instances with eight hardware threads, split evenly
between the host and enclave. iperf3 is configured to use four
threads. The results are depicted in Figure 10.

We draw the following three conclusions: (1) VSOCK through-
put varies with CPU type (Figure 10, left). We measured the high-
est VSOCK throughput on AMD CPUs, followed by Intel CPUs.
Throughput on Graviton-based instances is nearly an order of mag-
nitude lower than on the x86_64 instances. Hence, AMD CPUs
appear most suitable for throughput-sensitive DBMSs in Nitro En-
claves. (2) When comparing three generations of Intel-based AWS
instances regarding their VSOCK throughput (Figure 10, right),
we can observe that throughput decreases with newer-generation
CPUs. We speculate that this is caused by CPU frequencies decreas-
ing from 3 to 2 GHz over these generations. (3) Even for the faster
AMD CPUs, VSOCK throughput to a single Nitro Enclave is lim-
ited to approx. 25 Gbit/s, eight times less than the fastest network
connections currently available in AWS.
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Figure 10: Comparison of host to enclave VSOCK throughput
between CPU architectures and instance generations. The
AMD-based instance has the fastest VSOCK, followed by the
Intel and the Graviton-based instances. VSOCK throughput
decreases with newer-generation processors.

4.3 Summary

The Redis benchmark shows that the VSOCK interface, combined
with the required proxies, significantly degrades performance. Our
micro-benchmarks indicate that much of this overhead stems from
the enclave interface. VSOCK throughput is limited and ranges
from 3 GB/s to 25 GB/s, depending on number of connections, CPU
architecture, and communication direction. The round-trip latency
into and out of the enclave via VSOCK is approximately 80 ps, which
is similar to the latency between two VMs in an AWS availability
zone. Latency is increased 10x by using socat to connect TCP and
VSOCK streams.

5 Practical Lessons & Discussion

This section summarizes our insights into non-performance-related
issues of working with AWS Nitro Enclaves and discusses the overall
viability of AWS Nitro Enclaves for DBMS.

5.1 Usability & Limitations

Beyond benchmark results and performance numbers, we gained
several qualitative insights from working with AWS Nitro Enclaves
that have practical implications for database engineers.

For example, we found the debugging mode of the AWS Nitro
CLIL which enables reading the standard output stream of the Nitro
Enclave and the applications running inside it, useful for tracking
down issues and bugs. However, the AWS Nitro Enclaves tooling
comes with several restrictions that lead to compatibility issues.
In particular, the current tooling only supports outdated kernel
and software versions. At the time of writing, the official Nitro
CLI still builds all enclave images with Linux kernel version 4.14.
This outdated kernel misses several new features like io_uring for
asynchronous IO, as well as performance optimizations, such as
improvements to the scheduler and VSOCK. Even worse, because
of the old kernel version, we experienced incompatibilities with
current libc versions, which necessitated a switch to older libraries
and compilers. These compatibility issues can quickly lead to higher
overhead than expected for shifting applications into Nitro Enclaves.
We think that improvements and updates to the tooling are overdue
if AWS wants to position AWS Nitro Enclaves as a practical and
usable TEE technology with low development overhead.

A major restriction we noticed with respect to the VSOCK in-
terface is that VSOCK in Nitro Enclaves currently only supports
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streaming sockets similar to TCP. Although the specification sup-
ports datagram sockets — which could potentially improve perfor-
mance [18] - they are not yet implemented in Nitro Enclaves. This
omission is particularly unfortunate for DBMS workloads that, e.g.,
use UDP-based protocols to optimize data shuffling.

5.2 Architectural Implications of VSOCK

Although the standard libraries of important programming lan-
guages, such as C, Python, and Go, contain support for VSOCK,
many applications and DBMSs in particular are not built with sup-
port for this type of communication. Thus, most DBMSs require a
proxy that forwards TCP/UDP from the host instance to the enclave
via the VSOCK interface. Alternatively, they require a rewrite to
split them into a trusted processing component inside the enclave
and an untrusted network/storage access component outside the
enclave that communicate via VSOCK. Some general-purpose net-
work proxy implementations already exist, such as socat, which
can proxy TCP, and Nitriding [31], which can proxy HTTPS re-
quests. However, as our benchmarks above and the Nitriding paper
show, both tools have subpar performance for data-heavy systems.
Thus, DBMS developers who want to use the Nitro Enclave fea-
tures while maintaining their DBMS performance must build better
proxies or change the DBMS architecture. This will cause signifi-
cant engineering costs. If the VSOCK throughput is a bottleneck
for a VSOCK-adapted DBMS, distributing the DBMS over multiple
enclaves could increase performance (see Figure 8), but requires
further architectural changes. Finally, the area of storage proxies is
currently not explored in the scientific literature and might come
with additional challenges.

5.3 Is Nitro interesting for DBMS?

Our experimental results and practical lessons raise the question
whether AWS Nitro Enclaves are an interesting and useful technol-
ogy for further research and development of secure DBMS when
compared to hardware-based TEEs. We discuss three important
aspects to this question: the trust model, the performance, and the
future prospects and developments.

Trust model. As introduced in Section 2, the trust model and
security assumptions of AWS Nitro Enclaves are different from
those of SGX, SEV, and similar TEEs. In contrast to hardware-based
TEEs that promise isolation from the cloud provider, AWS Nitro
Enclaves use the cloud provider as their trust anchor. Thus, AWS
Nitro Enclaves can be a fitting security technology if AWS is a
common trusted party for users and service providers, and proof
that the software is running in an AWS data center is required. Such
a model might be beneficial for Database-as-a-Service providers.
Performance. As our experiments have shown, the processing
performance inside AWS Nitro Enclaves is equal to normal VMs
on the same hardware. However, the restriction to communication
via VSOCK and reliance on proxies to enable communication with
legacy DBMSs introduce severe performance reductions. As data-
base systems heavily rely on I/O (either for communication with
clients or for persistence), AWS Nitro Enclaves will currently not
be a good choice for performance-critical database use cases.
Future developments. Reducing these performance bottlenecks
is an interesting research and engineering challenge. However, we
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think that hardware-based TEEs currently have three important
upsides compared to AWS Nitro Enclaves: (1) their security model
is more general, (2) their design prevents cloud vendor lock-in,
and (3) their design allows for more flexibility and performance
optimizations in the systems built on top. For example, with the
developments in multi-level confidential VMs and trusted I/O for
confidential VMs [1, 19, 20], there are clear next steps to further
minimize the TCB size and improve the performance of hardware-
based TEEs.

6 Related Work

To the best of our knowledge, we are the first to investigate the per-
formance implications of AWS Nitro Enclaves in detail, particularly
for database workloads. Multiple research prototypes and commer-
cial products for AWS Nitro Enclaves runtimes exist [7, 17, 31, 32].
These runtimes are meant to make executing arbitrary applications
inside Nitro Enclaves easy by automating the setup and configura-
tion of network and storage access proxies. Some of these runtimes
come with their own proxies [7, 17, 31, 32]. In terms of pure proxy
implementations, there is socat, which we used for our experiments,
the AWS VSOCK proxy [4], that only enables applications inside
enclaves to connect to pre-determined network addresses, and parts
of commercial products [24]. To the best of our knowledge, no work
currently compares the performance of different proxies.

In contrast to AWS Nitro Enclaves, there is a lot of research
investigating the performance characteristics of other TEEs and
their usability for database workloads, such as Intel SGX [8, 16, 21—
23], Intel TDX [13, 33], and AMD SEV [27, 34].

7 Conclusions & Future Directions

This paper analyzes the viability of AWS Nitro Enclaves for secure
DBMS in the AWS cloud. Although Nitro Enclaves are VMs that
allow in-memory data processing without overheads, changes to
DBMS architecture are required to deal with the limiting enclave
interface. The VSOCK interface necessitates a proxy on the host
instance that translates normal network traffic and storage accesses.
Additionally, the VSOCK interface limits the achievable network
and storage throughput and increases latency. Future work should
investigate performance optimizations through newer kernel and
hypervisor versions, the development of high-performance network
and storage proxies, and the integration of VSOCK support into
the DBMS architecture.
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