L)

Check for
updates

Synchronizing Disaggregated Data Structures with
One-Sided RDMA: Pitfalls, Experiments and Design
Guidelines

MATTHIAS JASNY, Technische Universitit Darmstadt, Darmstadt, Germany

TOBIAS ZIEGLER, Technische Universitit Miinchen, Miinchen, Germany

JACOB NELSON-SLIVON, Google, Boulder, United States

VIKTOR LEIS, Technische Universitit Miinchen, Miinchen, Germany

CARSTEN BINNIG, Technische Universitit Darmstadt, Darmstadt, Germany and DFKI, Darmstadt, Ger-

many

Remote data structures built with one-sided Remote Direct Memory Access (RDMA) are at the heart of many
disaggregated database management systems today. Concurrent access to these data structures by thousands
of remote workers necessitates a highly efficient synchronization scheme. Remarkably, our investigation re-
veals that existing synchronization schemes display substantial variations in performance and scalability.
Even worse, some schemes do not correctly synchronize, resulting in rare and hard-to-detect data corruption.
Motivated by these observations, we conduct the first comprehensive analysis of one-sided synchronization
techniques and provide general principles for correct synchronization using one-sided RDMA. Our research
demonstrates that adherence to these principles not only guarantees correctness but also results in substan-
tial performance enhancements. This article is an extended version of [72] in which we investigate modern
400G NICs. Our findings reveal that the challenges persist even with new generations of NICs. Consequently,
we turn our attention to alternative networking hardware, such as smart switches, to address some of the
limitations associated with one-sided synchronization.

CCS Concepts: « Information systems — Parallel and distributed DBMSs; « Networks — Pro-
grammable networks; Network protocols; - Hardware — Networking hardware;

Additional Key Words and Phrases: Distributed database management systems, RDMA, synchronization

ACM Reference Format:

Matthias Jasny, Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2025. Synchronizing
Disaggregated Data Structures with One-Sided RDMA: Pitfalls, Experiments and Design Guidelines. ACM
Trans. Datab. Syst. 50, 1, Article 4 (March 2025), 40 pages. https://doi.org/10.1145/3716377

The work of Jacob Nelson-Slivon was done while at Lehigh University, USA.

This work was partially funded by the German Research Foundation priority program 2037 (DFG) under the grants BI2011/1
& BI2011/2, the DFG Collaborative Research Center 1053 (MAKI), and the state of Hesse as part of the NHR Program.
Authors’ Contact Information: Matthias Jasny, Technische Universitdt Darmstadt, Darmstadt, Hessen, Germany; e-mail:
matthias jasny@cs.tu-darmstadt.de; Tobias Ziegler, Technische Universitat Miinchen, Miinchen, Bayern, Germany; e-mail:
t.ziegler@tum.de; Jacob Nelson-Slivon, Google, Boulder, Colorado, United States; e-mail: jakeslivon@gmail.com; Viktor
Leis, Technische Universitat Miinchen, Miinchen, Bayern, Germany; e-mail: leis@in.tum.de; Carsten Binnig, Technische
Universitat Darmstadt, Darmstadt, Hessen, Germany and DFKI, Darmstadt, Hessen, Germany; e-mail: carsten.binnig@cs.
tu-darmstadt.de.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 0362-5915/2025/03-ART4

https://doi.org/10.1145/3716377

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

HTTPS://ORCID.ORG/0000-0002-5068-4645
HTTPS://ORCID.ORG/0000-0002-1602-4512
HTTPS://ORCID.ORG/0009-0006-1968-8863
HTTPS://ORCID.ORG/0000-0001-5676-8017
HTTPS://ORCID.ORG/0000-0002-2744-7836
https://doi.org/10.1145/3716377
mailto:permissions@acm.org
https://doi.org/10.1145/3716377
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3716377&domain=pdf&date_stamp=2025-03-06

4:2 M. Jasny et al.

1 Introduction

RDMA & Disaggregated Databases. Remote Direct Memory Access (RDMA) has quickly become
one of the indispensable tools for building disaggregated database systems. Not only does RDMA
provide single-digit microsecond network latencies, but it also provides efficient primitives for
remote memory access. In particular, RDMA’s one-sided verbs allow a compute server to read or
write directly to a remote memory server while bypassing the remote CPU. Since memory servers
frequently possess near-zero computational capacity [59] and most computational power is con-
centrated within the compute layer, one-sided RDMA proves to be well suited for disaggregated
DBMSs. Consequently, recent literature has explored how disaggregated DBMSs can leverage one-
sided verbs [6, 11, 13, 27, 35, 54, 67-70].

Synchronization of Remote Data Structures. A key building block of these disaggregated DBMSs
are remote data structures such as one-sided hash tables [38, 60, 74], B-Trees [58, 73], or
SkipLists [37] which enable efficient access to remote data. But because one-sided operations by-
pass the remote CPU, traditional storage server-side synchronization techniques! where the re-
mote CPU is in charge do not work. Instead, various one-sided synchronization techniques have
been proposed [11, 40, 64, 73]. Those techniques can be categorized into pessimistic and optimistic
schemes. While pessimistic schemes prevent concurrent modifications, optimistic schemes detect
(and handle) concurrent modifications. These approaches fundamentally differ in their scalability
and performance characteristics.

Performance Is Key. Remote data structures may need to serve thousands of clients connecting
from several compute servers. With such a high degree of concurrency, the performance depends
on how well the implemented one-sided synchronization scheme performs. While individual ar-
ticles have proposed various one-sided synchronization schemes [11, 39, 73], it is surprising that
there has not yet been a systematic study of these schemes under comparable workloads and con-
ditions. This article provides the first in-depth performance analysis. We show that small design
choices when implementing a scheme can severely impact its performance and lead to performance
bottlenecks. For example, contrary to expectations, data alignment hinders the scalability of pes-
simistic one-sided latches, even in uncontended workloads. In fact, if not carefully implemented,
the performance for an uncontended workload can be as dismal as that for a highly contended
one. To this end, this paper proposes design principles to mitigate those pitfalls and presents sev-
eral optimizations that improve the performance of a well-known disaggregated RDMA-optimized
DBMS [67] by 2x.

Correctness Is Hard. Achieving high performance in synchronization is unquestionably valuable,
but ensuring correctness is mandatory. We have discovered that early techniques proposed in the
literature fail to accurately synchronize concurrent operations, potentially resulting in hard-to-
detect data inconsistencies. For example, consider an optimistic synchronization scheme as imple-
mented in [40] (shown in Figure 1(a)), which presumes that RDMA operations occur in ascending
address order—a common assumption in many articles. This scheme implements an update by
writing the head version first, then the data modification, and eventually updating the tail version.
Under the assumption of operations being performed in increasing address order, a concurrent
reader can detect concurrent modifications by comparing the head and tail versions.

Incorrect Assumptions. Unfortunately, in contrast to the general assumption in many articles [40,
58], RDMA reads are not guaranteed to be performed in increasing address order. In fact, the RDMA
specification does not state the ordering within a single RDMA read. As a result, in the previously
mentioned synchronization scheme, an RDMA read may first read both versions (i.e., the first and

!In this paper, synchronization techniques refer to the low-level synchronization mechanism, i.e., latching, not higher-level
concurrency control.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:3

Cache lines in
increasing address order

S
- = & 021
S S T (0] [0.00013] (0.00396
v 1. CL 2. CL 3.CL |¢ 204
@] o oo
> > c
(=]
——WRITE———> = 0.0+ : . !
128B 512B 2kB 8 kB 33 kB
> Read Size
(a) Faulty Optimistic Scheme (b) Percentage of Torn Reads

Fig. 1. Incorrect optimistic synchronization.

third cache line) and then retrieves the data from the second cache line. At the same time, a writer
concurrently modifies the data in address order. The concurrent data update may not be detected
because the versions were read first before the concurrent writer started. However, the reader and
the writer overlapped at the second cache line leading to inconsistent data.

We validate the existence of this behavior with a simple experiment consisting of one storage
node and two compute nodes. A single-threaded remote writer on one compute node repeatedly
fills a block of its local memory, e.g., 512 bytes, with the same 8-byte version number and then
writes it to a remote buffer (50 MB) on the storage node with a single RDMA write. The version
number is incremented on each iteration, and the new block is written to the next slot in the buffer.
Concurrently, a reader on the other compute node reads a block in the remote buffer with a single
RDMA read and then checks whether the header and footer version numbers are identical. If the
header and footer version numbers match, then the intermediate values are examined to deter-
mine if an inconsistency exists. “Torn” reads—having an identical header and footer version but
inconsistent intermediate values—are undetectable by a validation scheme that checks the block’s
leading and trailing version numbers.

Figure 1(b) shows the percentage of how many such torn reads are undetectable due to changes
in the read order. Note that no torn read appears with 128 bytes as only the header and footer
cache lines are read, i.e., if they are inconsistent, this can be detected. However, inconsistencies
happen for more than 128 bytes, and while not frequently, often enough to corrupt the data.
Surprisingly, this problem is not widely known, and techniques that assume ordering are still
very popular [58]. We believe the main reason for this assumption is that a single RDMA re-
quest requires many protocols—not only RDMA but also PCle, and cache coherence—to work in
concert. Thus, it is challenging to understand which guarantees are provided by the respective
specification.

Contributions. This article is an extended version of [72].

Part 1:In the first part (Sections 2 to 4), we cover the material from the original article, where
we distill general principles for correct one-sided synchronization techniques. To our knowledge,
this is the first principled analysis comparing the performance, scalability, and correctness of one-
sided synchronization techniques. Our work demonstrates that understanding the specification
and low-level hardware details is crucial for correct and efficient synchronization. Our underlying
goal is to guide researchers and developers on how and when to use the different synchronization
techniques.

Part 2: Since the publication of our previous study [72], more than a year has passed. During this
period, the landscape of Network Interface Cards (NICs) has significantly evolved. As such, in
the second part (Section 5), we analyze whether and how current hardware trends can help miti-
gate the problems regarding correctness and performance identified in the first part. In particular,

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:4 M. Jasny et al.

we investigate the newest generation of Nvidia’s RDMA NICs (ConnectX-7) and programmable
switches (Tofino 2) that can provide scalable and correct synchronization primitives.

Artifacts: Finally, we open-sourced all benchmarks? that help to transfer our findings to different
hardware setups and future developments.

2 Background and Methodology

While many systems [11, 39, 40, 73] implement various synchronization schemes, they do not
isolate the impact of their synchronization on the overall performance. However, as we will show,
synchronization techniques significantly affect scalability and system performance. This section
describes the necessary background on RDMA and the typical RDMA hardware stack, existing
synchronization techniques, and our experiment methodology.

2.1 Remote Direct Memory Access

Remote Direct Memory Access (RDMA) is a networking protocol that provides high bandwidth
and low latency access to a remote node’s main memory [46], using zero-copy transfers from the
application space. Several RDMA implementations are available—most notably InfiniBand [19],
RDMA over Converged Ethernet® (RoCE) [20], and iWARP [46]. RDMA offers four transport types:
reliable or unreliable, which can be connected or unconnected. This article focuses on the reliable
connected transport as it is the only configuration that fully supports one-sided primitives.

RDMA One-Sided Verbs. RDMA implementations provide two communication paradigms (called
verbs) (1) two-sided and (2) one-sided verbs. Two-sided verbs are similar to traditional socket-based
programming in that both sides (sender and receiver) are involved. In contrast, one-sided verbs
(read, write, and atomics) provide remote memory access semantics, in which a process specifies
the memory address of the remote node that should be accessed. The CPU of the remote node is
not actively involved in the data transfer, i.e., only one side is involved. In this article, we solely
focus on one-sided primitives. RDMA read and write enable applications to read and write remote
memory directly without remote CPU involvement. To support highly concurrent applications,
RDMA specifications provide atomic operations [19, 49]. One-sided compare-and-swap (CAS)
and fetch-and-add (FAA) operations atomically read, modify, and write memory at a remote
destination. Those operations work similarly to local CPU, CAS, and FAA instructions. CAS atom-
ically swaps the current value with a new one if it equals the expected value. FAA increments
the current value with some user-defined value and then returns the original value to the caller.
RDMA atomics are limited to 64-bit, 8-byte aligned values.

RDMA Two-Sided Verbs. Two-sided verbs are widely used in high-performance RDMA sys-
tems [23, 25, 63] to send messages between distributed processes. The sender issues an RDMA
send request, which consumes a waiting RDMA receive request at the destination. The receiving
process issues the receive request to dictate the destination address for the sent payload. After the
payload is written, the receiving process is notified of its arrival. Since the receiving process is
explicitly involved in the communication, synchronization of remote processes is managed using
request handlers and traditional multiprocessing approaches. In contrast, disaggregated memory
systems leveraging one-sided verbs must synchronize processes directly through remote memory
access, which requires careful consideration due to the behaviors we highlight in this article. In
addition, two-sided RDMA requires explicit processing on the storage side, which is typically not
ideal with limited computational resources on the storage servers. Therefore, two-sided RDMA is

Zhttps://github.com/DataManagementLab/RDMA_synchronization
SRoCE is an attempt to combine RDMA with Ethernet. Refer to [16] for the shortcomings of RoCE in modern datacenters.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

https://github.com/DataManagementLab/RDMA_synchronization

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:5

..... Table 1. Pessimistic and Optimistic Techniques for
- ! 5 One-sided RDMA Synchronization
M N | PCle MCH R Variant Ops. Systems Correct
c " 2| Reader/Writer | 2 (6], [64], [67] Yes
& Exclusive 2 [56], [8],[41] Yes
, CRC 2 [[51,[74),[39],[55] | Prob.
Fig. 2. Hardware components involved in 2 Versioning 2 [73], [40], [58] No'
RDMA. °© Cache line ver. 2 [11], [62] Yes

fcan be fixed with an additional RDMA read (see Section 4.3)

not in the scope of this article; however, several works do explore the relative merits of one-sided
vs. two-sided RDMA [23-25, 63, 73]

Interface. Modern network interfaces typically provide asynchronous networking. This means
that a network operation is dispatched to the NIC, which notifies the application once the oper-
ation is completed. RDMA’s interface uses so-called send/receive queues to post operations: (1)
While a send queue is used by the requester to issue operations such as read, write, send as well
as atomics, (2) the receive queue is used by the responder to issue receive requests. With RDMA, a
connection between a requester and a responder bundles these two queues and is therefore called
queue pair (QP). More precisely, the application must create queue pairs on both ends and connect
them to initiate a connection between a requester and a responder. To issue RDMA operations,
a host creates a work queue element (WQE). The WQE specifies parameters such as the verb
and other metadata (e.g., the remote target address). The requester then adds the WQE to its send
queue and informs the local RDMA NIC (RNIC) via Programmed IO (PIO) to process the WQE.
For a signaled WQE, the local RNIC pushes a completion event into the completion queue (CQ)
via a DMA WRITE once the remote side has processed the WQE. To enforce synchronous com-
munication, the application can also block until the network card generates the completion event.
Typically, RDMA is used asynchronously, meaning multiple WQE are simultaneously registered
with the RNIC, and later the application checks for completions in the CQ. This technique is often
referred to as doorbell batching.

2.2 RDMA Hardware Stack

As mentioned in Section 1, synchronization techniques rely on certain hardware guarantees; thus,
we briefly present the required hardware in Figure 2. An RNIC connects via the PCle bus to the
memory controller hub (MCH) of a multi-core CPU [44]. The MCH is responsible for handling
memory access by both the CPU and peripheral devices. Among others, the MCH contains the
memory controller, the coherency engine, and acts as the root complex for the PCle bus. Because
modern server architectures implement cache coherent I/O, e.g., Intel DDIO [21] and ARM CCI [1],
knowing that an RDMA access to system memory will snoop (look up) CPU cache for conflicting
addresses is essential. If a conflicting address is found, it can be served from the CPU cache; oth-
erwise, it is fetched from main memory. Cache coherent I/O is a core enabler for many of the
techniques described in Section 4.

2.3 Existing Synchronization Techniques

The one-sided synchronization techniques of modern distributed systems can be categorized into
pessimistic and optimistic approaches, as shown in Table 1. Pessimistic approaches mirror tradi-
tional latching with the distinction of having only a single latch mode or two for reader-writer
support; meanwhile, optimistic approaches can be further subdivided. Each optimistic technique
offers different characteristics, like memory and computation overhead, but all embed metadata in

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:6 M. Jasny et al.

the object, which is updated by writers and validated by readers. We now briefly introduce existing
optimistic techniques from Table 1: CRC, versioning, and cache line versioning before we discuss
them in more detail in Section 4.

Checksums. A common detection technique used to identify potential inconsistencies [39, 51, 74].
After updating the object, writers write back a new checksum (typically a 64-bit CRC). Readers
then recompute a checksum locally and compare it to the observed checksum. While effective
in practice, there is still a non-zero probability of a collision causing validation to succeed on
corrupted data.

Versioning. Versioning is a strategy that augments the data with a single version. During execu-
tion, writers increment the version before and after updating the data. Readers read the version
before and after their operation to validate whether an update occurred concurrently. Optimistic
lock coupling is a special case of versioning in which sequence locks are used for both write-write
synchronization and validating reads (e.g., [29] and [73]). As we will explain in Section 4.3, there
are pitfalls with this approach that impact its correctness.

Cache Line Versioning. Finally, cache line versioning maintains the object’s version in each con-
stituent cache line [11]. Writers increment all versions before updating the data, then increment
them upon completion. Unlike versioning, readers detect inconsistencies with a single remote read
by validating that all versions match.

To understand the differences between the sundry approaches, we perform a principled analysis
and evaluation of one-sided synchronization techniques. To the best of our knowledge, this article
is the first to do so.

2.4 Evaluation Methodology

Framework. We implemented all techniques in the same code base to isolate the fundamental prop-
erties of the synchronization schemes from incidental differences. We highlight each synchroniza-
tion scheme’s overhead using a perfectly sized remote hash table to avoid hash collisions. In addi-
tion to the hash table, we use a remote B-Tree to show how the synchronization schemes behave
when contention is inherent to the data structure due to its hierarchical nature (all workers start
their traversal at the root node). We use multi-threading and execute one operation on a single
thread (worker) until completion, i.e., no batching or asynchronous execution. This allows a fair
comparison of the approaches.

Setup. We conducted all reported experiments on an 8-node cluster running Ubuntu 18.04.1
LTS, with a Linux 4.15.0 kernel. All nodes are connected to a SB7890 InfiniBand switch using one
Mellanox ConnectX-5 MT27800 RNIC (InfiniBand EDR 4x, 100 Gbps) per node. Each node has two
Intel Xeon Gold 5120 CPUs (14 cores) and 512 GB main-memory split between sockets.

Since the ConnectX-5 is connected to one NUMA socket, we inevitably have NUMA effects
when using more than 14 cores (i.e., 28 threads). We allocate the memory on the socket of the NIC,
and to alleviate the NUMA effects, we assign threads round-robin (interleaved) to both sockets.
More details of NUMA effects on RDMA can be found in [42] and [47]. Besides ConnectX-5, we
also validate our results for different generations of RNIC, namely, ConnectX-3 and ConnectX-6.
Mellanox is widely used; from 30 articles, we recently analyzed 28 used Mellanox cards. Besides
on-premises, only Microsoft offers RDMA of the top three cloud providers and they use Mellanox
cards in their instances. [26]. That being said, we believe that most findings are independent of the
network card. The correctness discussion mainly depends on the protocol specifications underpin-
ning the RDMA communication. In particular, our testbed leverages the widely-used InfiniBand
specification [19] which shares commonalities with alternative RDMA protocols and make our
results applicable to a broader range of deployments. The performance considerations shed light
on possible pitfalls worth investigating when building an RDMA application. We open-source our

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:7

Remote Data Structu re

e.g, update
B Tree value
oDeratlon

sequence of operations

Fig. 3. Example of an exclusive latch acquisition.

benchmarks to help developers uncover performance and correctness bottlenecks in other RDMA
system configurations.

3 Pessimistic Synchronization

In order to prevent concurrent modifications of remote data structures such as a B-tree or a hash
table, one-sided pessimistic synchronization techniques implement latches using one-sided RDMA
operations. In this section, we present the basic implementation of such a latch and use it as a run-
ning example to discuss possible optimizations. Since RDMA atomics are the fundamental building
block of these one-sided latches, we will then drill down into the performance and scalability char-
acteristics of these RDMA primitives. Afterward, we outline and evaluate possible optimizations
for one-sided latches.

3.1 Running Example of a Pessimistic Latch

Table 1 shows that existing pessimistic schemes are subdivided into two types of latches: While
some latches such as RCC-NOWAIT [56] support only one latch mode (latched and unlatched),
others distinguish between shared and exclusive modes, i.e., reader/writer latches. Both latch types
can be implemented with atomic RDMA operations. We will use a reader/writer latch for the
running example, but all optimizations generalize to both latch types.

We implement a typical reader/writer latch using an 8-byte value [36, 64]. A worker uses an
RDMA compare-and-swap (CAS) operation to set the latch bit (usually the trailing bit) for ex-
clusive access. Readers increment the reader count, encoded in the remaining bits, with a fetch-
and-add (FAA). In the basic variant, all operations are executed synchronously, i.e., the worker
blocks after every operation until its result is returned.

Figure 3 gives an intuition on how this latch is used to access a remote data structure exclusively.
First, the remote data structure is latched with an RDMA CAS operation on the 8-byte latch by
setting the lock bit. Afterward, the desired data is read from the data structure, modified locally,
and written back with an RDMA write operation. Finally, the remote data is unlatched with another
RDMA CAS operation on the 8-byte latch.

To access the remote data structure in shared mode, the clients use RDMA FAA to increment the
reader count of the latch speculatively. The return value (i.e., the full 8-byte) of the operation allows
the worker to check if the latch is in the exclusive mode, in which case the worker decrements
the reader count and retries. Otherwise, the worker reads the data using an RDMA read and then
decrements the counter to unlatch.

3.2 Performance of RDMA Atomics

Because every pessimistic approach relies on RDMA atomics (CAS and FAA), it is important to
understand their isolated performance before discussing how our basic latch can be optimized.
Uncontended vs. Contended RDMA Atomics. In the first experiment, we examine the scalability
behavior of contended and uncontended RDMA atomics. Both scenarios are equally vital, and
while heavy contention is typically rare, it is unavoidable in some workloads, e.g., having hot

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:8 M. Jasny et al.

> Uncontended Contended
9 50.0M
P 2.0M
8 40.0MA
2 1.5M-
5 30.0M =o= Read (Baseline)
1.0M A
_g- 20.0M A =de= CAS Uncontended
=3 4 0.5M+
3 10.0M === CAS Contended
= 0.0MA 0.0M A
T T T T T T T T
= 4 32 256 2048 4 32 256 2048

Workers [log]

Fig. 4. Scalability of contended and uncontended atomic RDMA operations when increasing the number of
workers (4 compute nodes and 1 storage node).

tuples. To show the effect of contention, we perform an experiment in which all workers issue
an RDMA CAS operation of the same 8-byte atomic counter. To understand how uncontended
atomics scale, we assign a private 8-byte remote atomic counter to each worker. For reference, we
compare uncontended atomics to the performance of an RDMA read.

Figure 4 shows the scalability behavior of both uncontended and contended RDMA atomic op-
erations when increasing the number of workers. As we can observe, uncontended atomics scale
like one-sided RDMA read operations, peaking at around 51.2 million operations per second with
128 workers. This suggests that the parallel uncontended atomic requests do not interfere, but we
will demonstrate later that this does not hold for all scenarios. Note that the performance drop
of uncontended atomics at 512 workers has nothing to do with the atomic operation but can be
attributed to QP-thrashing [11] on the client machines. QP-thrashing means that the QP state can-
not be cached on the RNIC and is swapped in and out to host memory. This occurs at around 128
utilized parallel QPs per client NIC in our hardware, i.e., 512 workers.

As expected, when running the contended atomic workload, the peak is significantly lower at
2.32 million operations per second and atomic operations only scale until 8 workers.

In the literature, RDMA atomics seem to have a bad reputation for being fundamentally unscal-
able [24]—even for uncontended workloads. However, the above experiments demonstrate that
uncontended atomics scale well w.r.t. the number of workers. In fact, they show comparable scala-
bility to RDMA read operations. While this experiment offers valuable insights into the scalability
of atomics, it is not the complete picture, as we will demonstrate.

Atomic Stride Size and Alignment. Obviously, the scalability of RDMA atomics depends on the
degree of parallelism. However, subtle details such as the data alignment can also interfere with
the scalability. So far, in our experiments, values are placed in a 64-byte stride, i.e., a cache line. We
only used the first 8 bytes for the atomic counter and ignored the remaining 56 bytes. However,
in practice, RDMA atomics are placed at larger strides as they protect data of various sizes, e.g., a
4 KB B-Tree node.

In the following experiment, we measure the effect of larger stride sizes by varying the distance
between the atomic counters. As in the previous uncontended experiment, each worker has a
private latch to avoid contention. Consequently, the expected outcome should be similar to the un-
contended result in Figure 4. Surprisingly, Figure 5 shows that the stride size impairs the scalability
tremendously. That is, with larger stride sizes, the inflection points w.r.t. throughput (highlighted
in red) are reached earlier. With a 64-byte stride, the peak performance is 50M operations with 128
workers, i.e., the same upper-bound as in Figure 4. With a 256-byte stride, the peak performance is
at 40M operations with 128 workers. With a 512-byte stride, the peak performance is halved and
reached with fewer workers (20M operations with 64 workers). Remember that there is no true

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:9

Address Aligned 8-Byte Padding

Latch Stride [byte]:
64 M 1024
O 128 @ 2048
A\ 256 A 4096
-+ 512 & 8192

40M+

Throughput [ops/sec]

4 32 256 2048
Workers [log]

Fig. 5. Scalability of uncontended atomics with varying strides between the latches (4 compute nodes and
1 storage node).

Last 12 bits address fo 4KB aligned latches:

DRAM — OOOOE)PE 0000\
4 KB @l [@] [&]]

|q7 | E | | i) 4 KB address-aligned latch strides

0000 0000 0000 0000 0000 1000 0000 0001 0000
ruc ||] @ &l @&l |

o /T 2 .. 511 ii) 8-byte padded

ETT 1] [@[aa]

Locking table ’ I ‘ ‘
—CAS CAS iii) de-couple latches and data

(a) RNIC Internal Locking Table (b) Stride Size and Alignment

Fig. 6. Pessimistic synchronization performance can be impacted by RNIC architecture and by host memory
layout.

latch contention, and we only vary the distance between the atomic counters and nothing else.
The observed behavior must be based on a physical contention point in the RNIC.

NIC Internals - Physical Contention. Through reverse engineering, we believe that the RNIC uses
an internal locking table to serialize atomic operations. Since the locking table works similarly to
a hash table, collisions can happen. Unrelated atomic operations can be assigned to the same slot,
severely limiting the throughput of concurrent uncontended atomic operations. The lock slots are
determined based on the last 12 bits of the atomic operation’s target address. For instance, if we
use a 4 KB-aligned address as illustrated in Figure 6(b)(i), the last 12 bits of the address are zeros,
and they are assigned to the same lock slot. Even though the atomics do not contend on the same
latch, the way the RNIC handles atomics results in physical contention inside the locking table, as
exemplified by the arrows in Figure 6(a). The two CAS operations target different latches and are
still serialized in the same lock slot, negatively impacting performance. Consequently, logically
uncontended atomic operations do not scale very well when the data alignment is not carefully
chosen, as shown in Figure 5. When we compare the results of our initial contended scalability
experiment from Figure 4 with the performance of 4 KB-aligned stride sizes, we can see that the
performance and scalability characteristics are very similar. Given the underlying hardware mech-
anism, this performance is now explainable: the operations are serialized in the same lock slot,
whether through a collision of the address or the operations targeting the same latch. We vali-
dated the existence of a performance signature matching our hypothesized 12-bit lock table in
three RNIC generations: ConnectX-3, ConnectX-5, and ConnectX-6 RNICs. Also, Kalia et al. [24]
observed similar findings for an older network card (Connect-IB). However, it is hard to generalize

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:10 M. Jasny et al.

our findings to all NICs since the implementation details are not made publicly available by the
RNIC vendors. Therefore, like other articles, we can only infer implementation details [24, 58]. In-
stead, we emphasize that NIC hardware details are essential and demonstrate potential bottlenecks
that should be carefully evaluated when building a high-performance system.

Improving Scalability of Uncontented Atomics. To improve the scalability of uncontended
operations, we must avoid collisions in the locking table. The only way one can control this
is through the data layout, i.e., the addresses of our latches. The goal is to place the latches so
that the last 12 bits (used for the lock-slot calculation) are different. Consider the example in
Figure 6(b)(ii); instead of allocating the 4 KB blocks back-to-back, a padding of 8-byte is placed
before the latches. Now, the last 12 bits of the latch addresses are not all zeros and, thus, will be
assigned to different lock slots. The effect of this mitigation technique is illustrated in Figure 5.
We can observe that all stride-sizes scale equally well (all measurements happen to be on the same
line). Another possibility to better utilize the lock-slots is to decouple latches from the data as
depicted in Figure 6(b)(iii). In this technique, the latches are placed back-to-back. Since the latches
are only 8 bytes, the last 12 bits of the latch address will vary and achieve the same scalability
behavior as for the 8-byte padding. Note, in this experiment, we test the performance of the atomic
operations, i.e., we do not read the data. This allows us to isolate the atomic contention effect, but
in practice separating the latch from the data may have adverse effects due to locality. In particular,
the translation from physical-to-virtual memory could suffer as every data access invokes two
translations, i.e., one for the latch and one for the data. However, this depends on other param-
eters, such as the working set, tuple size, and NIC-cache size [24], and thus requires a holistic
evaluation.

To conclude, despite contrasting beliefs, RDMA atomics can scale well w.r.t. the number of work-
ers. However, the scalability depends on the number of concurrent accesses (contention) and the
data alignment. While the first is workload-dependent, the latter can be carefully tuned to best
utilize the internal RNIC hardware. While we demonstrate that padding is beneficial for RDMA
atomics, it can also have consequences elsewhere, such as making page table lookup less efficient.
Therefore, we argue that it is crucial to understand the internals of the RNIC and holistically opti-
mize the DBMS system.

3.3 Optimized Pessimistic Latches

Equipped with our findings on how to utilize atomics optimally, we can now focus on how to de-
sign optimized pessimistic latches. Recall that the basic latch variant executes all operations syn-
chronously, as illustrated in Figure 3. After every operation, the completion is awaited by polling
the completion queue (cf. Section 2). While this is certainly correct, it is inefficient and increases
the per-operation latency.

Latch optimizations. To reduce the operation latency, many systems use optimizations. Unfor-
tunately, those optimizations are often only briefly discussed by the authors. We compiled a list of
existing optimizations following numerous small hints in related work and a careful study of pub-
lished source code. This is the first paper that describes these optimizations in detail and discusses
why those optimizations guarantee correctness. In the following, we present those optimizations
and highlight possible pitfalls.

The speculative read optimization overlaps the latch with the read operation (cf. Figure 7) to hide
the latency of the read. If the latch request is successful, we can proceed, and if it is unsuccessful,
the latch request is restarted. However, the correctness of this optimization relies on the order of
the operations. That is, it must be guaranteed that the latch operation takes place before the read
happens. Fortunately, RDMA atomics are executed prior to subsequent RDMA operations on the
same QP as per the InfiniBand specification [19].

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:11

Similarly, write combining overlaps the [R te Data Struct]
write and the unlatch operation (CAS) as il- €mote atd >tructure

lustrated in Figure 7. The intuition is that the 2 4 @ é’ Y‘/J
unlatch operation can mask the write latency. = ci_" N 9)

This optimization is only applicable for exclu- . . i/ /—/—/——*

sive access since read-only operations do not o overlaps
update the data and thus do not involve an 83 atch &read
RDMA write "= operation

The asynchronous unlatch optimization s an R
optimization that goes even further and does £ overlaps

. . Qo write & unlatch
not wait for the last completion event syn- £ /\ /\ operation
chronously and thus immediately processes S RS
the next operation. In contrast to the synchro-
nous variants, however, the memory buffer
containing the write’s payload cannot be
reused immediately for the next operation. The

write

asynchronous
unlatch

async
unlatch

=
issue is that when immediately re-using the o8 _use write to unlatch
buff he d f h : X E ‘_g instead of the atomic
uffer, the data tfrom the previous operation S operation

could be overwritten as the previous RDMA
write may still be outstanding; as such, we Fig. 7. Evolution of exclusive latch optimizations.
need to ensure that the operations are finished

before re-using the buffers. The typical solution to avoid overwriting in-flight buffers is to use mul-
tiple buffers per QP. For instance, if the worker wants to modify two tuples, then the first tuple is
written to the first (local) buffer. Subsequently, the remote content of the first tuple is updated and
asynchronously unlatched. Since the remote operations are executed asynchronously, the RDMA
operations (CAS and write) may still be outstanding, and the first buffer should not be re-used for
the second tuple. Therefore, the second tuple is is written to a second (local) buffer. Using separate
buffers gives the outstanding operation from the first buffer time to complete without any risks of
overwriting the content. The first buffer can be safely re-used when the second operation on the
same QP generates a completion event, i.e., after the payload is read.

Write unlatch is an optimization that relies on the fact that RDMA writes are performed in in-
creasing address order. This optimization often works in practice but is similar to RDMA reads, not
specified by the RDMA standard. However, because many essential applications such as MPI [33]
and many other systems rely on last-bit polling [11, 14, 37, 71], RNIC vendors typically implement
RDMA writes in increasing address order [11] for compatibility reasons. Note that the latch must
be located at the highest address (typically as a footer) to protect the data until the full write has
been completed. For example, the last 8 bytes of the value of an item residing in an RDMA-enabled
key-value store could encode the lock protecting it. The payload of an RDMA write to update the
value would be suffixed by an unlocked value to also release the lock. Since this optimization uses
the write to unlatch the data, it saves a complete atomic operation. Unfortunately, there is a catch;
the optimization only works in certain cases. The InfiniBand specification makes no guarantees
that non-atomic and atomic RDMA operations are ordered and visible to each other when issued
from different QPs [19]. That means that the RDMA write that unlatches the data item may not be
visible to subsequent atomic operations from other workers. This can lead to behavior that might
seem surprising because sequential consistency is not guaranteed.

We believe this is because the RNIC can buffer atomic operations for fast completion in a
special on-chip buffer. When an atomic operation arrives at the RNIC, the cache line in which
the value is stored, is read into this buffer from the memory. But because there is no guarantee

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:12 M. Jasny et al.

— Exclusive Latch Shared Latch

[3)

g 400K 4

a 300K 4

K=}

S 200K A

[}

S

e

£ 0d ; ; ; ; ; ; ; ;
basic +spec. +write +async. +write basic +spec. +async.

read combining unlatch unlock read unlatch

Fig. 8. Single-threaded ablation study of latch optimizations (1 compute node and 1 storage node).

w.r.t. interference of non-atomic operations, it may happen that once the atomic operation reads
the current value in the buffer, an RDMA write changes the value on the cache line, i.e., unlatch.
To make this more concrete, assume the data item is exclusively latched. Now, an atomic FAA
operation wants to increment the reader count. The value is read to the RNIC buffer, but in the
meantime, the latch-holder unlatches the data item with an RDMA write. Unfortunately, there
are now two incoherent states: (1) in the RNIC buffer, the latch is still latched (2) in the cache line,
the latch is unlatched. The RNIC increments the old (latched) value and overwrites the unlatch
state on the cache line. Therefore, the original unlatch operation is lost, and the latch will remain
latched, leading to a deadlock. Hence, the write unlatch optimization cannot be used with FAA
operations and only works in combination with CAS operations, as used in RCC-NOWAIT [56].
The reason is that CAS operations conditionally overwrite the state. The operation detects that
the old state is still latched and does not modify the latch. Thus, a concurrent worker may detect
the unlatch operation delayed for the incoherent states, but eventually, the cache coherence
protocol ensures that the RNIC sees the newest version. Consequently, creating a reader/writer
latch in combination with the write unlatch optimization is impratical and only one latch mode
can be supported (no distinction between reader and writer) (cf. Table 1 RCC-NOWAIT).

3.4 Ablation Study of Latch Optimizations

To better understand how the latch optimizations perform, we first enable them step-by-step in
a single-threaded ablation study. We show the throughput for exclusive and shared latch acquisi-
tions in Figure 8. The numbers include all necessary operations: CAS, read, write, and CAS for a
modification, and FAA, read, FAA for a read operation. As mentioned, some optimizations are only
applicable for the exclusive latch acquisition. For the analysis, we repeatedly latch and perform
the operations on a 256 byte-sized tuple placed on a storage node.

We can see that all exclusive latch optimizations in Figure 8 (left) increase the single-threaded
performance. One of the most effective optimizations is asynchronous unlatch since we can im-
mediately start the next operation. In contrast, write unlatch does not significantly increase the
performance further. Combined with the fact that it is impractical to implement a reader/writer
latch, we will not further consider this optimization in this section. However, we will leverage this
optimization again in Section 4.

When focusing on the shared latch performance in Figure 8 (right), we can observe that the
basic performance is higher since the read consists of only three sequential operations. The advan-
tage of fewer operations vanishes with the higher optimization levels as they aggressively overlap
messages (cf. Figure 7). Eventually, the performance of exclusive and shared latch acquisitions
converges with higher optimizations and becomes latency bound.

Scalability of Latches. So far, we have focused on the single-threaded performance for pes-
simistic latch acquisitions—however, most disaggregated database systems run with multiple

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:13

8 Workers 32 Workers 128 Workers

S 20.0M+

o}

2

% 15.0M+

k=)

S 10.0M+

o

<

2 5.0M+

ey

ooy e e — N -

T T T T T T T T T T T T T T T
basic +spec. +write +async. unsync. basic +spec. +write +async. unsync. basic +spec. +write +async. unsync.
read combiningunlatch read combiningunlatch read combiningunlatch

Fig. 9. Multi-threaded performance of optimized latches (4 compute nodes and 1 storage node).

workers dispersed across several compute nodes. Thus, in the following, we discuss how the
optimizations perform with an increasing number of workers equally distributed across 4 compute
nodes. We use a data set with 20 thousand 256 byte-sized tuples stored on one storage node. We
also measured with 20 million tuples, but the results behaved similarly. The accesses are randomly
distributed across the dataset.

We only show the performance of the write-only workload, i.e., the exclusive latch optimizations,
since the read-only workload behaves very similarly in this experiment. As the upper bound, we
include an unsynchronized version (an RDMA read and RDMA write). Figure 9 shows the results
for 8, 32, and 128 workers. The first observation is that the performance is on par with the un-
synchronized version when all optimizations are enabled, i.e., asynchronous unlatch, for 8 and 32
workers. The optimizations effectively hide the latch operations with the data movement opera-
tions. Furthermore, the performance scales near-linear when increasing the worker count from 8
to 32. However, with 128 workers, the highest optimization level seems to be counterproductive.
We attribute this behavior to the fact that the next operation may start sooner. Acquiring the next
lock earlier introduces additional lock contention in the presence of more workers. For instance,
one worker already acquires the next lock even though the old lock is still latched due to the asyn-
chronous nature, i.e., a worker can hold two locks for a limited period. It can also lead to increased
RNIC contention on the storage node, with more in-flight operations. In practice, the asynchronous
unlatch optimization is still worthwhile since there are typically more storage nodes, as we will
see in the following experiment.

3.5 Effect on a Disaggregated DBMS

As stated earlier, latch optimizations improve performance tremendously. However, the previous
results were only obtained in micro-benchmarks. Let us substantiate that claim by integrating
them into an existing disaggregated DBMS. We use NAM-DB [67], which is a disaggregated RDMA-
optimized DBMS. In our setup, we use 4 compute nodes with 28 workers each (112 total workers)
and 4 storage nodes. Among those storage nodes, we distribute 20 million tuples. We measure
the throughput in operations per second for representative tuple sizes of 256 and 512 byte. We
implemented the highest optimization level,, i.e., asynchronous unlatch, and call this version NAM-
DB++. In addition, we show the effect of manipulating the latches’ data layout, as we discussed
in Section 3.2. We compare the original NAM-DB with NAM-DB++ in a write-only, mixed, and
read-only workload. To show the effect of contention, we vary the access skew.

Read-Only Performance. Let us first focus on the 256 byte-sized tuples and the read-only work-
load (top right in Figure 10). The optimizations double the performance with uniform and slightly
skewed (Zipf 1) access patterns. When the contention increases, the hardware limits the perfor-
mance, and both systems converge. The dramatic performance degradation is nevertheless sur-
prising in the read-only scenario. In theory, the read-only performance should not dramatically

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:14 M. Jasny et al.

Write Only Mixed 50/50 Read Only
© NAM-DB
e NAM-DB++
4% NAM-DB++ w. offset

n
(o
(2]
(&) o
=
B 10m+ 3
~ 5
2 0 - [
o
S =
g 20M - N
8 2
O 10M+ el
=
°©
0- T T T T T o
uniform 1 15 2 25 uniform 1 15 2 25 uniform 1 15 2 25

skew (zipf)
Fig. 10. Effect of optimizations in NAM-DB (4 compute nodes and 4 storage nodes).

collapse since multiple readers can acquire a latch simultaneously. Unfortunately, the RNIC can-
not handle the concurrent atomic RDMA operations necessary to acquire the reader latch in the
first place. As mentioned in the previous experiment, the RDMA atomics are serialized in the
RNIC, which does not scale well when the lock slot is contended. Despite the hardware limita-
tions, the read-only workload still performs much better than the write-only workload under high
contention. For instance, with a Zipf factor of 2 the write-only performance is 170K, whereas the
read-only performance is 4.5M.

Write Performance. The contention exacerbates the performance issue in the write-only and
mixed workload. The locks now logically contend in addition to the physical contention on the
RNIC. In other words, the performance of the atomic operations decreases since those operations
often target the same latch and are serialized in the same RNIC lock slot. Once the RNIC processes
the atomic operation, the latch may have been already latched exclusively, which requires a restart
and aggravates the problem.

Larger Tuples. When looking at the 512 bytes-sized tuples in the read-only workload, we can
see that the effect of applying the padding is more pronounced. As mentioned earlier, the larger
latch strides lead to more contention inside the RNIC’s lock-table, thus limiting the performance.
We use 4 storage nodes, as opposed to the experiment in Section 3.2, and still, the collisions inside
the RNICs become the primary bottleneck. Therefore, with the padding optimization, the perfor-
mance significantly improves by removing the bottleneck of physical contention, allowing the
latch optimizations to achieve their potential.

4 Optimistic Synchronization

In the previous section, we have seen that pessimistic

synchronization scales when the latches are un- ™1
contended. However, in some data structures, latch 750K 4
contention is unavoidable and, in fact, inherent to the 500K 4

== Unsynchronized

=& Pessimistic Sync.

-8 Optimistic Sync.

4 32 256 2048
Workers

data structure design. For instance, B-Tree operations
have to traverse the B-Tree root node. Although the
root node is mainly latched in shared mode, this cre-
ates (physical) contention on the RNIC when using
pessimistic synchronization, negatively impacting the
performance. Figure 11 shows this effect for a B-Tree Fig. 11. Lookups in one-sided B-Tree (4
with 4 KB nodes stored on a single storage machine compute nodes and 1 storage node).

250K A

o
1

Throughput [ops/sec]

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:15

Cache Line ; Cache Line

]a \ v \ {DATA \ READ READ

version & data version

i) Versioning

’Q‘ vl CRC | DATA ‘
ii) Versioning + CRC
Cache Line | Cache Line Cache Line

if V1 ==V2
success

e.g, binary search
on B-Tree node

’ﬂ‘VIDATA}VIDATAéV‘DATA‘

iiil) FaRM Cache Line Versions
(a) Optimistic Layouts (b) Naive Optimistic Technique

Fig. 12. Implementation of optimistic synchronization.

and accessed read-only from 4 client machines. As we can observe, the unsynchronized B-Tree
can saturate the bandwidth with only 16 workers, whereas the pessimistic synchronized version
stagnates much earlier and never achieves the full bandwidth. Note that the pessimistically syn-
chronized version includes all the optimizations presented above, and even then, the performance
is disappointing in this experiment.

This is why many papers eschew RDMA atomics and propose an optimistic synchronization
scheme in which reads do not physically latch the data but detect concurrent modifications. In
contrast to pessimistic synchronization, Figure 11 demonstrates that optimistic synchronization
can achieve the full bandwidth. We start this section by providing an intuition on how optimistic
synchronization works. After that, we discuss PCle’s ordering guarantees and its devastating ef-
fects on some optimistic schemes leading to an incorrect synchronization. We then present correct
optimistic synchronization schemes andgt evaluate their performance.

4.1 Intuition for Optimistic Synchronization

Optimistic Reads. The intuition for optimistic synchronization is that readers proceed optimistically
and then validate, while writers physically acquire an underlying pessimistic lock to avoid write-
write conflicts. To achieve the same guarantees as shared pessimistic latches* readers must check
that the data item did not change during their operation. This is typically realized by augmenting
the data item with a version counter and incrementing it upon each modification, which allows
readers to detect concurrent writes. The layout of such an augmented optimistic lock is shown
in Figure 12(a). It consists of a pessimistic latch used for exclusive access and the version counter.
Using this version counter, readers validate that the version did not change during their operation.
If the validation fails, the operation is restarted.

Naive Implementations. One way of implementing a one-sided optimistic lock is depicted in
Figure 12(b), which we call the naive implementation. This approach uses a single RDMA read to
copy the latch, version, and data to the worker. The worker can then check if the item is exclusively
latched and possibly restart. Otherwise, if the check on the latch succeeds, the operation, e.g., a
binary search in a B-Tree node, is performed optimistically. Once the operation is finished, the
version is read once more (via RDMA) and compared to the initial value.

This after-the-fact validation is crucial to detect concurrent modifications and to get the same
guarantees as a pessimistic latch. Thus, the validation is effectively equivalent to an unlatch oper-
ation. These semantics are critical for higher-level synchronization techniques such as optimistic
lock-coupling [30, 73] on a B-Tree since we need to ensure that the B-Tree node did not split and
the child node is still valid.

4We will discuss relaxed guarantees in Section 6.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:16 M. Jasny et al.

4.2 PCle’s Ordering Guarantees

Intermediate Protocols. Unfortunately, the naive implementation in Figure 12(b) is not correct. As
pointed out by Taranov et al. [53], there are three factors that can affect the data delivery order
of transmitted messages: (1) Message ordering, (2) packet ordering within a single message, and
(3) DMA ordering. The first two factors are generally ensured by InfiniBand and RoCE.> But even
though message ordering is guaranteed, it is not guaranteed that DMA operations are performed
in-order. The InfiniBand RDMA specification [19, 20] does not itself provide any ordering guaran-
tees concerning the order of bytes read by an RDMA read. In other words, RDMA operations are
not designed with concurrency in mind (except for RDMA atomics). However, in practice, many
academic and industry-grade systems use RDMA concurrently on the same memory regions. Since
RDMA does not specify the behavior of those concurrent accesses, the intermediate protocols are
important. For example, the lack of order for reads permits intermediate protocols involved in the
operation, e.g., PCle, to retrieve host memory as they see fit. Therefore, to fully understand why
an RDMA read may not execute in increasing address order, it is critical to investigate the impact
of PCle [44] and cache coherence protocol. Understanding the underlying protocols subsequently
allows us to extract correct synchronization techniques.

As shown in Section 2, an RDMA read request is sent over the network to the remote node. The
RNIC then dispatches the request to the PCle controller, which fetches the requested data region
from the host memory. The data is transferred via PCle to the RNIC and then sent back to the
requester in one or more RDMA packets. An important aspect is that PCle requests serviced by
the host are cache coherent on modern server architectures. Modern architectures provide direct
cache access [18, 31, 52] to allow high-performance I/O such as RDMA to access processor caches
directly. For example, the x86 machines in our testbed are equipped with Intel’s DDIO [21], and a
similar mechanism is available for ARM [2].

PCle Reordering. Since the actual data transfer from the remote memory to the remote RNIC
is initiated and carried out via PCle, we must look to the PCle specification. RDMA requests are
translated to PCle transactions consisting of reads and writes that are processed by the so-called
PCle root complex. Hence, the guarantees provided at this layer of the hardware stack play a
pivotal role. The root complex services PCle read requests, which are coherent at a cache line
granularity. Once a request is initiated, the PCIe protocol transfers that data to the endpoint via
so-called completions.

Multiple completions are used for reads larger than a given size, e.g., 64 bytes. Herein lies the
problem. The PCle specification states, “Memory Read Request serviced with multiple comple-
tions, the completions will be returned in address order.” [44]. This is hard to interpret, but it only
determines the order of the completions and not the order in which the data is retrieved from mem-
ory. In fact, an implementation note permits that a “single Memory Read that requests multiple
cachelines from host memory is permitted to fetch multiple cachelines concurrently” [44].

Implications on Correctness. Due to the concurrent cache line retrieval, we cannot reliably detect
concurrent modifications with our naive implementation from Figure 12(b). For example, assume
a concurrent writer and a reader access a data item as depicted in Figure 12(a)(i). With the lack
of order, the reader could first retrieve the second cache line in which the writer currently mod-
ifies data. In the meantime, the writer increments the version and unlatches the data item again.
Only then does the reader retrieve the first cache line containing the latch and the version counter.
Consequently, despite the validation step at the end in which it will retrieve the version again, the
reader will falsely assume that the version did not change. In our introduction, we have already

>There are RNICs that deviate from this and offer out-of-order delivery [9].

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:17

rs, 1'0/7

©

FaRM/CRC [operationf——{validation
(a) Two RDMA reads (b) FaRM and CRC technique

Fig. 13. Correct optimistic techniques.

shown that this is a real risk for modern RNICs (cf. Figure 1(b).) This may be surprising for two
reasons: (1) The PCle standard guarantees that RDMA writes are performed in increasing address
order while reads can be read out of order, as discussed before. (2) many articles rely on this unspec-
ified behavior. In fact, an earlier article of ours [73] suffered from this wrong ordering assumption.
More details on the memory semantics of RDMA can be found in [10].

Referring back to Figure 1(b), we can see that data is rarely corrupted, but it happens, and if
data corruption occurs, it is almost undetectable. We tested this behavior on three generations of
modern RNICs, including the RNICs available in the cloud, and observed that no RNIC provides
additional ordering guarantees beyond the PCle specification. Fortunately, there exist techniques
that prevent this issue, but, as we will see in the following section, they are not for free and come
with different performance characteristics and tradeoffs.

4.3 Correct Optimistic Synchronization

Optimistic synchronization relies on the initial RDMA read to observe a consistent view of the ver-
sion and data. Due to the lack of ordering at the PCle bus, we must rely on an additional mechanism
to provide this capability. Only then the after-the-fact validation will correctly detect concurrent
modifications. We will discuss existing mechanisms® in the following.

Versioning (Using Two RDMA Reads). This technique is not very different from the naive version;
however, it requires two dedicated RDMA reads in the beginning, as shown in Figure 13(a). The
first RDMA read targets only the latch and the version to ensure correct serialization, and only
the second reads the data. Because the version is always read before the data, every concurrent
update will be detected. When looking at Figure 13, one may wonder if the two reads can be
overlapped similarly to the operations in Figure 7. Unfortunately, this is not possible with two
RDMA reads since they could be re-ordered at the PCle level or even in the network. This is due
to another unexpected pitfall: Although RDMA operations are ordered in a connected queue pair,
the ordering only holds for the RDMA completion events. There are some exceptions in which
the order is ensured, e.g., for atomic operations. On the other hand, the two reads must be issued
sequentially.

Besides the correct order of the two reads, the latch and version must be stored in one cache
line to exploit the cache coherence protocol and read both consistently. Only this enables a reader
to detect concurrent modifications reliably. Unfortunately, this technique needs two RDMA reads,
which may be expensive. The following two approaches only require a single RDMA read by em-
bedding additional metadata in the object as shown in Figure 12(a).

Checksum by CRC. This scheme detects inconsistencies by using a checksum in the data, e.g.,
CRC64, that allows the worker to verify the data with high probability. The CRC will not match
the corrupt data if there is a concurrent writer. Therefore, in the best case, only one RDMA read is
required (cf. Figure 13b)). The downside, however, is that (1) the CRC generation is computationally

Note of caution: Some optimistic techniques rely on hardware details that may not hold. E.g., when data is not aligned or
larger than the MTU.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:18 M. Jasny et al.

@ Broken s« Pessimistic #F FaRM-style == CRC #& Versioning “® Broken #= FaRM-style # CRC == Versioning
—_ c
§ 400K+ £ 100 =)
a o
2 300K Q754 L |
O, o e T T
5 200K+ * 50
a c
S 3
S 100K+ 3 25
°
2 E
£ 0 3 o
fumy T T T 5] T T T
256 B 2kB 16 kB 256 B 2kB 16 kB
Read Size [log] Read Size [log]
(a) Throughput comparison (b) Relative slowdown of correct schemes

Fig. 14. Single-threaded performance of optimistic reads (1 compute node and 1 storage node).

expensive and (2) it is only probabilistic. Admittedly, the probability of a collision is low for CRC64.
However, if a collision occurs, the data corruption is hard-to-detect.

FaRM Cache Line Versions. As with CRC, FaRM [11, 12] proposes a technique that requires one
RDMA read in the best case. However, instead of computing a checksum, FaRM relies on coherent
cache DMA (specified by x86) to detect if a single RDMA is consistent. FaRM stores a version at the
beginning of every cache line as illustrated in Figure 12(a). Therefore, we can detect if a concurrent
modification happens by comparing all cache line versions. To enable this, writers first latch the
data item, read it, modify the data, increment the version locally, and then write the data back via
RDMA in address order. Although not as computationally expensive as CRC, every cache line must
be accessed to validate the versions introducing additional cache misses, i.e., stalled CPU cycles. In
addition, this technique imposes additional storage overhead to accommodate a version in every
cache line.

4.4 Single-Threaded Performance

We initially focus on single-threaded performance to understand the different tradeoffs of the cor-
rect schemes. Figure 14(a) compares the single-threaded read-only performance with varying tuple
sizes. We also include the “broken” optimistic scheme and the optimized (and correct) pessimistic
scheme from Section 3.

Optimistic vs. Pessimistic. Maybe unexpectedly, the pessimistic synchronization scheme
performs better than all optimistic schemes, including the incorrect one. Although the broken
optimistic scheme only requires two messages as opposed to the pessimistic scheme that requires
three messages, the pessimistic scheme can exploit the asynchronous unlatch optimization.
This optimization unlatches asynchronously, and the subsequent operation begins immediately
(cf. Figure 7). Analogous behavior is not possible for optimistic schemes as the validation, i.e., the
unlatch operation, determines if the operation failed or succeeded. Consequently, the validation
must be synchronous (see Figure 13).

Correct Schemes vs. Broken. Let us now quantify the induced overhead of the correct schemes
compared to the broken scheme, which only consists of a single RDMA request and no consistency
checks to acquire the data and version information (i.e., the first round trip in Figure 12(b)). From
Figure 14(a), we can observe that the broken scheme performs better than the correct schemes.
The closest competitor is the FaRM scheme, which performs nearly as well as the broken scheme
and only drops with larger message sizes. CRC can only compete with small tuple sizes, contrary
to the versioning scheme, which catches up with large tuple sizes.

To highlight those effects, Figure 14(b) shows the slowdown in percentage compared to the bro-
ken scheme. We can see that both CRC and FaRM suffer from larger tuple sizes. The computational

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:19

read write
2.5M+ @
2.0M+

o . - - - OE
0.5M 2
® 0.0M- @
» w
-~ 75M- R
2 s
CC) 5.0M+ 5
3 0.0M- @
& 20.0M+ =
15.0M - @
10.0M - g
5.0M - 3
0.0M - - 17

Pe55|m|st|c Broken FaRM style Ver5|on|ng async. write-

unlatch unlatch

Fig. 15. Read-only and write-only optimistic scalability (4 compute nodes and 1 storage node).

overhead for both schemes is O(n) since CRC calculates the checksum for every byte, and FaRM
checks the versions in every cache line. Consequently, both schemes get linearly more expensive
with increasing tuple sizes, more precisely, the consistency check (phase (2)) as shown in Figure 13.
However, because the CRC calculation is considerably more expensive than checking every cache
line sequentially, the performance degrades more severely. For FaRM the sequential HW prefetcher
and the out-of-order execution hide the cache misses. In contrast, the versioning approach incurs
a substantial constant overhead by requiring an additional read for the version. Therefore, the ver-
sioning approach amortizes the initial cost with larger tuples sizes and performs better than FaRM.

To summarize, looking at the results of the single-threaded experiments, we found (1) the pes-
simistic schemes out-performs the optimistic schemes in the single-threaded setup, (2) FaRM per-
forms better with smaller tuple sizes (< 64 KB), (3) while versioning is beneficial with larger tuples.

4.5 Scalability of Optimistic Techniques

While the optimistically latched single-threaded performance was worse than the pessimistic
scheme, it is not indicative of its scalability behavior. After all, the main benefit of optimistic
schemes is that they avoid RDMA atomic operations during a read and, thus, avoid physical con-
tention on the RNIC generated by multiple workers.

Read-Only Scalability. Figure 15 shows the scalability w.r.t. the number of workers for small, i.e.,
256-byte sized, tuples. Again with fewer workers (8), the pessimistic approach performs better than
the optimistic schemes. In line with the previous results, CRC and FaRM are close to the broken
scheme, whereas the versioning scheme is far behind. However, under the highest contention
when using 128 workers, all the optimistic schemes perform better than the pessimistic scheme.
In particular, FaRM and CRC perform almost twice as well as pessimistic synchronization. This
confirms our intuition that by avoiding RDMA atomics, the physical contention effect does not
limit the performance in optimistic schemes.

We also compared the scalability of larger, 16 KB sized tuples and found that the pessimistic
scheme performs better in this scenario. The reason is that with larger tuples, the workload be-
comes network bound before the RNIC contention limits the performance. In other words, only 8
workers are required to reach the full bandwidth (12 GB/s) with the pessimistic synchronization,
and the RNIC can easily sustain RDMA atomic operations at such a rate.

Write-Only Scalability. Remember that only reads are performed optimistically, while modifi-
cations are still latched pessimistically. However, since the optimistic readers do not use RDMA

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:20 M. Jasny et al.

atomics, we can now leverage the write-unlatch optimization, which uses a write instead of an
atomic operation to unlatch (see Figure 7). To remind ourselves, we have not considered them
before because the write-unlatch optimization does not work with concurrent FAA operations re-
quired to implement reader-writer latches. But because optimistic schemes only require one latch
mode, i.e., exclusively latched or unlatched, write-unlatch can be used to further reduce the num-
ber of RDMA atomic operations.

Figure 15 (right side) shows the effect of this optimization when increasing the number of
workers up to 128. We can observe that the write-unlatch optimization enables better scalability
by avoiding one RDMA atomic operation. When comparing the performance of the write-unlatch
optimization with 128 worker and the results from Figure 9 we can see that it approaches the
performance of the unsynchronized variant. Important to note is that the layout as shown in
Figure 12(a) must be reversed so that the version and latch are placed at the end of the data to
exploit address-ordered RDMA writes. That is, the last byte written must unlatch the record.
The reversed layout does not affect the performance of the optimistic approaches since it merely
changes the location of the version.

So far, we have focused on performance numbers. However, the correct techniques come with
tradeoffs, such as the number of required messages. In the best case, the versioning approach
requires three messages and can be a sub-optimal strategy when the workload is message-bound.
In contrast, CRC requires only two messages but is computationally more expensive, which may
be detrimental if the threads can do other valuable work. Moreover, CRC is probabilistic, and
although the collision probability is low, the question remains: why risk data corruption when
reliable schemes exist? Lastly, although FaRM is certainly efficient, it adds 2 — 8 bytes storage
overhead [11] per cache line, which means it is not only O(n) in terms of computing but also storage
overhead. In addition, the higher-level logic must handle the interleaved cache line versions. For
instance, any string operation (comparison, regexp, and the like), e.g., on a value in a B-Tree,
must explicitly deal with strings chunked across cache lines. Because only a few existing libraries
support chunking, one would have to copy larger strings into a contiguous memory before being
able to use them and potentially offset the gains by the efficient scheme. Consequently, choosing
the correct scheme has tradeoffs that must be carefully weighed against each other and co-designed
with the system.

Summary. To conclude, we have found that the optimistic techniques scale and perform bet-
ter than pessimistic techniques for workloads in which the RNIC’s capability of handling RDMA
atomic is the limiting factor. For instance, this happens in a read-only workload with small tuples
and 128 or more workers. When using larger tuples, the workload tends to become network bound,
reducing the number of possible parallel operations and shifting the bottleneck for pessimistic
schemes from the RNIC contention to the network. Thus, a pessimistic scheme often performs
better in such scenarios. Another interesting finding is that in combination with optimistic reads,
we can improve the scalability of writes by using the write-unlatch optimization. In contrast to
pessimistic schemes, optimistic schemes come with different tradeoffs regarding computational
and storage requirements.

4.6 Effect on a Disaggregated DBMS

Finally, we compare the optimistic schemes by implementing them in NAM-DB and call this system
OPT-DB. Similar to the experiment in Section 3.5, we vary the contention and show write-only,
mixed, and read-only workloads. The configuration is unchanged with four compute and storage
nodes storing 20M tuples. Unlike the experiment in Section 3.5, we stick to 512 bytes but vary the
number of workers from 112 to 224.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:21

Write Only Mixed 50/50 Read Only
soM @ NAM-DB++ w. offset N
20M - #= OPT-DB FaRM-style S
o 4 OPT-DB CRC — i W s
& 1om+ == OPT-DB Versioning ! - z
=~ 7
2 o
S 30M — A
© N
2 20M- : — — | R
(@) ! OE
10M 5
7
O E T T T T T
unif. 1 15 2 25 unif. 1 15 2 25 unif. 1 15 2 25

skew (zipf)
Fig. 16. Optimistic techniques in a disaggregated DBMS (4 compute nodes and 4 storage nodes).

Contended Shared Latches. In the read-only workload in Figure 16, we can observe that all opti-
mistic techniques are pretty robust against contention, contrary to the pessimistic synchronization
in NAM-DB++, which already degrades with light skew (1.5). Furthermore, we can back up the pre-
vious findings that the pessimistic scheme performs better with fewer workers than the optimistic
schemes. The optimistic approaches perform better when increasing the number of workers to 224.
Overall, the OPT-DB implemented with FaRM performs the best, followed by CRC and Versioning
(for 512 byte tuples).

Reader/Writer Contention and Aborts. There is a well-known tradeoff for optimistic approaches in
reader-writer contention: optimistic approaches typically lead to more restarts, resulting in wasted
work. Nevertheless, the mixed workload shows that the optimistic approaches out-perform NAM-
DB++ despite the restarts.

The reason lies again in the fewer RDMA atomic operations. Especially under contention (skew),
the atomics fall in the same lock slot, which creates physical contention in the RNIC. Moreover,
in this experiment, the logical contention exacerbates this physical effect. Once the RDMA atomic
operation is executed, it does not necessarily mean that the lock operation was successful, e.g., it
may be already latched exclusively by another worker. Thus, for a pessimistic scheme, the opera-
tions may restart, which incurs additional atomic operations. To this end, for the mixed workload,
the optimistic approaches, which get away with a single atomic operation for exclusive latches
and none for optimistic (read) acquisitions, perform much better.

The same holds for the write-only benchmark; since the optimistic approaches harmonize with
the write-unlatch optimization, they perform on par or sometimes even better (e.g., with low con-
tention and 224 workers as shown in Figure 16). Moreover, in the write-only workload with 112
workers, the versioning approach is slightly faster since the writers do not need to perform any
additional computation, such as CRC checks or incrementing the cache line versions. When con-
tention increases, all the approaches converge at merely 100K operations per second.

5 Will Hardware Advances Solve Performance and Correctness Issues?

Since the publication of our previous study [72] and the results presented in Sections 3 and 4, which
utilized 100G NICs, more than a year has passed. During this period, the landscape of Network In-
terface Cards (NICs) has significantly evolved, particularly with the introduction of faster RDMA
NICs, which support 400G. These networks are now well-established in the server market, with
even faster interconnects like 800G and 1.6T on the horizon [32]. To accommodate these higher

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:22 M. Jasny et al.

bandwidths, NICs must be more powerful, as evidenced by the fact that with 400G NICs, new
packets can arrive approximately every 1.67 nanoseconds [32] at a server. Given these techno-
logical advances, one question remains: Do modern NICs resolve the scalability issues of RDMA
atomic operations? Considering the improved performance of modern NICs, it is reasonable to
hypothesize that such hardware advancements could alleviate the scalability challenges, allowing
systems engineers to benefit directly from these improvements without resorting to workarounds
like padding (cf. Section 3.2). In this section, we thus dive deeper into this question and, unfor-
tunately, see that the answer is a clear “no”. As such, we additionally visit other alternatives to
provide scalable and correct synchronization methods.

5.1 400G NICs to the Rescue? Revisiting RDMA Atomics

To address the previously raised question, we now evaluate the performance of RDMA atomics
on the latest 400G NICs of the ConnectX-7 generation. Given that the new NIC generation [43]
supports network speeds up to four times higher than its predecessor (cf. Section 3.2), we anticipate
significant scalability improvements, particularly in uncontended atomic operations. However, we
are also interested in seeing whether the NIC-internal implementation of atomics changed and
thus supported better scalability for contended workloads. To test these questions, we used the
following setup.

Testbed. Our experiment uses a 400G testbed comprising two single-socket nodes, each powered
by an AMD EPYC 9554P processor with 64 cores clocked at up to 3.75GHz and equipped with
768GiB of RAM. The nodes run Ubuntu 22.04.4 LTS on a Linux 5.15.0 kernel. Each node includes
two Nvidia ConnectX-7 MT2910 RDMA NICs connected via PCle-5, enabling a topology with
four endpoints that we use for our experiments. The scope of RDMA atomic operations is limited
to a single NIC, meaning that accessing the same memory region through multiple NICs does
not ensure coherence. Therefore, we ensure that only a single NIC handles atomic operations to
certain memory regions. We connect these four NICs using an Intel Tofino2 400G Ethernet Switch,
configured as a traditional router for RoCE traffic. It is important to note that RDMA frames under
RoCE are slightly larger than those under Infiniband, which may cause minor variations in latency
and throughput. Despite this, RoCE and Infiniband share the same RDMA headers at the transport
layer. RoCE is particularly interesting for data center applications as it integrates seamlessly with
existing Ethernet-based infrastructure.

Results. With the updated hardware configuration, we executed the scalability experiment, as
shown in Figure 5. With only two physical compute nodes, our testbed achieved a lower peak
throughput than the original setup. Nevertheless, the performance trends observed in the new
setup (cf. Figure 17) remain consistent with our previous findings. For instance, the maximum
throughput for physically contended atomic operations is again capped at approximately 2.5 mil-
lion operations per second. Similar to the initial experiment depicted in Figure 5, we observed that
introducing 8-byte padding addresses the scalability issue.

The Problem Persists. Disappointingly, the answer to whether 400G NICs improve the scalability
of RDMA atomics is a “no”. Despite achieving higher throughput for standard RDMA operations,
RDMA atomics are still serialized using the same internal lock table as previous NIC generations.
Consequently, developers must create synchronization schemes that avoid physical or false con-
tention by carefully addressing alignment issues.

We speculate that resolving this issue is feasible, but there appears to be insufficient industry
interest. For example, Nvidia, the vendor of the ConnectX-NICs, primarily focuses on machine
learning workloads for training and inference, which do not require such fine-grained locking.
Potential approaches to mitigating this limitation could include hashing addresses to distribute
contention more evenly or increasing the size of the lock table.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:23

Address Aligned 8-Byte Padding

'G .

& 30M- Latch Stride [byte]:

a O A64 H A:1024

2 20 M- O A:128 @ A:2048

3 A\ A:256 A A:4096

'§> 10 M- + A512 & A:8192

o

ey

= 01 T T T T

2048 4 32 256 2048

Workers [log]

256

Fig. 17. Scalability of uncontended atomic RDMA operations on 400G ConnectX-7 NICs. The size of the
internal lock table appears not to have changed, and the maximum throughput for contented locks is as
high as that of 100G ConnectX-5 NICs. Due to a smaller testbed, the maximum throughput differs from
Figure 5.

However, since using padding to correct alignment problems is merely a temporary fix, explor-
ing alternative methods for scaling database workloads is crucial. Fortunately, recent advance-
ments in network infrastructure go beyond mere performance improvements on NICs. An increas-
ing number of networking components have become programmable, offering new opportunities
for exploration. In the subsequent sections, we will investigate how these programmable compo-
nents can be utilized to overcome the limitations of atomic RDMA implementations.

5.2 The Opportunity for Smart Networking Hardware

As network bandwidth increases, networking hardware is also becoming more programmable,
driven primarily by the need for flexible deployment in data centers [4, 28, 45]. The introduction of
programmability at both the NIC level, through SmartNICs, and the switch level, via programmable
switches, marks a shift towards utilizing the network as an active computational resource. In the
remainder of this section, we will explore how programmable network components can transform
one-sided synchronization schemes and examine the benefits and limitations of current genera-
tions of smart network devices.

SmartNICs. Smart Network Interface Cards
(SmartNICs) are central to the ongoing transition
toward programmable networking hardware. These

20 M4 RNIC w/o padding
© Bluefield-2 (RPC)

15 M+
devices are engineered to offload processing tasks
10 M+ from the CPU to the network card, bringing com-
5M4 putation closer to the data flow. Offloading reduces

[

S—=—=—=—] CPU load by directly managing tasks such as packet
filtering, encryption, and traffic management on the
NIC. By processing data en route, SmartNICs effec-

tively decrease latency and free CPU resources for

Throughput [ops/sec]

16 128
Workers [log]

1 0I24

Fig. 18. CAS without padding on ConnectX-7
RNICs vs. Bluefield-2 SmartNIC, which uses a
two-sided RPC approach and CPU atomics on
the Bluefield’s ARM-cores.

other operations [15, 34].

SmartNICs theoretically simplify the expansion
of networking primitives. For example, instead of
issuing a series of one-sided RDMA operations,
one could implement a custom operation such as

latch_tuple directly on the SmartNIC. Although one-sided operations are not inherently faster
on devices like the Nvidia BlueField-2, the ARM cores on these NICs can be used to implement an
RPC-style latching protocol that bypasses the internal locking table on the NIC.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:24 M. Jasny et al.

Compute 1 Compute 2
|

RDMA

l Smart Switch'
RDMA packets

RDMA

e S . S—

Fig. 19. The programmable switch sits on the data-path between compute and storage. The storage nodes
hold all tuples which are accessed via RDMA. It can modify RDMA packets on-the-fly and optionally reply
directly back to a compute node in 1/2 RTT.

RDMA

—— On-path to Storage

—— Direct Reply Path

The BlueField SmartNIC operates like a separate host, equipped with its own memory and ARM
cores. While it is not directly on the data path, it is addressable from the network via its own
IP address. This allows us to store latches in the device memory, with the option to place the
tuples either in the device or in the host memory. The primary advantage of this approach is
that it bypasses the traditional locking table required for one-sided atomic operations, instead
relying on the memory attached to the ARM cores. In other words, the ARM cores handle the
incoming latch request by issuing atomic CPU operations on the latch and responding with the
result.

To see how such a synchronization scheme performs under high contention scenarios, we im-
plemented an RPC-style protocol on a Bluefield-2 SmartNIC and compared it with atomics on
conventional NICs. The performance of both schemes is shown in Figure 18. Here, the Smart-
NIC approach (blue) demonstrates better performance of up to 20M ops/sec compared to the
one-sided synchronization results, which is capped at around 2.51M ops/sec due to unpadded
atomics that map to the same physical slot in the locking table on a conventional RDMA NIC
(cf. Section 3.2).

Given these findings, SmartNICs and synchronization schemes are promising for the future
since they can provide scalable execution by offloading them to the SmartNIC. In the remainder
of this article, we look at a second alternative: programmable networking hardware. In particular,
we concentrate on programmable switches, which provide interesting properties. As we will show,
these switches offer up to four times higher throughput for contended workloads and have the po-
tential to implement lower latency latching schemes, which are crucial for many latency-sensitive
database workloads.

Why Programmable Switches? Network switches, the backbone of networking infrastructure,
have evolved to become programmable, too. Traditionally, introducing new networking proto-
cols typically required the costly and inefficient process of replacing fixed-function switches. Pro-
grammable switches, however, can be reconfigured to support new protocols or to implement
custom user logic at the data-plane level. Unlike SmartNICs, switches can process data at line rate,
handling billions of packets per second—a capability that stems from their ability to manage the
aggregated bandwidth of all connected nodes.

In the context of synchronization schemes, programmable switches exhibit three notable char-
acteristics: (1) Latches located on the switch can be accessed in half the round-trip time compared
to those on a storage node, as shown in Figure 20; (2) Switches consistently process at line rate,
ensuring there is no performance degradation between contended and uncontended workloads,
which we will demonstrate in the following sections; (3) As depicted in Figure 19, switches have a
comprehensive view on all traffic flowing between compute and storage nodes.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:25

Given these advantages, we propose that switches could ef- 4ps -
fectively serve as a high-performance latch service. Figure 19
demonstrates how a smart switch can be utilized in a disaggre- 5,3 M7
gated architecture. Notably, the switch can directly respond ~ Goys -
to requests, such as latch requests, enabling very low latency. Eﬁ'
Meanwhile, other requests, like reading data from storage, Tps-
are simply routed through the switch. An important feature Ois -
to highlight is the smart switch’s programming model (com- RNIC to Switch RNIC to RNIC

piler), which ensures that any software running on the switch

operates at line rate—even contended operations, as we will ~Fig- 20 Latency of 8 Byte RDMA op-
show later. erations to a programmable switch vs.

At the same time, this strict requirement that all operations remote storage node.

on the switch must run at line rate significantly constrains the programming model and limits the
switch’s resources. In the subsequent sections, we will investigate how programmable switches are
programmed and examine their capabilities in addressing scalability bottlenecks and correctness
issues.

5.3 Background: Architecture of Programmable Switches

In this section, we explore the hardware architecture of programmable switches in more detail,
which explains why they are interesting alternatives for implementing synchronization schemes.
The background provided next is also crucial for designing and understanding new algorithms
based on this unique architecture.

Overview. Programmable switches have two components: the control plane and the data plane.
The control plane, which typically runs on the network device’s (relatively slow) CPU, makes rout-
ing decisions based on the network’s topology and policies. Conversely, the data plane is tasked
with the actual packet processing, which involves efficiently routing traffic to its intended desti-
nations. The data plane’s programmability is achieved through a reconfigurable architecture us-
ing match-action tables, also known as the Protocol Independent Switch Architecture (PISA).
Match-action tables can be configured to execute user-defined actions on a packet whenever their
key matches certain fields in the packet. These match-action tables are allocated in a fixed layout,
forming a pipeline where packets can flow through [22].

Packet Processing Pipeline. The packet processing pipeline is the core of the data plane and con-
sists of three components: The packet parser, the pipeline of match-action stages, and the deparser.
All three components are realized within an ASIC but are reconfigurable and programmable, so
their behavior can depend on specific fields in the packet headers.

Figure 21 shows the high-level architecture of the switch and how packets are processed from
left to right. Once a network packet arrives as a byte stream, the parser takes this stream from the
wire and instantiates different header instances based on the contents of a packet (cf. Figure 21).
The parsed packet then moves into the first stage of the match-action pipeline.

The match action unit stages (MAUs) do the actual processing of the packets. Multiple
MAU stages are chained together in a pipeline to allow for more complex processing (cf.
Figure 21). In other words, a packet can flow through the match action unit stages. A MAU stage
consists of multiple tables with associated actions. Such a table contains rows, each consisting
of table keys and an action. Whenever a table key matches fields inside a packet header, the
corresponding user-defined action can be executed on this packet. Therefore, a packet could
match multiple tables in a single stage when there are no data dependencies between the
tables. This can, for example, be setting the output port (the action) for a packet by matching
on its destination IP address (which corresponds to a table key). Once the packet traverses all

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:26 M. Jasny et al.
Match-Action Pipeline
re
Parser Deparser
) [fable [Action> L1
—] g : 3 : it —
_ ! | Er | L : S
— el | : ? C_ 11—
+
e [Fable [Action> [Fable | Acton> e | Acion> 1
MAU Stage MAU Stage MAU Stage

Fig. 21. The Protocol Independent Switch Architecture (PISA) enables switches to be programmable. Packets
move sequentially through the pipeline and can be modified according to user-defined match-action rules
in the MAU stages.

MAU stages and is modified according to the user-provided program (actions), it goes to the
deparser.

The deparser resembles the packet headers back to a byte stream so that it can be sent out to the
wire (cf. Figure 21). Throughout the whole pipeline, each packet may carry additional metadata
that is not part of the packet itself but can store important information necessary for its processing.

Programming Model. The programming model of switches allows us to customize all three pre-
viously presented components: Parser, Match-Action Pipeline, and Deparser.

The main focus lies on the processing of packets, specifically allowing for the specification of
how headers within a packet should be modified or rewritten, e.g., routing a packet to a specific
port based on an IP address.

The P4 language has emerged as the de facto standard for programming the data plane in net-
work devices, enabling the definition of specific packet processing behaviors through high-level
match-action rules [3, 5]. Even though P4 was initially developed for programmable switches,
it is also being used across various systems like SmartNICs and FPGAs for packet processing
tasks [57].

Conceptually, P4’s syntax is similar to C; however, it does not allow pointers and has many
other restrictions regarding floating-point numbers, loops, or random memory accesses. There
are well-known techniques like loop-unrolling, fixed-point arithmetic, or dictionary encoding for
strings to work around these constraints. Also, one must remember that each packet can access
only the resources in the stage it is currently in. This processing model is very different from what
we have in CPUs, where an arbitrary order of many random accesses to memory is possible. This
means switch programs must be designed differently from traditional CPU-based programs. Most
of these architectural decisions come from strict timing constraints because packets need to be pro-
cessed at line rate. Often, switch vendors also add different dedicated hardware-accelerators (e.g.: a
checksum-engine or FPU) to the ASIC, which are then available through so-called P4-externs. Each
P4 program that compiles for the switch can be run at line rate speed. Otherwise, it is rejected by
the compiler [65].

TNA: Tofino Native Architecture. While PISA provides an abstract model for switch architec-
ture, it allows vendors to introduce specific implementations, such as additional parsers for tunnel
processing, specialized components for checksum computation, or stateful operations within the
MAUSs. The most important feature in the Tofino architecture is stateful operations because they
allow a packet to access data stored by other packets in the processing pipeline at line rate. This
is realized by register arrays that are located in each MAU stage. Register arrays can be accessed
using a runtime index, allowing so-called combined operations to be executed in a single clock
cycle through the internal ALU. These operations are similar to a combined CAS on a CPU and

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:27

are perceived as atomic modifications by other packets. Registers pose a major advantage to tables
because their content can be modified directly by packets. In contrast, tables can only be modified
through the control plane at a significantly lower rate. With that, packets do not rely solely on ta-
ble lookups for their control flow but can also utilize the information from registers that previous
packets have modified [22].

Guarantees. Switch programs have strict properties that are dictated by the packet pipeline and
validated by the P4 compiler. The packet moves into the next adjacent pipeline stage at each clock
cycle. During its stay in one of the MAU stages, the packet is confined to accessing only its local
resources, e.g., tables or registers. Since, at most, one packet resides in a stage and packets cannot
take over each other, memory (register array) accesses are consistent and well-defined. This means
apacket sees all modifications its predecessor made to the same stage in the previous cycle. Thanks
to these properties, switch programs do not require synchronization within the switch’s data plane
because it is already given inherently by the pipeline architecture.

5.4 A First Microbenchmark: Offloading RDMA Atomics to the Switch

With the programming model and the architecture in mind, we now want to explore the capabili-
ties of programmable switches. As the first microbenchmark, we initially tested executing RDMA
atomics directly in the switch’s data plane, utilizing the switch’s memory. The primary strategy
involves configuring the switch as the target for one-sided atomic RDMA operations, thereby elim-
inating the need to forward requests to the storage node, as illustrated in Figure 19 (direct reply
path). By implementing this design, the switch can effectively serve as a latch service while the
data remains stored on the storage nodes. This approach leverages the programmable nature of
the switch to address scalability and performance challenges previously observed with traditional
RDMA atomics.

Implementation. For this use case, register arrays of the Tofino switch architecture are particu-
larly well suited because they allow us to store state, e.g., the value of the atomic variable, which
is persistent between packets. We added new Infiniband headers to the P4 firmware and extended
the switch’s control plane to simulate an RDMA endpoint and allow connections to it. Now, the
switch can interpret RoCE packets from the RDMA NICs, where Infiniband headers are embedded
inside traditional UDP packets.

After connection setup and exchange of QP information, the control plane installs the necessary
match-action rules into the data plane such that the firmware can react to RDMA packets. When-
ever the RDMA packet type of an RDMA-Atomic or RDMA-Read request arrives at the switch, the
data plane uses the virtual address to get an index for a slot in the register array. The register is
then accessed accordingly, and its result is written into the packet. The packet is then converted
into an RDMA acknowledgment packet and sent back to the client. Such logic can be realized in
just a few MAU stages.

Results: Contended and Uncontended Atomics Scale. We now benchmark the switch accelerated
atomics using four nodes that are connected via 100G links to our Tofino1 switch. We replicate the
setup in Section 3.1, although, with a different testbed (cf. Section 5.1). Each worker thread issues
an RDMA operation and waits synchronously for its completion. Note, that multiple outstanding
requests would be also supported, but latching is often synchronous. The results are shown in
Figure 22 for up to 2,048 concurrent workers.

Compared to the results in Figure 4, interestingly, the switch accelerated atomics does not suffer
from contention. Contention to specific addresses does not affect the switch pipeline because a
packet is the only entity that can access the resources of its local MAU stage, and no further
synchronization is necessary. Therefore the throughput of contended and uncontended operations
in the switch’s data-plane is exactly the same. This perfect scalability is also amplified by the

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:28 M. Jasny et al.

Hardware-Limit of NICs reached

90 M A
= CAS Uncontened

60 M4 © CAS Contented

30 M+

Throughput [ops/sec]

o
1

16 128 1024
Workers [log]

Fig. 22. Scalablity of atomics on a programmable switch. Due to its architecture, the switch does not require
synchronization through a lock-table.

reduced round-trip time to the switch, also under significant load, which is less than half to that
of a normal RDMA NIC. The throughput for four clients maxes out at around 110M operations per
second, which is twice the amount of a NIC-to-NIC setup. However, the switch is barely utilized
and uses only a fraction of its available bandwidth because it only needs to process the load of 4
connected ports.

In conclusion, an architecture such as the one provided by Tofino is very well suited for high-rate
processing of RDMA operations that are resistant to contention and have predictable latencies.

5.5 Pushing it Further: Switch-assisted Optimistic Latching

In our previous experiment, we observed that normal RDMA atomics scale effectively on pro-
grammable switches and can provide a building block for pessimistic synchronization. Another ar-
ticle [66] explored a similar direction by implementing a pessimistic locking service on the switch.
In this section, we now show how a full optimistic synchronization scheme can be implemented on
a switch and analyze it in terms of correctness and performance. As discussed, optimistic synchro-
nization schemes using one-sided RDMA suffer from various correctness problems (remember the
“torn read” experiment in Figure 1(b)). In the following, we discuss using a switch to provide a
scalable and correct optimistic synchronization scheme in a disaggregated setup. In such a setup,
the switch will see all reads, writes, and modifications of the tuples by compute nodes on remote
nodes via RDMA and can thus implement an optimistic concurrency scheme.

As discussed in Section 4, traditional RDMA reads suffer from weak ordering guarantees as the
main problem and prevent optimizations such as reading the version together with the data. The
main idea of using a switch is to offload the tasks of verifying whether an RDMA read was consis-
tent to the switch and let it determine if the data was modified in-between reads by a concurrent
write (cf. Figure 23). To do that, the switch stores a version map for each tuple in its internal mem-
ory, observes the RDMA traffic that flows through its data plane and uses it to coordinate reads
and writes using an optimistic latching scheme, as we explain next.

Switch-Enhanced Writes. Let us assume a node wants to update the content of a tuple. In the
optimistic latching scheme as described before in Section 4, an exclusive latch on the version needs
to be obtained to update the version (and set it to an odd number) before a client can then go ahead
and modify the tuple contents. Since the switch is in the middle, it can reply to this latch request
directly without forwarding the packet to the storage node in less than half the round-trip time. The
unlatch operation, which only increases the version back to an even number, is processed similarly.
In our switch-enhanced write protocol, the switch intercepts this request, updates its local state
(i-e., version map) to reflect the change, and replies directly to the client. The RDMA write of the
tuple data is passed through to the storage node because a switch does not hold enough memory

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:29

Reader Switch Storage Reader Writer Switch Storage
[——Reaq TLlpIe\> Reaq Tuple\)
— Write Typ, ———Rea
Reag TUple\> p e\)\wm dTTuple\>
€ Tuple
Valid read! Conflict detected! >
ta \e Data
Tuple D@ ' Tup!
(Va\'\d)/</ Tuple (mva“‘”/(/ Write AC
|¢—Tuple D3 Tuple TP T

Fig. 23. The programmable switch sits in front of the storage node which hold the data. The switch can
thus detect inconsistent tuple reads by observing the packet order in its pipeline. On the right, a tuple write
happens in the critical red area, and the switch marks the ongoing read tuple data as invalid.

to store tuple contents besides the versions. On the network level, each RDMA Write Request
generates an acknowledgment packet on the remote side. By combining this with the unlatch
phase, the switch can automatically unlatch the tuple again internally whenever the RDMA write
is completed. This way, the client does not need to issue a separate unlatch operation. In summary,
latching a tuple requires half round-trip time and writing a tuple with unlatch requires a single
round-trip time.

Switch-Enhanced Reads. The switch can determine whenever a tuple is latched by checking if
the version of a tuple is an odd number. For each read-request to a tuple, the switch can also
use its internal state to check whether the read was consistent or not. It stores the current tuple
version in a register slot, which is private to each client whenever they read a tuple. As soon as
the node replies with the data, the switch re-reads the current version of the tuple and compares
it with the previously stored version. The result of this comparison is embedded into the header
of the tuple. With this information, the client can verify whether the RDMA read to this tuple was
consistent and re-issue the operation if necessary. To verify whether a tuple was modified before
committing, the client can issue a short RDMA read to the tuple version stored in the switch’s
memory. When executed by the switch, like the write latch operation discussed before, this short
version read operation takes only half a round-trip time. With this scheme, the switch can detect
possible concurrent writes we would encounter when optimistically reading remote tuples using
RDMA while reducing the number of necessary round-trips and latency.

Thinking like a Switch. Before implementing our design as a switch firmware, we need to go
deeper into the hardware level and map our problem to the switch architecture. Switches operate
on packet level only, and to implement accelerated reading and writing of versioned tuples, the
switch must distinguish between 6 different packet types (cf. Table 2). The six packet types map to
the logical Latch Tuple, Unlatch Tuple, Read Tuple, and Read Version operations. Matching on the
RDMA opcode, the packet source, and optionally on the DMA length is sufficient to infer the tuple
operation. The switch needs to do four lookups to process all six packet types.

The most essential lookup is done to obtain a tuple-id’s current version using a register. The
tuple-id is determined by using the virtual address. With that, the switch can reply to Latch Tu-
ple and Read Version packets. In RDMA, both QPs on the sender and target node have packet
sequence numbers (PSN) that are required to ensure a reliable data transfer. However, replying
directly to the sender without forwarding a packet to the target node increments the PSN counter
on the send side but not on the target side. Without adjusting the PSNs of packets of the same QP
that are afterwards forwarded to the target, sequence number errors would be generated. There-
fore, the switch uses another table to account for this offset in PSNs whenever it replies to a packet,
forwards it, or receives a response from the storage node (cf. Table 2). Read Tuple and Write Tuple
packets both require such adaption of the PSN. In RDMA, reads and writes contain a field in the

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:30

Table 2. The Switch Processes Each RDMA Packet Differently

M. Jasny et al.

Tables for Switch pipelines

Packet-Type Source | Target | Client to Tuple-ID | Tuple to Version Client to Version | PSN Adjustment
Read Tuple Req. | Client | Storage Store Tuple-ID Read Tuple-Version | Store version of Tuple | Add. PSN offset
Read Tuple Res. | Storage | Client Read Tuple-ID Read Tuple-Version | Verify stored version Sub. PSN offset
Read Version Client | Client - Read Version - Incr. PSN offset
Latch Tuple Client | Client - Try-latch Tuple - Incr. PSN offset
Write Tuple Req. | Client | Storage Store Tuple-ID - - Add. PSN offset
Write Tuple Res. | Storage | Client Read Tuple-ID Unlatch Tuple - Sub. PSN offset

The tuple-id is stored for each request because it is unavailable in responses from storage nodes. Highlighted rows
only require 1/2 round-trip.

—>» Stage0 |—>»{ Stage1 —)| Stage2 |—>»{ Stage3 [—>» Stage4 |[—>» Stage5 >
2 client_id client_page tuple_version client_version psn_offset rewrite_hdrs é
3 || Key: IP + QP ldx: client_id ldx: tuple_id ldx: client_id ldx: client_id Key: client_id 2
ol e eeemeeee) beemeeeeer] e e 14
z Lookup set(tid) read(tid) set(vers.) increase() Lookup g
2 Client-ID tid=get() try_latch(tid) verify(vers.) add_offset() IP/QP/Port | 5
% unlatch(tid) sub_offset() <

N Ve N 3 " -

3 Look Get/Set Read/Latch Set/Verify dapt/Align Rewrite

2 Lookup . tuple-id for version for version in Correct PSN Packet to

w client_id and}-hit »

3 Packet-Type current current temporary to current correct

= request tuple-id register RDMA QP target node

g J N J

o miss route packet normally -
Ll

Fig. 24. Control flow and mapping to a switch pipeline to implement switch-assisted optimistic latching.

header that holds the target virtual address. Reads receive the read data in their reply packet, and
writes generate a simple acknowledgment of the target side. The switch uses this virtual address
to infer the tuple-id. However, neither the read nor write replies contain the virtual address, so the
switch cannot infer this information.

To work around that, the switch needs to store the current tuple-id for each request so that it
is available for the response in the Client to Tuple-ID table. Whenever the target acknowledges an
RDMA write with new tuple content, the switch can directly unlatch the tuple using the previously
stored tuple-id. Lastly, to verify the consistency of RDMA reads, the switch needs to compare the
tuple version at the time the read request came in with the tuple version when the read response
comes back from the storage node. The switch uses again the Client to Tuple-ID table to store
the current tuple-id, but also a version number in a new Client to Version table. The client-id also
indexes this table, and the verification result is embedded into the first bytes of the read tuple
response. The client can then verify whether the RDMA read to the tuple was consistent or not.

Implementation. After determining the tables necessary for the switch logic, implementing the
switch firmware is straightforward. Besides the logic to handle the operation on tuples and their
versions, the switch requires additional logic to properly direct packets to their destination. This
can be done using an additional table that maps the packet type and the client-id to mac-address,
IP address, Infiniband-QP, and the like. As we have seen in Section 5.3, the order of accesses a
packet can make to tables and registers is fixed. Therefore, we first need to map our control-flow
from the previous section to the stages of the physical switch pipeline. The physical layout and
the mapping to the execution pipeline of the switch is shown in Figure 24.

First, the switch determines the client using the destination IP and QP. Both request and response
map to the same client id and the lookup can be done using a static table in stage 0. After that,
a register-array follows, producing a mapping of client-id to tuple-id in stage 1. For requests, the
current tuple-id is stored in the client’s slot and for responses this value is read to get the current

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:31

tuple-id. With the known tuple-id, the switch can read or modify the tuple’s version that is stored
in another register-array. This register-array is indexed using the tuple-id in stage 2. To verify tuple
reads, the tuple version needs to be temporarily stored on the switch until the response arrives.
This happens in the client_version register in stage 3. The offset for packet sequence numbers is
stored in another register array that is indexed by the current client-id. This register array has no
logical dependencies on other steps; however, we opted to place it in stage 4. Finally, the packet
needs to be routed to the correct destination with the correct packet fields. The required values
for this step are retrieved from a table stored in stage 5.

Verification and Correctness. The protocol itself and the switch pipeline guarantee the correctness
of our approach for switch-enhanced optimistic latches. First, the switch sits in the middle and sees
all operations on tuples; therefore, the switch’s pipeline serializes all modifications to the version
field. Second, the tuple version is only modified after the write is completed; there is no in-between
state because versioning and data are separated (cf. Figure 23).

We also empirically verified the correctness of our implementation using the torn read exper-
iment from Figure 1(b). In this experiment, writers update the tuples by setting all the data to a
specific counter value whenever they acquire a latch. Readers then read the tuples and check if
the tuple contents are consistent by checking if all values are the same in the tuple-data. With
our implementation, we could not detect any torn reads as in the original experiment without the
switch. We use reliable RDMA connections (RC) where lost packets in RDMA are retransmitted
after a timeout.

Another open problem is that a switch may potentially execute an operation multiple times
due to duplicated packets issued by the NIC as part of the networking protocol. We prevent the
execution of the same logical operation (e.g., a latch) multiple times by detecting duplicate packets
using an additional register that stores the last processed PSN. If the switch crashes, the storage
nodes can completely restore the versioning information. The switch state is recovered by reading
the tuple-versions and installing them into the switch register. Whenever a write operation is
issued, the switch embeds the new version on-the-fly directly into the tuple-header such that it is
written with the data to the storage node.

Data-Center Deployments. While multi-switch deployments require additional configuration,
they also unlock new opportunities. The proposed single-switch design can be extended to multi-
switch topologies, such as fat-tree architectures commonly found in data centers. To ensure pro-
tocol correctness, all accesses to relevant tuples must be visible to a dedicated switch so that it
always sees the most recent tuple versions. This can be achieved through fixed path routing or
by deploying the program on the top-of-rack switch, which typically sits above the database node
storing the tuples. Additionally, multiple switches increase the storage capacity for version data,
increasing the number of tuple accesses that can be accelerated by programmable switches. The
recovery mechanism discussed earlier can be used to support failover to another switch within the
topology, enhancing fault tolerance.

Latency Breakdown. To gain insight from where the performance benefits offered by our switch-
enhanced latching stem from, we conducted a microbenchmark contrasting our new method with
a baseline that employs correct optimistic synchronization strategies. We measured latency under
real conditions using 1KiB tuples to avoid packet fragmentation. The results include both a read-
only and a write-only workload, as illustrated on the left and right sides of Figure 25, respectively.
Notably, the read tuple operation using the switch approach proved faster, primarily due to the
decreased load on the storage node. This shift effectively redistributes load from RDMA NICs of
the storage node to the programmable switch. Consequently, latencies varied for different opera-
tions due to this load shift. The error margin for the measured latency in the results is negligible
at approximately 0.1 microseconds. For both reading and writing, the switch approach achieves

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:32 M. Jasny et al.

Read access to Tuple Write access to Tuple
15ps A
10ps A
5us -
Ops A
T T T T
Switch Baseline Switch Baseline

Fig. 25. Latency breakdown of different steps required for read and write accesses to a tuple. (1 compute
and 1 storage node).

Read: 100% Write: 0% Read: 95% Write: 5% Read: 50% Write: 50% Read: 5% Write: 95%
25M

[messagebound 4 CPU cores are =0~ Baseline
20 M+ oversubscribed =& Switch Optimistic

15 M+

10 M+

ay9:ezisabed

o
©c =

bandwidth bound
9 M-

Throughput [ops/sec]

6 M+

3 M-

gv201 :ezisabed

8 32 128 512 8 32 128 512 8 32 128 512 8 32 128 512
#Workers

Fig. 26. Scalability of switch accelerated and corrected optimistic latches. (4 compute nodes, 1 storage node).

roughly double the performance of the baseline. This aligns with the theoretical round-trip times
determined in Table 2.

Scalability. As a second experiment, we conducted a scalability experiment to assess how the
system behaves under varying workload characteristics. For that, we use a setup comprising four
compute nodes and one storage node, scaling up to 512 workers. We use a key-value store workload
with uniform read-write accesses to 140,000 tuples and store the versioning information on the
switch. This setup does not involve transactions but includes latching for writes and verification
of reads to ensure consistency. Both the switch-enhanced and the baseline latching mechanisms
use the same workload code.

The experiment was conducted with four different read-write ratios to explore the impact of
different mixes between read and writes. Additionally, we varied the tuple sizes between 64B and
1024B to examine the effects of data granularity on performance. The single storage node’s band-
width and message rate were inherently bound by its 100G connection, which became a limiting
factor, especially in read-only workloads, as illustrated in Figure 26. Oversubscribing CPU cores,
as highlighted in the grey-marked areas of the results, leads especially for write-heavy workloads

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:33

to poor scaling and a notable drop in throughput due to scheduling effects. Overall, the results
demonstrate that the switch approach consistently outperforms the baseline method in handling
various workloads.

Discussion. Overall, we believe that our switch-based protocol for optimistic concurrency is
highly promising. It is important is that the presented approach of fixing optimistic reads for
RDMA does not require alterations in the RDMA protocol, since the switch executes all operations
that would be normally executed on the storage nodes seamlessly on the switch. An interesting
case is, however, if the switch memory is insufficient to store all tuples’ versions. In that case, we
can use the switch to only cache the most frequently accessed tuples as skew in workloads is com-
mon, falling back to a more traditional handling method (e.g., atomics) for cold tuples. However,
this point will be improved in the future, as newer switch generations already have more memory
(e.g., the Tofino2), and big cloud vendors commonly employ their own hardware and are not lim-
ited by the specifications of consumer products. Such switches could employ a similar architecture
as in Ethernet-based programmable switches. Finally, as a last interesting trend, the lock table size
on ConnectX-based RDMA NICs may not increase in the future because we have seen the same
performance over the last four generations. Therefore, it is necessary to integrate new modern
hardware into the RDMA landscape to improve the systems that use RDMA further.

6 Discussion of Other Approaches

This section discusses other synchronization techniques with relaxed guarantees.

Consistent Optimistic Read. The synchronization schemes that we discussed before captured
latch semantics. That is, they include an additional validation step after retrieving a data value
and operating on it to make sure that the data did not change in the meantime. However, these
strong semantics are not required for all use cases [39, 40, 74]. A classic example is a key-value
store that is only concerned about returning consistent data to clients and does not consider the
clients’ operations on the data. Our presented optimistic schemes can be easily adapted to support
such relaxed semantics by removing the additional validation step at the end.

Other Incorrect Schemes. Another common technique is called bookend versioning which we
briefly showed in Figure 1(a). While incorrect, the intuition of this approach is similar to ver-
sioning, where the second version (embedded in the data) validates that the data was not con-
currently updated during the RDMA read. This approach suffers from the ordering problem,
and its use in recent literature (e.g., [58]) is a testament to the subtleties involved in one-sided
synchronization.

Out-of-Place Updates. An alternative design to the data consistency techniques described in
Section 4.3 is to leverage out-of-place updates [7, 48, 61], eliminating concurrent data modifica-
tions using a copy-on-write strategy. This approach has the same communication overhead as
the (broken) single RDMA read versioning technique but comes at the obvious cost of additional
storage overhead. Out-of-place updates also enable the use of a technique we call marking. Mark-
ing is a simple detection technique that can alert readers by relying on a logical flag to indicate
that a concurrent write is taking place. This approach manifests as logical insertion or deletion
and a busy or pending update flag. However, when combined with in-place updates, marking suf-
fers from the same re-ordering problem as versioning and can fail to detect an inconsistency be-
cause of the PCle bus. Unfortunately, this incorrect use of marking has found its way into existing
literature [17, 69].

7 Lessons Learned and Conclusion

As the first analytical study of RDMA synchronization primitives, we aim to leave the reader with
a distilled perspective on the lessons learned from our work. These lessons are cast as anti-patterns,

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:34 M. Jasny et al.

which reflect common mistakes that lead to incorrect designs, and important design considerations,
which do not impact correctness but can be detrimental to performance and system complexity.
Anti-pattern #1.

Reliance on cache line order within a single RDMA read.

The first anti-pattern stems directly from the lack of ordering in the PCle bus, which was first intro-
duced in Section 1 and discussed in more detail in Section 4.2. Designs fall prey to this anti-pattern
and thus incorrectly assume that an RDMA read observes the same order in which writes to differ-
ent cache lines are made. Examples that relied on this anti-pattern include bookend versioning [40,
58] and marking with in-place updates [17, 69]. For instance, in [69], a writer first marks data as in-
visible to readers, then updates the value. As we have already established (cf. Section 4.2), a reader
may observe these two steps out-of-order and, therefore, could accidentally assume a corrupted
read is consistent. Worse, the version retrieved during this initial read could later be (incorrectly)
validated. This behavior is identical to the broken versioning scheme discussed in Section 4.2.
Anti-pattern #2.

Reliance on the ordering of overlapping reads.

One solution to address the first anti-pattern is to manually enforce an order by issuing multiple
reads. However, there are also pitfalls to this approach because distinct RDMA read operations
also have subtle ordering guarantees. The second anti-pattern captures the lack of ordering be-
tween overlapping reads from the same connection. While RDMA operations can be fenced to
enforce ordering in specific cases, this does not pertain to RDMA reads. In other words, there is
currently no mechanism to enforce the order in which a remote machine processes RDMA reads
without waiting for completion. Optimistic techniques like versioning hence require two sequen-
tial reads to ensure that the version is read before the data, as explained in Section 4.3. One-shot
optimistic approaches, such as FaRM, do not suffer from this because they detect inconsistency at
the granularity of cache lines.

Anti-pattern #3.

Reliance on the atomicity of RDMA writes and RDMA atomics.

The third anti-pattern results from the lack of atomicity guarantees by RDMA write and RDMA
atomic operations in the RDMA specification. As Section 3.3 describes, various optimizations to
improve pessimistic synchronization techniques exist. Recall that the write-unlatch optimization
is only permissible when the locking primitive exclusively utilizes CAS operations. Again, this is
because there is a store buffer in the RNIC. CAS operations are a special case because the write-
back to memory is conditional. While it is possible to correctly utilize the write-unlatch optimiza-
tion [56], as shown in Section 4.5, it requires a careful understanding of the underlying hardware.
Therefore, we generally caution against designs that combine RDMA writes with RDMA atomic
operations but acknowledge that in some instances where the lack of atomicity does not break
semantics, it can yield better performance.

Anti-pattern #4.

Reliance on future hardware generations to solve existing problems.

The fourth anti-pattern stems from the assumption that iterative advancements in network hard-
ware will automatically resolve inefficiencies, such as those observed with RDMA atomics. Despite
newer hardware generations being designed to handle higher data throughput and reduce latency,
the throughput of contented RDMA atomics has not improved across the last two generations and
continues to be a bottleneck, as detailed in Section 5.1. Consequently, it is essential to explore al-
ternative methods for scaling database workloads rather than solely relying on future generations
of hardware NICs.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:35

Consideration #1.
Data alignment impacts the RDMA atomic scalability.

The first consideration is described in detail in Section 3.2, but we review it here. Because of the
lock table present in current RNICs, physical contention between independent latches can arise.
We demonstrate that this is not only easily demonstrated by microbenchmarks that highlight the
behavior but also have an important role in the scalability of a real system (i.e., NAM-DB). Hence,
we advocate that system designers pay close attention to their data alignment when leveraging
RDMA atomic operations to avoid this physical contention.

Consideration #2.

Optimistic synchronization performs best under high contention.

Conventional wisdom suggests that pessimistic synchronization pays off in high-contention write-
heavy workloads because it eliminates excessive retries. However, our analysis demonstrates that
this perspective does not hold for RDMA-based synchronization. Notably, in Section 4.5, we show
that in write-heavy workloads, the optimistic approaches can match and even surpass pessimistic
ones. While readers often retry in optimistic schemes, pessimistic approaches are subject to RNIC
contention. Our results suggest that pessimistic approaches are beneficial when there is less skew,
and the number of concurrent workers is small. Interestingly, this also applies in the read-only
case since the sequential overhead is low compared to the optimistic strategies, which require val-
idation. Therefore, optimistic synchronization should be preferred for highly skewed workloads
to avoid RDMA atomic bottlenecks. As we established with the B-tree performance in Figure 11,
this is particularly beneficial when there is a single point of contention, e.g., the root node
of a B-tree.

Consideration #3.

Optimistic synchronization has non-negligible overheads.

Although they outperform pessimistic synchronization in many scenarios, there are computational
and storage trade-offs among the various optimistic approaches, which we discussed in Section 4.5.
Versioning requires an additional RDMA read compared to the other techniques, which increases
operation latency and is most evident for small data sizes. On the other hand, CRC is computation-
ally expensive, becoming untenable at large data sizes (> 4 KB). Cache line versioning generally
performs well but has an increased storage cost, not to mention that software must either han-
dle the embedded versions or copy the data out. While optimistic synchronization is beneficial
in many scenarios, it is not a silver bullet as they often have more complex designs compared to
pessimistic schemes.

Consideration #4.

Pessimistic synchronization is more “future proof™.

As demonstrated, subtle hardware characteristics can have a profound impact on correctness. We
highlight this using a widespread deployment but point out that disaggregated memory tech-
nologies are in active development. For example, advancements like CXL [50]—a protocol built
on PCI-e to support memory coherence across devices—are poised to disrupt the status quo.
Changes to intermediate components of RDMA communication may alter the behavior of con-
current RDMA reads and writes, and therefore optimistic synchronization schemes, in unpre-
dictable ways. In contrast, RDMA Atomic operations implement a well-established higher-level
abstraction independent of hardware implementation. Hence, system designers should lean to-
ward simple pessimistic synchronization when prioritizing production stability until the com-
munity has successfully converged on well-defined memory semantics for RDMA reads and
writes.

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

4:36 M. Jasny et al.

Consideration #4.
Leverage programmable networking hardware for synchronization is highly promising.

As demonstrated in Section 5, integrating compute resources throughout the entire data path can
significantly improve performance and consistency, especially for concurrent RDMA reads and
writes. Modern networking hardware, such as programmable switches, offers a novel architecture
that enables users to tailor RDMA operations to their specific use cases. In our prototype, we il-
lustrate how a programmable switch can be used to implement correct optimistic RDMA reads,
a task that would require careful synchronization and considerably more round-trips with tradi-
tional NICs. Consequently, we encourage system designers to consider the computing capabilities
across the entire network and leverage all of its new functionalities.

Conclusion. This article is the first paper that holistically (1) highlights the subtleties of RDMA-
based synchronization regarding the correctness, (2) provides a robust performance analysis of
existing synchronization techniques and optimizations, (3) demonstrates pitfalls of existing de-
signs, and (4) offers a set of anti-patterns and design considerations for enabling developers to
design correct and high-performance RDMA-enabled system.

Acknowledgments

We also thank hessian.Al, DFKI, Mellanox, and 3AI for their support. We also like to thank Torsten
Hoefler for an insightful discussion about the memory model of RDMA and RDMA’s ordering
guarantees.

References

[1] ARM. 2018. Arm CoreLink CCI-550 Cache Coherent Interconnect Technical Reference Manual. https://developer.arm.

com/documentation/100282/0100/?lang=en. (2018). https://developer.arm.com/documentation/100282/0100/?lang=en
[2] ARM. 2021. Introducing the AMBA Coherent Hub Interface. (2021). https://developer.arm.com/documentation/
102407/0100

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rexford, Cole Schlesinger, Dan Talayco,
Amin Vahdat, George Varghese, and David Walker. 2014. P4: Programming protocol-independent packet processors.
Comput. Commun. Rev. 44, 3 (2014), 87-95. https://doi.org/10.1145/2656877.2656890

[4] PatBosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Martin Izzard, Fernando Mujica, and Mark
Horowitz. 2013. Forwarding metamorphosis: Fast programmable match-action processing in hardware for SDN. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 99-110.

[5] Mihai Budiu and Chris Dodd. 2017. The p416 programming language. ACM SIGOPS Operating Systems Review 51, 1
(2017), 5-14.

[6] Wei Cao, Yingqiang Zhang, Xinjun Yang, Feifei Li, Sheng Wang, Qingda Hu, Xuntao Cheng, Zongzhi Chen, Zhenjun

Liu, Jing Fang, Bo Wang, Yuhui Wang, Haiqing Sun, Ze Yang, Zhushi Cheng, Sen Chen, Jian Wu, Wei Hu, Jianwei

Zhao, Yusong Gao, Songlu Cai, Yunyang Zhang, and Jiawang Tong. 2021. PolarDB serverless. In Proceedings of the

2021 International Conference on Management of Data. ACM. https://doi.org/10.1145/3448016.3457560

Benjamin Cassell, Tyler Szepesi, Bernard Wong, Tim Brecht, Jonathan Ma, and Xiaoyi Liu. 2017. Nessie: A decoupled,

client-driven key-value store using RDMA. IEEE Trans. Parallel Distributed Syst. 28, 12 (2017), 3537-3552. https://doi.

org/10.1109/TPDS.2017.2729545

Yeounoh Chung and Erfan Zamanian. 2015. Using RDMA for lock management. CoRR abs/1507.03274 (2015).

arXiv:1507.03274 http://arxiv.org/abs/1507.03274

NVIDIA Coporation. 2021. NVIDIA InfiniBand Adaptive Routing Technology. Whitepaper WP-10326-001_vO01.

(2021).

[10] Andrei Marian Dan, Patrick Lam, Torsten Hoefler, and Martin T. Vechev. 2016. Modeling and analysis of remote
memory access programming. In Proceedings of the 2016 ACM SIGPLAN International Conference on Object-Oriented
Programming, Systems, Languages, and Applications (OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands,
October 30-November 4, 2016), Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 129-144. https://doi.org/10.1145/
2983990.2984033

[7

—

[8

—

[9

—

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

 https://developer.arm.com/documentation/100282/0100/?lang=en
https://developer.arm.com/documentation/100282/0100/?lang=en
https://developer.arm.com/documentation/102407/0100
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/3448016.3457560
https://doi.org/10.1109/TPDS.2017.2729545
https://arxiv.org/abs/1507.03274
http://arxiv.org/abs/1507.03274
https://doi.org/10.1145/2983990.2984033

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:37

[11] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and Orion Hodson. 2014. FaRM: Fast remote memory.
In NSDL

[12] Aleksandar Dragojevic, Dushyanth Narayanan, Edmund B. Nightingale, Matthew Renzelmann, Alex Shamis, Anirudh
Badam, and Miguel Castro. 2015. No compromises: Distributed transactions with consistency, availability, and perfor-
mance. In SOSP.

[13] Jingwen Du, Fang Wang, Dan Feng, Changchen Gan, Yuchao Cao, Xiaomin Zou, and Fan Li. 2023. Fast one-sided
RDMA-based state machine replication for disaggregated memory. ACM Trans. Archit. Code Optim. (Mar 2023). https:
//doi.org/10.1145/3587096 Just Accepted.

[14] Philipp Fent, Alexander van Renen, Andreas Kipf, Viktor Leis, Thomas Neumann, and Alfons Kemper. 2020. Low-
latency communication for fast DBMS using RDMA and shared memory. In ICDE.

[15] Daniel Firestone, Andrew Putnam, Sambrama Mundkur, Derek Chiou, Alireza Dabagh, Mike Andrewartha, Hari
Angepat, Vivek Bhanu, Adrian M. Caulfield, Eric S. Chung, Harish Kumar Chandrappa, Somesh Chaturmohta, Matt
Humphrey, Jack Lavier, Norman Lam, Fengfen Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava, Anshuman Verma, Qasim Zubhair,
Deepak Bansal, Doug Burger, Kushagra Vaid, David A. Maltz, and Albert G. Greenberg. 2018. Azure accelerated net-
working: SmartNICs in the public cloud. In 15th USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2018, Renton, WA, USA, April 9-11, 2018, Sujata Banerjee and Srinivasan Seshan (Eds.). USENIX Association, 51—
66. https://www.usenix.org/conference/nsdil8/presentation/firestone

[16] Torsten Hoefler, Duncan Roweth, Keith Underwood, Bob Alverson, Mark Griswold, Vahid Tabatabaee, Mohan
Kalkunte, Surendra Anubolu, Siyan Shen, Abdul Kabbani, Moray McLaren, and Steve Scott. 2023. Datacenter Eth-
ernet and RDMA: Issues at Hyperscale. arXiv:2302.03337 [cs.NI].

[17] Chenchen Huang, Huiqi Hu, Xuecheng Qi, Xuan Zhou, and Aoying Zhou. 2021. RS-store: RDMA-enabled skiplist-
based key-value store for efficient range query. Frontiers of Computer Science 15, 6 (Sept. 2021). https://doi.org/10.
1007/s11704-020-0126-6

[18] Ram Huggahalli, Ravi R. Iyer, and Scott Tetrick. 2005. Direct cache access for high bandwidth network I/O. In 32st
International Symposium on Computer Architecture (ISCA 2005), (4-8 June 2005, Madison, Wisconsin). IEEE Computer
Society, 50-59. https://doi.org/10.1109/ISCA.2005.23

[19] InfiniBand Trade Association 2007. InfiniBand Architecture Specification Volume 1. InfiniBand Trade Association. Re-
lease 1.2.1.

[20] InfiniBand Trade Association. 2010. RDMA Over Converged Ethernet (RoCE). https://cw.infinibandta.org/document/

dl/7148. (2010).

Intel. 2012. Intel Data Direct I/O Technology (Intel DDIO): A Primer. (Feb 2012). https://www.intel.com/content/dam/

www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf

[22] Matthias Jasny, Lasse Thostrup, Tobias Ziegler, and Carsten Binnig. 2022. P4DB - The case for in-network OLTP. In
SIGMOD °22: International Conference on Management of Data, (Philadelphia, PA, June 12—17, 2022), Zachary G. Ives,
Angela Bonifati, and Amr El Abbadi (Eds.). ACM, 1375-1389. https://doi.org/10.1145/3514221.3517825

[23] Anuj Kalia, Michael Kaminsky, and David G. Andersen. 2014. Using RDMA efficiently for key-value services. In SIG-
COMM.

[24] AnujKalia, Michael Kaminsky, and David G. Andersen. 2016. Design guidelines for high performance RDMA systems.
login Usenix Mag. 41, 3 (2016).

[25] AnujKalia, Michael Kaminsky, and David G. Andersen. 2016. FaSST: Fast, scalable and simple distributed transactions
with two-sided (RDMA) datagram RPCs. In OSDL

[26] Tejas Karmarkar. 2015. Availability of Linux RDMA on Microsoft Azure. Online. (July 2015). https://azure.microsoft.
com/en-us/blog/azure-linux-rdma-hpc-available/

[27] Dario Korolija, Dimitrios Koutsoukos, Kimberly Keeton, Konstantin Taranov, Dejan S. Milojicic, and Gustavo Alonso.
2022. Farview: Disaggregated memory with operator off-loading for database engines. In 12th Conference on Innovative
Data Systems Research (CIDR 2022) (Chaminade, CA, , January 9-12, 2022). www.cidrdb.org. https://www.cidrdb.org/
cidr2022/papers/p11-korolija.pdf

[28] Diego Kreutz, Fernando M. V. Ramos, Paulo Esteves Verissimo, Christian Esteve Rothenberg, Siamak Azodolmolky,
and Steve Uhlig. 2014. Software-defined networking: A comprehensive survey. Proc. IEEE 103, 1 (2014), 14-76.

[29] Viktor Leis, Michael Haubenschild, and Thomas Neumann. 2019. Optimistic lock coupling: A scalable and efficient
general-purpose synchronization method. IEEE Data Eng. Bull. 42 (2019), 73-84.

[30] Viktor Leis, Florian Scheibner, Alfons Kemper, and Thomas Neumann. 2016. The ART of practical synchronization. In
12th International Workshop on Data Management on New Hardware (DaMoN 2016) (San Francisco, CA, June 27, 2016).
ACM, 3:1-3:8. https://doi.org/10.1145/2933349.2933352

[31] Edgar A. Ledn, Kurt B. Ferreira, and Arthur B. Maccabe. 2007. Reducing the impact of the MemoryWall for I/O using
cache injection. In 15th Annual IEEE Symposium on High-Performance Interconnects,(HOTI 2007, Stanford, CA, USA,

—
Do
—

—

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

https://doi.org/10.1145/3587096
https://www.usenix.org/conference/nsdi18/presentation/firestone
https://doi.org/10.1007/s11704-020-0126-6
https://doi.org/10.1109/ISCA.2005.23
https://cw.infinibandta.org/document/dl/7148
https://www.intel.com/content/dam/www/public/us/en/documents/technology-briefs/data-direct-i-o-technology-brief.pdf
https://doi.org/10.1145/3514221.3517825
https://azure.microsoft.com/en-us/blog/azure-linux-rdma-hpc-available/
https://www.cidrdb.org/cidr2022/papers/p11-korolija.pdf
https://doi.org/10.1145/2933349.2933352

4:38 M. Jasny et al.

August 22-24, 2007), John W. Lockwood, Fabrizio Petrini, Ron Brightwell, and Dhabaleswar K. Panda (Eds.). IEEE
Computer Society, 143-150. https://doi.org/10.1109/HOTL2007.8

[32] Alberto Lerner, Carsten Binnig, Philippe Cudré-Mauroux, Rana Hussein, Matthias Jasny, Theo Jepsen, Dan R. K. Ports,
Lasse Thostrup, and Tobias Ziegler. 2023. Databases on modern networks: A decade of research that now comes into
practice. Proceedings of the VLDB Endowment 16, 12 (2023), 3894-3897.

[33] Jiuxing Liu, Jiesheng Wu, Sushmitha P. Kini, Pete Wyckoff, and Dhabaleswar K. Panda. 2003. High performance
RDMA-based MPI implementation over InfiniBand. In ICS.

[34] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon Peter, and Karan Gupta. 2019. Offloading dis-
tributed applications onto smartNICs using iPipe. In ACM Special Interest Group on Data Communication. 318-333.

[35] Simon Loesing, Markus Pilman, Thomas Etter, and Donald Kossmann. 2015. On the design and scalability of dis-
tributed shared-data databases. In SIGMOD.

[36] Teng Ma, Kang Chen, Shaonan Ma, Zhuo Song, and Yongwei Wu. 2021. Thinking more about RDMA memory seman-
tics. In IEEE International Conference on Cluster Computing, (CLUSTER 2021) (Portland, OR, September 7-10, 2021).
IEEE, 456-467. https://doi.org/10.1109/Cluster48925.2021.00033

[37] Teng Ma, Dongbiao He, and Gordon Ning Liu. 2021. HybridSkipList: A case study of designing distributed data struc-
ture with hybrid RDMA. In IEEE 45th Annual Computers, Software, and Applications Conference (COMPSAC 2021)
(Madrid, Spain, July 12-16, 2021). IEEE, 68-73. https://doi.org/10.1109/COMPSAC51774.2021.00021

[38] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In 2013 USENIX Annual Technical Conference (San Jose, CA, June 26-28, 2013), Andrew Birrell and
Emin Gin Sirer (Eds.). USENIX Association, 103-114. https://www.usenix.org/conference/atc13/technical-sessions/
presentation/mitchell

[39] Christopher Mitchell, Yifeng Geng, and Jinyang Li. 2013. Using one-sided RDMA reads to build a fast, CPU-efficient
key-value store. In USENIX ATC.

[40] Christopher Mitchell, Kate Montgomery, Lamont Nelson, Siddhartha Sen, and Jinyang Li. 2016. Balancing CPU and
network in the cell distributed B-Tree store. In USENIX ATC.

[41] Sundeep Narravula, A. Marnidala, Abhinav Vishnu, Karthikeyan Vaidyanathan, and Dhabaleswar K. Panda. 2007.
High performance distributed lock management services using network-based remote atomic operations. In 7th [EEE
International Symposium on Cluster Computing and the Grid (CCGrid 2007) (14-17 May 2007, Rio de Janeiro, Brazil).
IEEE Computer Society, 583-590. https://doi.org/10.1109/CCGRID.2007.58

[42] Jacob Nelson and Roberto Palmieri. 2020. Performance evaluation of the impact of NUMA on one-sided RDMA inter-
actions. In SRDS.

[43] Nvidia. 2023. ConnectX-7 Ethernet Datasheet. (2023). https://www.nvidia.com/content/dam/en-zz/Solutions/
networking/ethernet-adapters/connectx-7-datasheet-Final.pdf

[44] PCI-SIG. 2014. PCI express base specification revision 4.0. (2014).

[45] Dan R. K. Ports and Jacob Nelson. 2019. When should the network be the computer?. In Workshop on Hot Topics in
Operating Systems. 209-215.

[46] R. Recio, B. Metzler, P. Culley, J. Hilland, and D. Garcia. 2007. A Remote Direct Memory Access Protocol Specification.
Technical Report. https://doi.org/10.17487/rfc5040

[47] Yufei Ren, Tan Li, Dantong Yu, Shudong Jin, and Thomas G. Robertazzi. 2013. Design and performance evaluation of
NUMA-aware RDMA-based end-to-end data transfer systems. In HiPC.

[48] Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam Belay. 2020. AIFM: High-performance,
application-integrated far memory. In 14th USENIX Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 315-332. https://www.usenix.org/conference/osdi20/
presentation/ruan

[49] H. Shah, F. Marti, W. Noureddine, A. Eiriksson, and R. Sharp. 2014. Remote Direct Memory Access (RDMA) Protocol
Extensions. Technical Report. https://doi.org/10.17487/rfc7306

[50] Debendra Das Sharma. 2019. Compute Express Link. Technical Report. Compute Express Link.

[51] Arjun Singhvi, Aditya Akella, Maggie Anderson, Rob Cauble, Harshad Deshmukh, Dan Gibson, Milo M. K. Martin,
Amanda Strominger, Thomas F. Wenisch, and Amin Vahdat. 2021. CliqueMap: Productionizing an RMA-based dis-
tributed caching system . In ACM SIGCOMM 2021 Conference. ACM. https://doi.org/10.1145/3452296.3472934

[52] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen. 2010. DMA cache: Using on-chip storage to architecturally
separate I/O data from CPU data for improving I/O performance. In 16th International Conference on High-Performance
Computer Architecture (HPCA-16 2010) (9-14 January 2010, Bangalore, India), Matthew T. Jacob, Chita R. Das, and
Pradip Bose (Eds.). IEEE Computer Society, 1-12. https://doi.org/10.1109/HPCA.2010.5416638

[53] Konstantin Taranov, Fabian Fischer, and Torsten Hoefler. 2022. Efficient RDMA Communication Protocols. (2022).
arXiv:cs.NI/2212.09134

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

https://doi.org/10.1109/HOTI.2007.8
https://doi.org/10.1109/Cluster48925.2021.00033
https://doi.org/10.1109/COMPSAC51774.2021.00021
https://www.usenix.org/conference/atc13/technical-sessions/presentation/mitchell
https://doi.org/10.1109/CCGRID.2007.58
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/ethernet-adapters/connectx-7-datasheet-Final.pdf
https://doi.org/10.17487/rfc5040
https://www.usenix.org/conference/osdi20/presentation/ruan
https://doi.org/10.17487/rfc7306
https://doi.org/10.1145/3452296.3472934
https://doi.org/10.1109/HPCA.2010.5416638
https://arxiv.org/abs/cs.NI/2212.09134

Synchronizing Disaggregated Data Structures with One-Sided RDMA 4:39

[54] Konstantin Taranov, Salvatore Di Girolamo, and Torsten Hoefler. 2021. CoRM: Compactable remote memory over
RDMA. In SIGMOD °21: International Conference on Management of Data, Virtual Event (China, June 20-25, 2021).
1811-1824. https://doi.org/10.1145/3448016.3452817

[55] Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating persistent memory and controlling them re-
motely: An exploration of passive disaggregated key-value stores. In 2020 USENIX Annual Technical Conference
(USENIX ATC 2020) (July 15-17, 2020), Ada Gavrilovska and Erez Zadok (Eds.). USENIX Association, 33-48. https:
//www.usenix.org/conference/atc20/presentation/tsai

[56] Chao Wang and Xuehai Qian. 2021. RDMA-enabled concurrency control protocols for transactions in the cloud era.

IEEE Transactions on Cloud Computing (2021), 1-1. https://doi.org/10.1109/tcc.2021.3116516

Han Wang, Robert Soulé, Huynh Tu Dang, Ki Suh Lee, Vishal Shrivastav, Nate Foster, and Hakim Weatherspoon. 2017.

P4FPGA: A rapid prototyping framework for P4. In Symposium on SDN Research. 122-135.

Qing Wang, Youyou Lu, and Jiwu Shu. 2022. Sherman: A write-optimized distributed B+Tree index on disaggregated

memory. In 2022 International Conference on Management of Data. ACM. https://doi.org/10.1145/3514221.3517824

Ruihong Wang, Jianguo Wang, Stratos Idreos, M. Tamer Ozsu, and Walid G. Aref. 2022. The case for distributed

shared-memory databases with RDMA-Enabled memory disaggregation. CoRR abs/2207.03027 (2022). https://doi.org/

10.48550/arXiv.2207.03027 arXiv:2207.03027

Tinggang Wang, Shuo Yang, Hideaki Kimura, Garret Swart, and Spyros Blanas. 2020. Efficient usage of one-sided

RDMA for linear probing. In International Workshop on Accelerating Analytics and Data Management Systems Using

Modern Processor and Storage Architectures (ADMS@VLDB 2020) (Tokyo, Japan, August 31, 2020), Rajesh Bordawekar

and Tirthankar Lahiri (Eds.). 1-13. http://www.adms-conf.org/2020-camera-ready/ ADMS20_06.pdf

Yandong Wang, Li Zhang, Jian Tan, Min Li, Yuqing Gao, Xavier Guerin, Xiaogiao Meng, and Shicong Meng. 2015.

HydraDB: A resilient RDMA-driven key-value middleware for in-memory cluster computing. In International Confer-

ence for High Performance Computing, Networking, Storage and Analysis (SC 2015) (Austin, TX, November 15-20, 2015),

Jackie Kern and Jeffrey S. Vetter (Eds.). ACM, 22:1-22:11. https://doi.org/10.1145/2807591.2807614

[62] Xingda Wei, Rong Chen, Haibo Chen, and Binyu Zang. 2021. XStore: Fast RDMA-Based ordered key-value store using
remote learned cache. ACM Trans. Storage 17, 3 (2021), 18:1-18:32. https://doi.org/10.1145/3468520

[63] Xingda Wei, Zhiyuan Dong, Rong Chen, and Haibo Chen. 2018. Deconstructing RDMA-enabled distributed transac-
tions: Hybrid is better!. In OSDL

[64] Xingda Wei, Jiaxin Shi, Yanzhe Chen, Rong Chen, and Haibo Chen. 2015. Fast in-memory transaction processing using
RDMA and HTM. In SOSP.

[65] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin. 2020. Netlock: Fast, central-

ized lock management using programmable switches. In Annual Conference of the ACM Special Interest Group on

Data Communication on the Applications, Technologies, Architectures, and Protocols for Computer Communication. 126

138.

Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowdhury, and Xin Jin. 2020. NetLock: Fast, centralized

lock management using programmable switches. In SIGCOMM ’20: Proceedings of the 2020 Annual Conference of the

ACM Special Interest Group on Data Communication on the Applications, Technologies, Architectures, and Protocols for

Computer Communication (Virtual Event, August 10-14, 2020) Henning Schulzrinne and Vishal Misra (Eds.). ACM,

126-138. https://doi.org/10.1145/3387514.3405857

[67] Erfan Zamanian, Carsten Binnig, Tim Kraska, and Tim Harris. 2016. The end of a myth: Distributed transactions can
scale. CoRR abs/1607.00655 (2016).

[68] Erfan Zamanian, Julian Shun, Carsten Binnig, and Tim Kraska. 2021. Chiller: Contention-centric transaction execution

and data partitioning for modern networks. SIGMOD Rec. 50, 1 (2021).

Ming Zhang, Yu Hua, Pengfei Zuo, and Lurong Liu. 2022. FORD: Fast one-sided RDMA-based distributed transactions

for disaggregated persistent memory. In 20th USENLX Conference on File and Storage Technologies (FAST 2022) (Santa

Clara, CA, February 22-24, 2022), Dean Hildebrand and Donald E. Porter (Eds.). USENIX Association, 51-68. https:

//www.usenix.org/conference/fast22/presentation/zhang-ming

Yingqiang Zhang, Chaoyi Ruan, Cheng Li, Jimmy Yang, Wei Cao, Feifei Li, Bo Wang, Jing Fang, Yuhui Wang, Jingze

Huo, and Chao Bi. 2021. Towards cost-effective and elastic cloud database deployment via memory disaggregation.

Proc. VLDB Endow. 14, 10 (2021), 1900-1912. https://doi.org/10.14778/3467861.3467877

Tobias Ziegler, Carsten Binnig, and Viktor Leis. 2022. ScaleStore: A fast and cost-efficient storage engine using DRAM,

NVMe, and RDMA. In SIGMOD °22: International Conference on Management of Data (Philadelphia, PA, , June 12-17,

2022). ACM, 685-699. https://doi.org/10.1145/3514221.3526187

Tobias Ziegler, Jacob Nelson-Slivon, Viktor Leis, and Carsten Binnig. 2023. Design guidelines for correct, efficient, and

scalable synchronization using one-sided RDMA. Proc. ACM Manag. Data 1, 2 (2023), 131:1-131:26. https://doi.org/10.

1145/3589276

[57

—

[58

[

[59

—

(60

-

[61

—

(66

—

(69

—

(70

—

(71

—

(72

—

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

https://doi.org/10.1145/3448016.3452817
https://www.usenix.org/conference/atc20/presentation/tsai
https://doi.org/10.1109/tcc.2021.3116516
https://doi.org/10.1145/3514221.3517824
https://doi.org/10.48550/arXiv.2207.03027
https://arxiv.org/abs/2207.03027
http://www.adms-conf.org/2020-camera-ready/ADMS20_06.pdf
https://doi.org/10.1145/2807591.2807614
https://doi.org/10.1145/3468520
https://doi.org/10.1145/3387514.3405857
https://www.usenix.org/conference/fast22/presentation/zhang-ming
https://doi.org/10.14778/3467861.3467877
https://doi.org/10.1145/3514221.3526187
https://doi.org/10.1145/3589276

4:40 M. Jasny et al.

[73] Tobias Ziegler, Sumukha Tumkur Vani, Carsten Binnig, Rodrigo Fonseca, and Tim Kraska. 2019. Designing distributed
tree-based index structures for fast RDMA-capable networks. In SIGMOD.

[74] Pengfei Zuo, Qihui Zhou, Jiazhao Sun, Liu Yang, Shuangwu Zhang, Yu Hua, James Cheng, Rongfeng He, and Huabing
Yan. 2022. RACE: One-sided RDMA-conscious extendible hashing. ACM Transactions on Storage 18, 2 (May 2022), 1-29.
https://doi.org/10.1145/3511895

Received 21 May 2024; revised 21 May 2024; accepted 3 February 2025

ACM Trans. Datab. Syst., Vol. 50, No. 1, Article 4. Publication date: March 2025.

https://doi.org/10.1145/3511895

