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ABSTRACT
Data preprocessing and engineering are essential parts of
any AI system, as indicated by the current trend of data-
centric AI. However, until now, explainability efforts have
almost exclusively focused on models. We propose explana-
tions for preprocessing pipelines that express the impact of
each step on the resulting model behavior based on existing
feature attribution methods. In the process, we introduce
two related but distinct measures of impact for preprocess-
ing steps: Leave-out Impact (What do we lose/gain by leaving
out this step?) and Immediate Impact (What do we lose/gain
by adding this step at this time?). Both are obtained by con-
structing variations of the original pipeline and comparing
the resulting model behavior represented as feature impor-
tance vectors. These measures reflect the intuition of impact
but also express the effects of a step and its interactions
with the rest of the pipeline on the internal workings of the
trained model.
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1 INTRODUCTION
Data preprocessing is essential for AI. Machine learning sys-

tems used in production today depend on more than model
architecture and hyperparameters. Malformed, incomplete,
or inconsistent data can make contained information inacces-
sible to the model in training. Data engineering is, therefore,
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just as important and requires substantial resources and ef-
fort to be done well. We can also see this reflected in the
current trend towards data-centric AI.

Example. We consider a data engineer working on a pre-
processing pipeline for a predictive maintenance classifier. In
the latest iteration, they modified the preprocessing pipeline
to be faster and produce a smaller model with the available
training data. This process has involved removing steps from
the pipeline (such as a unit conversion from centimeters to
meters, which does not change information content), modify-
ing steps (exchanging the undersampler for class balancing
for a different algorithm), and adding outlier removal. The
before (A) and after (B) are shown in Figure 1. This has re-
sulted in significant changes to model outputs, with accuracy
increasing overall, but some areas suffered significantly. We
will expand on how the data engineer might address this,
while we present our motivation, approach and contribution
in the remainder of this section.

The need to explain data preprocessing. In order to fix the
problem, the data engineer needs to identify which addition,
removal, or modification of a pipeline step might have caused
this undesired behavior. For example, when using a neural
network architecture, removing a scaler might have close to
none or very drastic effects, based on the attributes’ value
ranges, as the training process might become so slow the
model cannot converge. The data engineer is now tasked
with answering the question: How does the model behavior
change due to each employed data preprocessing step? How-
ever, so far, there are very few approaches to providing ad-
ditional insight into the effects of preprocessing to assist
developers in improving pipelines and model performance.

A Primer to Attribution-based XAI. Explainable AI (XAI)
research focuses on insights into model behavior, i.e., how
outputs are created in a trained model. Feature attribution
methods, which explain (local) model behavior by quantify-
ing the contribution of each input feature to model output,
exist and work well (popular examples include LIME[11] and
SHAP[8]). In cases such as this one, however, this does not
provide any information on what caused the model to behave
in such a way and does not consider data preprocessing at all.
The data engineer would be able to obtain information on in-
put features such as a distance measurement that contributes
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Figure 1: Pipeline before (A), after initial modifications (B), and after leveraging preprocessing step impact (C).
Impact indicators for each step, ■ signals change in the intended direction, ■ in the opposite.

strongly to model output and a temperature-sensitive light
sensor that contributes to the correct labels for low ambi-
ent temperatures but incorrect labels for high temperatures.
What they are interested in, however, is how the impact of
the unit converter changed drastically as the undersampler
was exchanged (the new one being based on a KNN architec-
ture) or how the contributions of the missing value imputer
and outlier removal interacted. From the example explana-
tions in Figure 1, they can gather the following observations:
(1) The intended effect of the undersampler suffered a lot
from the changes (■ turned orange, indicating the opposite
direction of effect). (2) The positive effect of the added out-
lier compensates for this, potentially leading to similar or
slightly better overall performance. (3) The effect of both
the value imputer and outlier remover increases with the
appropriate order (4) The added scaler significantly improves
the direction of the undersampler’s effect. This allows the
data engineer to reach a more effective pipeline than without
this insight.

Our Contribution; A first attribution-based method. We
want to take inspiration from this idea into an attribu-
tion method for preprocessing steps, quantifying the im-
pact of each processing step on the behavior of a model.
Previous research has dealt with the impact of preprocess-
ing on overall model performance, e.g., measured through
accuracy[12][3][7]. However, these measures do not capture
how individual model outputs are affected and, especially,
not the model’s internal logic or behavior beyond a resulting
label. This is insufficient as preprocessing fundamentally
affects how the model operates, even if the resulting output
remains the same. Instead, we want to provide users with
insights into the impact of each step in a pipeline.

The need to extend XAI. Suppose the data engineer knows
how big the contribution of each individual step is and
whether this contribution brings the model closer to the
desired output. In that case, this enables them to judge the

importance of each step, detect flaws, and make improve-
ments in a more directed manner. The engineer in the ex-
ample would see that the change in undersampler increases
the impact of the unit conversion, as KNN architectures are
sensitive to variations in the value ranges between features.
This would enable them to add a scaler for even better model
performance. They would observe the expected overall ben-
efit of the added outlier removal but also note that this effect
increases further when adding it before the imputer rather
than after, as the imputer will infer the missing values where
outliers were removed. Explanations for the pipeline modi-
fied this waywould show amuchmore homogeneous picture,
as illustrated in Figure 1. To provide explanations, we intro-
duce two related but distinct measures of impact for a given
preprocessing step: One to explainWhat do we lose or gain
by leaving out this step? and one to explain What do we lose
or gain by adding this step at this moment in processing?

Existing methods enabling this approach. We propose a
process of quantifying and measuring these impacts by rep-
resenting model behavior around a given sample as fea-
ture weights obtained through an existing feature attribu-
tion explainer. These feature attribution-based explainers
reflect model behavior through feature importance, which
we can translate into preprocessing steps. If an individual
step changes the feature importance significantly compared
to what the overall pipeline does, then it is important for the
resulting model. This sets us apart from existing approaches
to explaining preprocessing, which focus either on changes
in the data that disregard the model completely or measure
change in the model only via model output. For the scope
of this paper, we focus on supervised classification tasks on
tabular data, but analogous handling of other tasks and data
types is possible. We treat the classifier as an opaque unit
and do not require any knowledge about its inner workings.

Outline of the paper. The remainder of this paper is struc-
tured as follows: We give an overview of previous work on
explaining preprocessing in 2. Then, we elaborate on our
proposed measures in Section 3 and give an overview of the
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framework we implemented to compute them in Section 4.
This is followed by preliminary evaluation results in Section
5. We finish with an overview of open challenges in Section
6 and a brief conclusion in Section 7.

2 RELATEDWORK
Dasu and Loh [4] have proposed an approach for evaluat-
ing data cleaning, examining similar types of processing
steps. However, they aim to measure the impact of cleaning
strategies on the statistical properties of underlying data,
i.e., quantifying how much the data itself is skewed through
processing in relation to glitch improvement (handling un-
wanted artifacts). While this affects model training, their
work does not look at the effects on model behavior. It would
be interesting to study where their metric, Earth Mover’s
Distance, aligns with our measures and where it doesn’t.
Through the nature of statistical distortion, their work only
looks at global changes in data, whereas we have the ability
to inspect local impact, too.
The work of Gonzalez Zelaya [6] examines preprocess-

ing steps through changes in model output resulting from
preprocessing steps. They measure volatility, i.e., the likeli-
hood of a data point changing label, and propose a learned
model to approximate this measure instead of calculating it
directly. This method works with less information for each
explanation (label vs. feature weights), and volatility does
not consider how close to the decision surface a point was
before the label change. Volatility also does not reflect in
any way changes in model behavior that do not result in a
different label ("same result for a different reason").

3 MEASURING IMPACT
From our motivation and the limitations of previous work,
we derive a new path to measuring impact. This measure
should be evaluated using the individual steps of a pipeline,
reflect the changes in the internal behavior of the result-
ing model (as opposed to changes in the data or changes
in overall model performance), work without assumptions
about model architecture, and incorporate the complex in-
teractions of steps in a pipeline. We propose two distinct but
complementary measures to achieve these characteristics.

Immediate Impact. The first, immediate impact, aims to
answer the questionWhat do we lose or gain in adding this
specific step at this point in the pipeline? To answer this ques-
tion, we compare two pipelines: One includes all steps prior
to the one being evaluated, and the second additionally in-
cludes the step itself. Including previous steps (and implicitly
the order of the pipeline) is important since they influence be-
havior. For example, consider a pipeline that includes outlier
detection and removal and scaling to a set value range. The
result of scalingwill change drastically with/without extreme

outliers. Immediate impact captures the difference in the be-
havior of models trained on the two pipelines. Therefore, the
difference the step makes right as it is applied, disregarding
interactions with later steps. To show this is quantifiable, we
consider the pipeline’s effect on model behavior as travers-
ing a vector space. As such, it has a direction and a distance.
Quantifying immediate impact now becomes a measure of
how much of the way of the entire pipeline this step takes
the data. As illustrated for a two-dimensional space in Fig-
ure 2, adding the immediate impact of each step results in
the vector for the entire pipeline. To make the relationship
between pipeline and step interpretable, Immediate impact
must be normalized appropriately.
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Figure 2: Step-wise immediate impact in two-
dimensional vector space.

Leave-out Impact. The second measure, Leave-out Impact,
aims to answer the question What do we lose or gain when
removing this step from the full pipeline? This is based on the
understanding that the following steps might have different
effects based on previous ones. As an example, we can again
look at the same pipeline as before, but this time, consider the
Leave-out Impact on the Outlier handling, which changes
the path of the scaler that comes after it. To get the full
picture, we need both measures for both steps. In terms of
the same vector space, it quantifies how close to/far away
from the result of the full pipeline a pipeline without this step
takes the data, as visualized in Figure 3. Again, we create two
pipelines: One corresponds to the full pipeline, and the other
includes all steps but the one being examined. Leave-out
Impact, therefore, captures changes in the data originating
directly from the step in question or its interaction with other
steps, regardless of their position in the pipeline.

Interplay of the two. Both measures originate from similar
albeit complementary intuition; still they are both needed
to give a thorough impression. Immediate impact demon-
strates the formation of the total impact of the pipeline. This
provides users with an intuitive understanding of what the
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Figure 3: Leave-out Impact for step 3 (■) in 2D vector
space. Complete pipeline (■) vs. pipeline without step
3 (■). Note difference in effect of step 4.

single value means but also, upon further inspection of the
vectors themselves, the divergence (difference of direction
in the vector space) from the overall impact and intensity
(relative length of the vectors). This is not skewed by later
processing steps that might counterbalance the impact, ei-
ther causally or incidentally. Leave-out impact gives a more
complete picture of the step and its interactions, but vectors
are less intuitive. More importantly, to judge interaction ef-
fects, e.g., whether a scaler and a standardized in the same
pipeline causally negate each other’s effect in a pipeline, we
need both impacts for both steps: Immediate impact shows
that both diverge significantly from the overall pipeline, al-
though in the opposite direction. Leave-out impacts show
us whether their effects are conditional on one another or
coincidental; if the scaler puts values between 1 and 100
and the standardizer creates a normal distribution around 0
with a standard deviation of 1, this will largely negate the
effect of the previous scaler and in any case either provides
pointless or counterproductive computations by the scaler.
In another pipeline, scaler and class balancing might also
show counterbalancing behaviors in Immediate Impact but
not show interaction in Leave-out Impact. Note, that under
certain circumstances, both measures might be the same for
a step e.g., the last step in each pipeline.

4 PROTOTYPE IMPLEMENTATION
From thesemeasures and their intuition, we derive a concrete
computation process and a prototype implementation.

Leveraging XAI methodology. The key point that remains
open in the approach concerns the numeric representation
of model behavior. So far, we have assumed that it is pos-
sible to calculate a difference between the behavior of two
models that goes beyond the model output itself. Once again,
taking inspiration from existing XAI research, we propose
using feature attribution explainers to open a vector space

with one dimension per feature. An explanation consisting
of feature weights provides one point in this space, and the
difference between explanations represents the vector be-
tween them. These vectors become interpretable statements
about features, i.e., a step vector in a two-dimensional space
from bottom right to top left means a decrease in the im-
portance of the feature on the x-axis and an increase in the
importance of the feature on the y-axis. A user with domain
knowledge, i.e., having an assumption of relevance for the
features, might even be able to judge that direction is desir-
able. The two vectors (of a step and the full pipeline) give
us an impression of the intensity of a step’s impact (length
ratio) and a degree of accordance/divergence, represented
through the angle between the two.

Scope. The overall approach itself is flexible. It allows for
any type of data as long as there is a stable (i.e., using the
same features independent of preprocessing stage, e.g., super-
pixels (images), tokens (text), or columns (tables)) feature
attribution method to generate numerical weights. Depend-
ing on the feature attribution method, it can generate lo-
cal (one explanation for one model output) and global (en-
tire model) explanations. As difference is measured through
model behavior, the model output format/task (e.g., classifi-
cation, regression) is not an inherent requirement. Finally,
any preprocessing step that may be omitted and does not
change the number of features, can be measured.
However, for our prototype implementation, we chose a

more restricted setting. We work with classification tasks on
tabular data (due to the restriction on non-optional steps only
numerical data, see 6 for info on categorical features) and
generate local explanations. Our task involves explaining the
impact of preprocessing on individual predictions for three
reasons: In some applications, this is of particular interest,
justifying the existence of both local and global approaches.
It is even less covered through model performance measures
such as accuracy, often used exclusively. Lastly, it still pro-
vides information on the model as a whole when applied to
a broader selection of features suitable to the use case. Our
task can, therefore, be phrased as follows: For a given tabular,
numerical dataset, classifier architecture, data sample, and
preprocessing pipeline, provide the user with two numerical
measures of impact on model output and a representation
of divergence from the overall pipeline impact for each step
of the pipeline in a way that enables pipeline and model
improvement.

Implementation. In this prototype, we use LIME[11] as an
established feature attribution method providing weights
between -1 and 1 for each input feature. Using LIME explana-
tions to represent the local model behavior, we can compute
a vector per impact measure for a pipeline step by subtract-
ing the vector obtained from the step in question from the
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vector obtained using that step. The resulting vector repre-
sents the difference made and can be provided to the user as
such, as a length and angle of divergence from the pipeline
vector (numerically or visually). However, we propose one
scalar value per step as a core output, which is computed
by projecting the difference vector onto the pipeline vector.
This is visualized in Figure 4.
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Figure 4: Example of vector calculation. ■ represents
the vector of a full pipeline, ■ excludes the last step; ■
is the difference between the two, projected onto the
full pipeline gives the dotted vector, the length and
direction of which is the resulting impact.

This most closely corresponds to the question How much
of the way there does this step take us? (Immediate Impact) or
How close to/far away from the result of the full pipeline does
a pipeline without this step take us? (Leave-out Impact). This
normalization means that the absolute value is expressed
in percent of the length of the pipeline vector, and the sign
indicates the direction, e.g., 1 would mean this covers pre-
cisely the path of the pipeline, and any negative value would
signify counteracting the effect of the pipeline.

5 PRELIMINARY RESULTS
For the prototype, we list some preliminary results.

Parameters. So far, we have deployed the system on three
tabular datasets from the UCI machine learning repository:
the Adult Income dataset [1] (dropping categorical columns
and binary encoding the target variable beforehand), the
MetroPT-3 dataset [5] (encoding date numerically, added
target label) and the Phishing Websites dataset [9]. Those
datasets were combined with four different, common clas-
sifier architectures: Multilayer Perceptron/Neural Network-
footnoteStandard implementation by scikit-learn[10], Deci-
sion Tree5, Support Vector Machine5 and Gradient-boosted
Trees1 These cover several common but very different ar-
chitectures. Samples were chosen randomly from the test
portion of each dataset, and at least ten different samples
1Implementation by xgboost[2]

were used for each setting. Our basic pipeline included out-
lier detection/removal5, scaling5, missing value imputation5,
discretization5 for a subset of features and class balancing
through undersampling5.

Consistency with Intuition. Consistency with the expected
behavior is important for trust when providing users with
an interpretable metric. With a small series of experiments,
we attempted to capture this behavior. Across architectures
and datasets, we observed:
(1) When omitting a step with a very low (<0.001) im-

pact, the ratios between impacts of the remaining steps
stayed the same.

(2) Impact for missing value imputation was 0 for both
datasets without missing values.

(3) When increasing missing values, both impacts first
increase and then begin to drop. The percentage of
missing values at this turning point varies between
data/architecture combinations, but always correlates
with a reduction in the importance of this feature, in-
dicating loss of necessary information content.

(4) Scaler had a much smaller impact across the experi-
ments for Decision Trees and gradient-boosted trees
than Neural Networks and Support Vector Machines.

(5) When omitting the highest-impact step from a pipeline,
overall model performance dropped anywhere from
10 to 40 percentage points.

(6) Class balancing had the greatest impact on the adult
income data. Upon closer inspection, models for this
data set mainly became majority class voting when the
data is unbalanced and restricted to numerical features,
while class balancing forced the classifiers to consider
feature values.

Runtime. As a tool in data engineering, there are certain
soft restrictions on feasible runtime. Our non-optimized pro-
totype implementation is able to consistently perform a full
run on a consumer machine solely using CPU in 3 seconds
or less for Decision Tree classifiers and gradient-boosted
trees. Depending on the dataset, the SVC and the neural
network took 1 to 5 minutes. This indicates that even on
larger datasets and longer pipelines, usage should be feasible
with some code optimization and running on GPUs remotely.
A limit is expected, especially in very large datasets; we
comment on this in Section 6.

General Trends. In addition, we observed some general
trends across different datasets/model architectures that are
hard to verify and quantify at this point but were interest-
ing nonetheless. The MetroGPT dataset is least suited to
standard classification, being much more directed towards
event detection and including sensor data over time. This
resulted in worse classifier performance, which correlated
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with the largest variation in measured impact across the
same experiment’s runs.

6 LIMITATIONS AND OPEN CHALLENGES
In Section 4, we have highlighted the difference between the
underlying measures and the scope set for our prototypical
implementation. The overall approach is mainly limited to
a stable feature attribution method generating numerical
weights and preprocessing steps that may be omitted and do
not change the number of features. The prototype’s scope
was set to classification tasks on tabular, numerical data and
local explanations using LIME. Yet, for both, open challenges
remain that are limitations to the current work described in
this paper:

Essential Steps. The current approach handles pipelines
consisting only of steps that can be omitted without mak-
ing preprocessing or model training impossible. On tabular
data, this limits us to numeric features as categorical fea-
tures need to be expressed in numbers for computation, no
matter which type of encoding is used. Other restrictions on
which numeric values may be provided can also apply, e.g.,
architectures only compatible with positive values. There
are two approaches to handling this: A baseline would in-
volve retaining all essential steps at their relative position
in the pipeline and executing them in any variation. This
would quickly extend the prototype to categorical features
and provide more variations in numeric values, but it would
not provide an impact measure for those features. An al-
ternative would involve specifying a baseline variation for
the type of processing occurring in each essential step so
that these would not be left out entirely but instead replaced
with a naive approach to solving the same issue, measuring
a relative impact.

Step & Sequence Variations. This comparison process could
also be applied to provide an alternate view of the impact
of all steps. Comparison between different approaches to
one type of processing or different hyperparameters to the
processing step are generally of interest to data engineers.
Our framework could be extended to automatically generate
pipeline variations, replacing a step with all valid, specified
alternatives and aggregate resulting impact values to allow
for comparison. However, alternatives could also be used
in the underlying process for a modified impact measure,
as described above. However, this would require additional
work to make the resulting values easy to interpret. Another
wrapper for the framework could generate pipeline varia-
tions with regard to the order of the steps, enabling data
engineers to derive conclusions as to optimal sequencing.

Application. Some more insights would be beneficial to
make this approach usable for data scientists. A user study

would give insight into the interpretability of provided infor-
mation as well as the best way to present it. Our impact mea-
sures provide information to the user in order to enable them
to conduct experiments in a more purposeful order. They do
not by themselves constitute recommendations. However,
it would be interesting to search for patterns made by data
engineers after extensive tuning and measuring impact in a
larger quantitative evaluation. A study on the effectiveness
of different feature attribution explainers in the same setting
would also be very interesting.

Approximation and strategic training. Finally, as our cur-
rent approach for computing the impact measures involves
several preprocessing pipelines and training a number of
different models scaling with the number of steps in the
pipeline, there is an expectation that this will not scale well
with specific architectures and data set sizes. With the gold
standard provided by these impact measures, an optimized
system might try several approaches for reducing overhead:
1) approximating Immediate impact through heuristics such
as Earth Movers Distance [4] or 2) learning a model to com-
bine heuristics for approximation based on dataset stats and
model architecture to reduce the number of models that
need to be trained, 3) implementing a warm start for model
training based on previously trained models.

7 CONCLUSION
We presented a local, model-agnostic explainer for prepro-
cessing pipelines in the classification on tabular data. To
provide explanations, we introduced two related but distinct
measures of impact for a given preprocessing step: Leave-out
Impact derived from the question What do we lose or gain
by leaving out this step? and results from comparing model
behavior when trained on the full pipeline or the pipeline
without that step. Immediate Impact, which as a counter-
balance relates to the question What do we lose or gain by
adding this step at this moment in processing? and results from
comparing models behavior obtained through a pipeline up
to that step and a pipeline including that step. We put both
measures in relation to the effect obtained by the pipeline as
a whole. As a result, they not only match human intuition,
but the combination also covers both the effects of a step’s
positioning and its interaction with other steps anywhere in
the pipeline. We then proposed a process of quantifying and
measuring these impacts by representing model behavior
around a given sample as feature weights obtained through
LIME. However, any feature attribution explainer could be
used. Finally, we demonstrated possible observations and
their causes on example pipelines.
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