
DISCRETE VARIATIONAL AUTOENCODING
VIA POLICY SEARCH

Michael Drolet1, Firas Al-Hafez1, Aditya Bhatt1,2, Jan Peters1,2,3, Oleg Arenz1
1 Intelligent Autonomous Systems Lab 2 German Research Center for AI (DFKI)
3 Centre for Cognitive Science, Hessian.AI
TU Darmstadt, Germany
{name.surname}@tu-darmstadt.de

ABSTRACT

Discrete latent bottlenecks in variational autoencoders (VAEs) offer high bit ef-
ficiency and can be modeled with autoregressive discrete distributions, enabling
parameter-efficient multimodal search with transformers. However, discrete ran-
dom variables do not allow for exact differentiable parameterization; therefore,
discrete VAEs typically rely on approximations, such as Gumbel-Softmax repa-
rameterization or straight-through gradient estimates, or employ high-variance
gradient-free methods such as REINFORCE that have had limited success on
high-dimensional tasks such as image reconstruction. Inspired by popular tech-
niques in policy search, we propose a training framework for discrete VAEs that
leverages the natural gradient of a non-parametric encoder to update the paramet-
ric encoder without requiring reparameterization. Our method, combined with
automatic step size adaptation and a transformer-based encoder, scales to chal-
lenging datasets such as ImageNet and outperforms both approximate reparame-
terization methods and quantization-based discrete autoencoders in reconstructing
high-dimensional data from compact latent spaces, achieving a 20% improvement
on FID Score for ImageNet 256.

1 INTRODUCTION

Discrete representations play a critical role in numerous fields, including telecommunications, biol-
ogy, and robotics. While real-world data is often continuous, introducing a discrete latent bottleneck
can offer unique advantages, such as increased bit-efficiency, multimodal modeling, and the ability
to leverage tools from combinatorial optimization. These properties make discrete representations
particularly useful for tasks that benefit from structured or compact latent spaces. However, encod-
ing continuous information into discrete representations and decoding it back remains a challenging
endeavor. In particular, gradient-based optimization requires a differentiable transformation to map
continuous inputs to discrete latents, but this is impeded by the non-differentiability of operations
like rounding or taking the argmax, which are essential for obtaining hard assignments. Because of
this difficulty, we are often left with approximate techniques, such as Gumbel Softmax reparameter-
ization and straight-through estimation Jang et al. (2016).

However, approximate reparameterization with Gumbel-Softmax Jang et al. (2016) is sensitive to
its temperature hyperparameter, forcing a trade-off between increased gradient variance at low tem-
peratures and large approximation error at high temperatures. Furthermore, for larger bottlenecks,
backpropagating the soft-assignments through the autoregressive sampling process has a high mem-
ory footprint and can suffer from vanishing gradients. Variance-reduction schemes such as GR-MCK
Paulus et al. (2020) help but do not fully resolve the scaling problem. On the other hand, vector-
quantization methods, such as VQ-VAE Van Den Oord et al. (2017) and FSQ Mentzer et al. (2023),
avoid the problems of discrete reparameterization, but still rely on approximations due to the use
of straight-through estimation. Furthermore, their latent distribution is intractable, which prevents
them from maximizing the latent entropy in the ELBO and demands special training objectives.
Score-function-based gradient estimators, such as REBAR (Tucker et al., 2017) or Muprop (Gu
et al., 2015), are a promising alternative as they obtain unbiased gradients to optimize the ELBO in
the discrete setting. However, due to high gradient variance, their success has been limited.

1

ar
X

iv
:2

50
9.

24
71

6v
1

 [
cs

.L
G

]
 2

9
Se

p
20

25

https://arxiv.org/abs/2509.24716v1

To overcome these limitations, we propose Discrete Autoencoding via Policy Search (DAPS), a
training framework that optimizes the ELBO for discrete, autoregressive encoders without any dis-
crete reparameterization or straight-through tricks. DAPS casts encoder learning as a KL-regularized
policy-search problem: we form a closed-form, nonparametric target distribution q∗ and update a
parametric encoder qθ by weighted maximum likelihood, avoiding backpropagation through the
sampling path. A single scalar trust-region parameter η is adapted automatically using an effective
sample size (ESS) objective, yielding stable step sizes across tasks and loss scales. Empirically,
DAPS trains on high-dimensional datasets (e.g., ImageNet) with superior reconstruction quality,
while offering (i) explicit entropy/bit-rate control via β, (ii) stochastic discrete latents amenable to
downstream search, and (iii) stable training behavior.

2 PROBLEM SETTING AND RELATED WORK

We seek to maximize the Evidence Lower Bound (ELBO) of the data likelihood p(x), as introduced
in the VAE (Kingma & Welling, 2013; Rezende et al., 2014), but using a discrete latent variable.
As in the continuous case, the ELBO is given by the likelihood of the reconstruction minus the KL
divergence between the approximate latent posterior and latent prior:

LELBO
ϕ,θ = ExEz|x

[
log pϕ(x|z)

]
− βDKL

(
qθ(z|x) || p(z)

)
, (1)

where the generative model pϕ(x|z) and the recognition model qθ(z|x) are neural networks pa-
rameterized by ϕ and θ, respectively. The expectations are computed by first sampling x from the
dataset X and then sampling z from the recognition model qθ(z|x).
In the continuous setting, we can choose a Gaussian recognition model and reparameterize z to
estimate the gradient of the expectation with respect to θ for gradient-based optimization. How-
ever, in the discrete setting, exact differentiable reparameterization is not possible. To address this
challenge, prior work has proposed different approaches based on approximate reparameterization,
vector quantization or gradient-free optimization.

Approximate Discrete Reparameterization. Methods based on approximate reparameterization
typically apply the Gumbel-Softmax trick, an approximation of the exact but non-differentiable
Gumbel-Max reparameterization, that was originally proposed by Jang et al. (2016) and applied to
the binary MNIST dataset. Given x ∼ p(x), let ℓ represent the unnormalized class probabilities such
that qθ(z|x) = softmax(qθ(ℓ|x)). Reparameterizing the latent variable can be performed by first
sampling Gumbel noise: g = − log(− log(u+ϵ)+ϵ), where u ∼ Uniform(0,1) and ϵ is arbitrarily
close to zero. Whereas the Gumbel-Max trick would exploit that zhard = argmaxi ℓi + gi follows
the desired distribution, zhard ∼ q(z|x), the Gumbel-Softmax computes zsoft = softmax((ℓ+g)/τ).
The temperature τ is a hyperparameter that needs to be carefully chosen to trade off the accuracy of
the approximation and the variance of the gradient. In order to pass hard assigned labels to the VAE
decoder, Jang et al. (2016) combine the Gumbel-Softmax reparameterization with a straight-through
estimator, by using the exact but non-differentiable Gumbel-Max reparameterization during the for-
ward pass, and the approximate but differentiable Gumbel-Softmax reparameterization during the
backward pass, which can be straightforwardly implemented as z := zsoft + sg(zhard − zsoft), where
zhard refers to the one-hot encoding of zhard and sg prevents the gradient from flowing through its
argument. Although the Gumbel-Softmax trick was successfully used by the discrete VAE (dVAE)
in DALL-E (Ramesh et al., 2021) to generate high-quality images, its sensitivity to the temper-
ature parameter is a major hurdle when applying it in practice. Furthermore, backpropagating
through the soft-assignments increases the memory footprint, and for autoregressive models the
backpropagation-through-time can suffer from vanishing gradients. We will compare to Gumbel-
Softmax in our experiments, where we also consider GR-MCK (Paulus et al., 2020), a modification
that uses Rao-Blackwellization for variance reduction.

Vector Quantization. VAEs based on vector quantization are arguably the most popular models
for learning autoencoders with a discrete latent bottleneck. The VQ-VAE encoder first outputs con-
tinuous latent vectors and then maps them to their nearest (in terms of Euclidean distance) vector in a
parameterized embedding table eψ . This quantization discretizes the bottleneck, but also introduces
a non-differentiable argument minimization in the computational graph. To still update the encoder
with respect to the reconstruction loss, VQ-VAEs employ straight-through estimation, in a similar

2

fashion as used when using the Gumbel-Softmax estimator. Namely, it uses the non-differentiable
argument minimization during the forward pass, but skips the quantization step during the backward
pass, which can be implemented using a stop-gradient operator as zq := z + sg(zq − z), where
z and zq are the encoder outputs before and after quantization, respectively. However, we cannot
compute the ELBO as in Eq. 1 since we can not obtain a tractable discrete distribution over the
latent variable. Instead, the VQ-VAE optimizes a different loss, given by

Lϕ,θ,ψ = ExEz|x

[
− log pϕ(x|zq)+ ∥ sg(z)− eψ(z) ∥22 +β ∥ z− sg(eψ(z)) ∥22

]
, (2)

where eψ(z) is the nearest embedding vector in the embedding table to z, and zq is computed
using the straight-through estimator: zq := z + sg(eψ(z) − z). The expectation with respect to
z ∼ qθ(z|x) equates to a single sample, i.e., the output of the deterministic recognition model. A
more recent method for quantization, also based on the straight-through estimator, is FSQ Mentzer
et al. (2023). Instead of learning a codebook, FSQ proposes a rounding mechanism. This design
choice results in increased parameter efficiency compared to VQ-VAE (due to the small number of
levels typically used), while also avoiding the tricks needed to enforce high codebook usage. FSQ is
inspired by compression literature, which often yields solutions that minimize entropy, as noted in
their work. Similar to the VAE, we focus on generative modeling from compact latent spaces, but in
contrast to quantization-based methods, we explicitly regularize for entropy, as staying close to the
prior distribution requires more direct control of the encoder entropy. Finally, it is worth noting that
the use of heterogeneous FSQ levels can make FSQ more challenging to implement in downstream
tasks compared to other discrete VAEs.

Gradient-Free Optimization. Another branch of methods circumvents the challenges of back-
propagating through the discrete sampling process by relying on zero-order methods. In the field of
reinforcement learning, REINFORCE (Williams, 1992) is a policy search (Deisenroth et al., 2013)
method that estimates the policy gradient using the identity ∇θE[R] = E[∇θ log πθ(a|s)Rt] to
obtain an unbiased estimate of the gradient of the expected return R with respect to the policy
parameters θ, without requiring to backpropagate through the expectation. Due to the close rela-
tion between reinforcement learning and variational inference (Neumann, 2011; Arenz et al., 2018;
Levine, 2018), this approach can be straightforwardly applied to optimize the ELBO 1, where the
recognition model qθ(z|x) takes the role of the policy, and the log-likelihood log pϕ(x|z) the role
of the return (Tucker et al., 2017; Mnih & Gregor, 2014; Gu et al., 2015; Grathwohl et al., 2017).
As REINFORCE suffers from high variance, these methods typically employ variance reduction
techniques, such as introducing control variates (Mnih & Gregor, 2014) or combinations of gradient
estimators (Tucker et al., 2017; Grathwohl et al., 2017).

However, despite these efforts, the gradient variance of these zero-order methods is still large, result-
ing in limited success compared to approximate reparameterization or vector quantization. However,
there have been significant advances in the field of policy search since the introduction of REIN-
FORCE (Williams, 1992) that have been overlooked in the field of discrete VAEs. In particular,
trust-regions based on the Kullback-Leibler divergence to the previous policy (Peters et al., 2010;
Schulman, 2015) and zero-order natural gradient estimates (Kakade, 2001; Peters & Schaal, 2008;
Wierstra et al., 2014) are standard techniques in reinforcement learning that also seem promising for
training discrete VAEs. REPS (Peters et al., 2010) combines both ideas by iteratively solving the
optimization problem of maximizing the expected return of a non-parameteric policy subject to a
trust-region constraint to the previous policy. REPS has been adapted to many problems, including
hierarchical control (Daniel et al., 2016), model-based RL (Abdolmaleki et al., 2015), deep RL (Ab-
dolmaleki et al., 2018), and variational inference (Arenz et al., 2018). Methods that are similar in
nature to ours include On-Policy Maximum a Posteriori Optimization (V-MPO) (Song et al., 2019)
and Supervised Policy Update (SPU) (Vuong et al., 2018). As in REPS, these methods construct a
nonparametric target policy by solving a constrained optimization problem and then update the pa-
rameterized policy by minimizing its KL divergence from the target policy, resulting in a weighted
maximum likelihood objective. Similar to V-MPO and SPU, we use a neural network-based policy.
We also incorporate similar techniques from Lower Bound Policy Search (LBPS) (Watson & Peters,
2023), which optimizes the effective sample size (ESS) to adapt the size of the trust region. These
methods have been used to solve complex problems such as robot control (Kober et al., 2013) and
Atari (Vuong et al., 2018) and have proven effective in high-dimensional continuous action spaces
(Abdolmaleki et al., 2018).

3

3 DISCRETE AUTOENCODING VIA POLICY SEARCH (DAPS)

We will now present our method for optimizing the ELBO (Eq. 1) with respect to expressive discrete
encoders, such as transformers, that can capture the correlations between different latent dimensions
through auto-regressive sampling. We avoid computationally expensive and high-variance back-
propagation through time by using insights from reinforcement learning that enable us to optimize
the encoder using weighted maximum likelihood. In the following, we will present the encoder
update and the decoder update separately, which are alternated during training.

Maximizing the ELBO with respect to the variational encoder q(z|x) can be framed as a KL-
regularized reinforcement learning problem. Namely, let us consider a Markov Decision Process
(MDP) with state space X , action space Z , and reward function r(z,x), z ∈ Z , x ∈ X . Maxi-
mum entropy reinforcement learning aims to find a policy q = q(z|x) that maximizes the expected
reward,

J(q) =

∫
x

p(x)
∑
z

q(z|x)r(z,x) dx+ βH(q(z|x), (3)

while also maximizing the entropy H(q(z|x) of the policy. Comparing to Eq. 1, we can observe
that this problem is equivalent to maximizing the ELBO with a uniform prior p(z) over the latent,
where the policy corresponds to the encoder and the reward corresponds to the reconstruction er-
ror. Reinforcement learning methods such as REPS, SPU and V-MPO, consider two policies: A
non-parametric particle-based policy q∗(z|x) that can be optimized in closed-form but cannot be
sampled, and a parametric policy qθ(z|x) that is trained to approximate q∗(z|x). While we focus
on the case where qθ(z|x) is a categorical distribution over discrete actions (or latent codes), and x
is continuous, we note that our methodology also applies to continuous action spaces and discrete
state spaces. In the context of variational autoencoding, the state x can be viewed as the original
data, e.g. a high-dimensional image, from which we want to produce a latent code. The state-action
distribution is therefore decomposed into a stochastic policy and a stationary state visit distribution
given by our fixed dataset: q(z,x) = qθ(z|x)p(x). The policy is an autoregressive model, such that
the joint distribution of categorical variables qθ(z|x) is decomposed into a product of conditional
distributions: q(z|x) = ΠT

t=1qθ(zt|z{i : i<t},x).

Optimizing the Nonparametric Encoder. We will start by defining a constrained optimization
problem for the objective given by Eq. 3. The procedure is based on REPS, where the objective
is to maximize the expected reward while satisfying a constraint on the KL divergence between the
policy and a prior policy,

max
q

∫
x

p(x)
∑
z

q(z|x)A(z,x) dx+ βH(q(z|x))

s.t. DKL(q(z|x) ∥ qθ(z|x)) ≤ ϵη ,
∑
z

q(z|x) = 1.
(4)

Here, we replaced the reconstruction reward r(z,x) with an estimate of the advantage function
A(z,x). The advantage function is obtained by subtracting the value function V (x), which we
approximate using the soft-maximum over K latent samples, that is,

A(z,x) = r(z,x)− log

K∑
k=1

exp r(zk,x), zk ∼ qθ(z|x).

We can use Lagrangian multipliers to convert the constrained optimization problem into an uncon-
strained one. As shown in Appendix A.1, the optimal solution is given by:

q∗(z|x) ∝ exp

(
A(z,x) + η log qθ(z|x)

η + β

)
(5)

where η is a Lagrangian multiplier. The term η controls the trust region, i.e., how large of a step we
take toward the optimal policy, while β controls the policy entropy. While Eq. 5 provides us with a
solution for the optimal policy, we can only evaluate it on given particles, and we cannot compute
the normalizer, since summing over all actions is intractable when using a high-dimensional latent
bottleneck. However, we will now show that we can use Eq. 5 to evaluate importance weights to
update the parametric policy using weighted maximum likelihood.

4

Algorithm 1 DAPS: Discrete Autoencoding via Policy Search

1: procedure DAPSLOSSFN(θ,ϕ, η,x, {zk}Kk=1)
2: for k = 1 to K do
3: Categorical(. ; ℓkθ(x))← ΠT

t=1qθ(.|zk{i : i<t},x) (Predict posterior parameters: ℓkθ)
4: qθ(z

k|x)← Categorical(zk; ℓkθ(x)) (Evaluate likelihood of zk, given logits ℓkθ)
5: N (. ;µϕ(z

k),σ2
ϕ(z

k))← pϕ(. | zk) (Predict posterior parameters: µϕ,σ
2)

6: Rk ← log pϕ(x | zk;µϕ(z
k),σ2

ϕ(z
k)) (Compute reward)

7: A(z,x)←R− log
∑

k exp(R
k) (Compute advantages)

8: logq∗(z|x) ∝ A(z,x) + η logqθ(z|x)
η + β

(Compute optimal policy)

9: L(θ)← − 1
K

∑
k SG

(
q∗(zk|x)
qθ(zk|x)

)
log qθ(z

k|x) (Recognition model loss)

10: L(ϕ)← − 1
K

∑
kR

k (Generative model loss)

11: L(η)← (ÊSSη(q
∗, qθ)− ESStarget)

2 (η loss)

12: return L(θ),L(ϕ),L(η)

Updating the Parametric Encoder. Now that we have the form of the optimal nonparametric pol-
icy, we can move our parameterized policy toward it using maximum likelihood, which enables us
to train it without requiring us to backpropagate through the autoregressive sampling. However,
because we cannot sample from our nonparametric distribution q∗, we have to resort to importance
sampling, where we use the current parametric encoder as proposal distribution. Hence, we maxi-
mize a weighted maximum likelihood objective,

L(θ) =
∫
x

p(x)DKL(q
∗(z|x) ∥ qθ(z|x)) dx ≈ −

∑
i

Ez∼qθ(z|xi) [wi log qθ(z|xi)] + const (6)

where wi = q∗(z|xi)qθ(z|xi)
−1 are the importance weights, and the constant term is the entropy

of q∗ which does not affect optimization. However, due to the unknown normalizer of q∗, we can
only evaluate the importance weights up to a constant factor, and therefore resort to self-normalized
importance weighting using weights w̃i = wi/

∑
j wj . Self-normalized importance weights benefit

from a lower variance but introduce a bias to the approximation, which diminishes asymptotically
for large sample sizes.

The new objective can then be summarized as maximizing the log-likelihood of our parameterized
policy, weighted by q∗. Note that the update for q∗ is largely determined by the reward, which is the
log likelihood of x on the generative model. The generative model is fixed during the policy update,
and the process for updating it will now be described in more detail.

Decoder Update. The generative model and the recognition model (i.e., the policy) are updated
alternately using coordinate descent. The generative model pϕ(x|z) takes in a latent code z and out-
puts parameters of the distribution over x. When optimizing the ELBO with respect to the generative
model, it simplifies to

L(ϕ) = −
∫
x

p(x)
∑
z

qθ(z|x) log pϕ(x|z) dx ≈ −
∑
i

Ez∼qθ(z|xi) [log pϕ(xi|z)] . (7)

The approximations on the last line of Eq. 7 and Eq. 6 are a result of using Monte Carlo integration
with randomly sampled indices from the dataset. Note that this objective corresponds to the standard
loss of the VAE in Eq. 1. However, because we do not reparameterize the latent variable, the update
is performed independently from the policy update, in contrast to VAEs, where both the generative
model and recognition model are updated in one backward pass. Hence, our generative model update
does not depend on θ, and the KL divergence to the latent prior can be dropped.

Step Size Adaptation using Effective Sample Size. The multiplier η in Eq. 5 controls the trust
region size, i.e. the step size from the parametric policy qθ toward the nonparametric target q∗. To
adapt η automatically, we follow prior work using the effective sample size (ESS) (Maia Polo &
Vicente, 2023; Metelli et al., 2020; Watson & Peters, 2023), which provides a tractable proxy for

5

Transformer
EncoderFCN

e2

Pass 1

e2 e3 e4

Vector Codebook

e1 e1 e1

Pass 2

e2

Pass 3

e3

Pass 4

e1

e1 e2

e3 e4 ResNet Decoder

Figure 1: Overview of DAPS. Left: Images are split into patches and embedded by a feed-forward
network before entering the encoder. Middle: The decoder generates latent sequences autoregres-
sively: each step conditions on the encoder output and previously sampled embeddings (via causal
masking, shown in green). Right: The generative model maps the latent embeddings back to the
reconstruction distribution.

the order-2 Rényi divergence. We update η so that the minibatch ESS matches a desired target level
ESStarget:

ÊSSη =
1

N

N∑
i=1

(∑K
k=1 wik

)2∑K
k=1 w

2
ik

, wik =
q∗(zki | xi; η)

qθ(zki | xi)
. (8)

Further details and the connection to Rényi divergences are provided in Appendix A.2. In practice,
η is treated as a trainable parameter and updated with SGD on (ÊSSη − ESStarget)

2. We found
ESStarget ∈ [K/4, 3K/4] to yield stable convergence. During training, we observe that η decays
smoothly over time, resulting in smoothly decreasing step sizes during optimization, while account-
ing for the task-specific scale of the reconstruction loss.

4 EXPERIMENTS

Datasets. We evaluate on four domains of increasing scale and complexity. We will use the term
block size to denote the number of indices in the latent code (i.e., the maximum length of the trans-
former decoder), and the term vocab size to denote the number of possible values each index can take
(i.e., the number of embeddings in the VQ-VAE codebook). The datasets are as follows. MNIST:
28 × 28 (binary) with a 64-bit bottleneck (vocab size 256; block size 8). CIFAR-10: 32 × 32 with
a 576-bit bottleneck (vocab size 512; block size 64). ImageNet-256: 256 × 256 with a 10,240-bit
bottleneck (vocab size 1,024; block size 1,024). LAFAN: motion dataset (∼4.6h expressive hu-
man motion, 5 subjects) with a 640-bit bottleneck (vocab size 1,024; block size 64). For LAFAN,
motions are retargeted to the Unitree H1 robot and encoded as 32 × 127 tensors of relative poses.
Across datasets, we enforce the same bottleneck size for all methods to ensure fair comparison.

Architectures. Our generative models follow prior work: a 512-unit MLP for MNIST (Kingma &
Welling, 2013), and a ResNet decoder for CIFAR/ImageNet (with additionally a learnable variance
clipped to [0.01, 1.0]) (Van Den Oord et al., 2017). The recognition model is a vision transformer
(Alexey, 2020), enabling either autoregressive sampling (non-VQ methods) or direct encoding of
codebook vectors (VQ methods) as depicted in Appendix F. For completeness, we also tested the
ResNet encoder from (Van Den Oord et al., 2017) in the VQ setting, but observed no advantage. For
LAFAN, both recognition and generative models are transformer-based (See Appendix G).

Training. All methods are trained with identical batch sizes and numbers of optimizer steps per
dataset. We use Adam with weight decay and a base learning rate of 3×10−4, applying cosine decay
when appropriate. For MNIST and CIFAR, we train for 250k steps with a batch size of 256 on an
RTX-3090. For LAFAN, we also train for 250k steps with a batch size of 256 on an A100-40GB.
For ImageNet, we run for 300k steps with a batch size of 64 on an A100-80GB. Each experiment
is repeated with 10 random seeds on MNIST, CIFAR, and LAFAN, and with 5 seeds on ImageNet

6

Figure 2: ImageNet 256 validation reconstructions. Top to bottom: DAPS, FSQ, Groundtruth.

due to the higher cost. In practice, we find that Gumbel Softmax is unstable at the base learning
rate, requiring per-dataset tuning. Because of this instability, we exclude Gumbel Softmax from
ImageNet experiments. In contrast, GR-MCK remains stable in the ImageNet setting, though it
requires roughly twice the GPU resources.

Baselines. We benchmark DAPS against a range of discrete latent variable models: (1) Gumbel-
Softmax, (2) GR-MCK, (3) FSQ, and (4) VQ-VAE. For completeness, we also include the Gaussian
VAE (equipped with the same latent capacity) and a PPO-style autoencoding baseline, but omit them
from larger-scale experiments due to their substantially weaker performance. For each method, we
perform a Bayesian sweep over hyperparameters (listed in Figure 11), centered around the default
values used in the original works.

5 RESULTS

We now turn to an empirical evaluation of DAPS. This section is structured as follows: (i) im-
age datasets (MNIST, CIFAR-10, ImageNet), (ii) trajectory datasets (LAFAN), (iii) ablations and
hyperparameter sensitivity, and (iv) downstream robotics/control applications.

MNIST. DAPS achieves comparable performance to baseline methods and obtains the lowest L2
train loss when using a final β of 0.01. When encouraging higher entropy (final β of 1.0), DAPS
attains a higher validation ELBO than other methods (closely followed by GR-MCK). DAPS also
exhibits strong downstream performance when using the latent space to generate images, given a
label (see Appendix 13). Compared to quantization-based methods, DAPS generates higher quality
digits when decoding samples from a uniform latent prior distribution, which we attribute to the
ELBO-based objective (see Appendix 14).

CIFAR-10. As can be seen in Table 1, DAPS outperforms baseline methods on the metrics of
interest. Compared to non-VQ-based methods, DAPS quickly and stably attains a high ELBO,
without requiring careful scheduling (unlike Gumbel Softmax). Compared to VQ-based methods,
DAPS achieves a higher reconstruction likelihood. The FID score is not ideal for CIFAR, as it is
tailored for ImageNet; the small increase for VQ-based methods early in training is likely an artifact
of this.

ImageNet. We evaluate DAPS on the ImageNet-256 dataset, demonstrating its ability to recon-
struct high-dimensional data using a low-bit bottleneck. DAPS significantly outperforms traditional
methods in terms of reconstruction quality while maintaining high bit efficiency. When comparing
DAPS to FSQ, VQVAE, and GR-MCK on ImageNet-256 validation, DAPS produces high-quality
reconstructions, as shown in Fig. 2. DAPS exhibits a higher log likelihood and a lower FID score
compared to baseline methods.

7

Figure 3: A latent space sequence for hopping is decoded by DAPS and fed through inverse kine-
matics, without physics simulation.

Figure 4: A latent space sequence for dancing is decoded by a reinforcement learning policy and
executed in a physics simulator.

LAFAN. We also evaluate DAPS on a LAFAN dataset for the Unitree H1 robot provided in Lo-
coMuJoCo (Al-Hafez et al., 2023), which contains human-to-robot retargeted motion trajectories
with inherent temporal dependencies and multimodal characteristics. Quantitatively, DAPS excels
at reconstructing this data, outperforming baseline methods in terms of log likelihood and L2 loss.
DAPS generates coherent and high-quality motion trajectories, aligning well with the true behaviors
in LAFAN. This makes DAPS amenable to downstream robotics tasks such as hierarchical control,
where a high-level policy can guide a low-level policy by specifying a desired trajectory, given a
context. A reconstructed motion is shown in Figure 3.

Downstream Task: Goal-Conditioned Robot Control. We construct a dataset of motion segments
paired with contextual signals and targets. A high-level policy is trained to process a history of rela-
tive body poses while conditioning on two context signals: (i) a desired future COM velocity and (ii)
a text description of the motion. The policy encodes these inputs into the DAPS latent space, produc-
ing a compact summary of the intended future motion that steers a low-level policy. Concretely, the
high-level policy is trained to autoregressively generate discrete latents in a distillation setup similar
to PoseGPT (Lucas et al., 2022). These latents effectively replace raw motion references, provid-
ing a command space—defined by text and COM trajectories—that guides a DeepMimic-trained
low-level motion imitation policy. An example motion is shown in Figure 4.

Ablations. We study the two main hyperparameters of DAPS—β and the ESS target—to
evaluate the method’s sensitivity to their values. Specifically, we consider a grid with β ∈
{0.1, 1.0, 5.0, 10.0} and ESS target ∈ {K/4,K/2, 3K/4} on CIFAR-10. Our results show that
annealing β yields the strongest performance (see Appendix C). Intuitively, this schedule promotes
exploration early in training and gradually shifts the focus toward high-quality reconstructions later
on. In contrast, DAPS shows little sensitivity to the choice of ESS target. This parameter primarily
influences the adaptation of η during training to satisfy the entropy objective. Overall, these findings
highlight that β is the more critical hyperparameter for performance, while the ESS target has a
comparatively minor effect, underscoring the robustness of DAPS to its setting.

6 DISCUSSION

Overall, DAPS provides state-of-the-art performance in reconstructing high-dimensional datasets,
both for images and sequential motion data, outperforming existing methods across key metrics.
The scalability of DAPS, especially with respect to high-dimensional and sequential data, makes it
a strong candidate for a variety of generative tasks. Our approach to discrete variational autoen-
coding via policy search offers a viable alternative to traditional methods like Gumbel-Softmax
and VQ-VAE, particularly when dealing with high-dimensional datasets. Using a standard set of
VAE hyperparameters, the main parameters for DAPS are the desired effective sample size and β.
This makes the training process comparable to that of VQ-VAE, which requires the specification of

8

Dataset Metric DAPS Gumbel GR-MCK FSQ VQ-VAE PPO

β 1.0 0.01 1.0 0.01 1.0 0.01 0.01

MNIST
(64 bits)

β-ELBO -82.74 -49.49 -88.46 -52.80 -96.21 -55.58 – – -100.97
log p -60.80 -49.08 -71.62 -52.45 -84.30 -55.33 -48.81 -46.61 -100.53
L2 4.18 3.69 4.58 3.85 5.01 3.98 3.73 3.63 5.39

CIFAR-10
(576 bits)

β-ELBO 857.77 1185.51 405.18 704.92 -211.33 217.45 – – 416.31
log p 1231.30 1189.37 666.85 707.87 -54.03 219.76 227.13 572.61 419.76
FID 158.61 157.27 172.68 169.87 184.65 179.88 169.70 162.89 176.29

ImageNet
(1.28 KB)

β-ELBO 87.0k – – – 60.7k – – – –
log p 93.6k – – – 64.1k – 76.58k 51.65k –
FID 48.65 – – – 73.21 – 60.48 76.78 –

LAFAN
(640 bits)

β-ELBO – -1124.67 – -1350.55 – -1290.98 – – –
log p – -1120.86 – -1348.48 – -1288.77 -1967.92 -2088.26 –
L2 – 10.19 – 11.80 – 12.14 12.93 13.33 –

Table 1: Quantitative comparison of all methods and datasets.

0 50k 100k 150k 200k 250k

Step

-175

-150

-125

-100

-75

-50

MNIST
Val log p(x|z) (↑)

0 50k 100k 150k 200k 250k

Step

-6k

-4k

-2k

0

CIFAR-10
Val log p(x|z) (↑)

0 100k 200k 300k

Step

-100k

0

100k

ImageNet 256
Val log p(x|z) (↑)

0 50k 100k 150k 200k 250k

Step

-5k

-4k

-3k

-2k

-1k

LAFAN
Val log p(x|z) (↑)

Model DAPS FSQ GR-MCK Gumbel PPO VQ-VAE Final Beta β = 0.01 β = 1.0 no β

Figure 5: A comparison of reward curves (i.e, log p(x|z)) on validation sets throughout training.

a commitment coefficient. Both methods introduce hyperparameters that are not highly sensitive,
making them relatively easy to tune. While autoregressive discrete sampling allows for expressive
multimodal latent generation, it introduces a computational bottleneck, particularly as the sequence
length increases. This limits the scalability of both DAPS and Gumbel-Softmax when compared to
traditional VAEs and VQ-VAEs. However, DAPS avoids backpropagating through autoregressive
sampling, allowing it to scale to sequence lengths of 1,024 and likely beyond. This provides a sig-
nificant advantage in terms of computational efficiency and scalability, especially on large datasets
like ImageNet. Our formulation also allows for fine-grained control over the tradeoff between com-
pression and generalization through the use of β in the ELBO. By adjusting β, we can effectively
manage the tradeoff between generating high-quality reconstructions and generalization. This flexi-
bility is a key strength of DAPS over other methods, such as FSQ and VQ-VAE, which do not allow
for easy control of entropy. Furthermore, our approach demonstrates stable training across seeds,
which is critical for real-world applications.

7 CONCLUSION

We introduced DAPS, a policy-search-based framework for training discrete variational autoen-
coders without relying on reparameterization techniques. Our method integrates reinforcement
learning concepts to optimize the variational encoder using weighted maximum likelihood, pro-
viding both scalability and efficiency. Experiments on high-dimensional datasets such as ImageNet
and LAFAN demonstrate DAPS’ superior performance in reconstruction quality and its ability to
generalize well across different tasks. By combining insights from policy search with variational
autoencoding, DAPS opens the door to the efficient use of discrete latent bottlenecks for large-scale
generative modeling. Its flexibility in balancing compression and generalization, along with its abil-
ity to handle complex data like images and motion trajectories, positions DAPS as a powerful tool
for both generative modeling and downstream control tasks. This work also paves the way for further
exploration of policy-driven techniques in the optimization of generative models.

9

ACKNOWLEDGMENTS

Calculations for this research were conducted on Hessian AI 42 Cluster and the Lichtenberg high-
performance computer of the TU Darmstadt. This work was supported by the German Science
Foundation (DFG) under project RTG2761. This work was also supported by a hardware donation
from NVIDIA through the Academic Grant Program.

REFERENCES

Abbas Abdolmaleki, Rudolf Lioutikov, Jan Peters, Nuno Lau, Luis Pualo Reis, and Gerhard Neu-
mann. Model-based relative entropy stochastic search. Advances in Neural Information Process-
ing Systems, 28, 2015.

Abbas Abdolmaleki, Jost Tobias Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess, and Mar-
tin Riedmiller. Maximum a posteriori policy optimisation. arXiv preprint arXiv:1806.06920,
2018.

Firas Al-Hafez, Guoping Zhao, Jan Peters, and Davide Tateo. LocoMuJoCo: A comprehensive
imitation learning benchmark for locomotion. In 6th Robot Learning Workshop, NeurIPS, 2023.

Dosovitskiy Alexey. An image is worth 16x16 words: Transformers for image recognition at scale.
arXiv preprint arXiv: 2010.11929, 2020.

Oleg Arenz, Gerhard Neumann, and Mingjun Zhong. Efficient gradient-free variational inference
using policy search. In International conference on machine learning, pp. 234–243. PMLR, 2018.

Christian Daniel, Gerhard Neumann, Oliver Kroemer, and Jan Peters. Hierarchical relative entropy
policy search. Journal of Machine Learning Research, 17(93):1–50, 2016.

Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. A survey on policy search for robotics.
Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backpropagation
through the void: Optimizing control variates for black-box gradient estimation. arXiv preprint
arXiv:1711.00123, 2017.

Shixiang Gu, Sergey Levine, Ilya Sutskever, and Andriy Mnih. Muprop: Unbiased backpropagation
for stochastic neural networks. arXiv preprint arXiv:1511.05176, 2015.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A survey. The
International Journal of Robotics Research, 32(11):1238–1274, 2013.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Thomas Lucas, Fabien Baradel, Philippe Weinzaepfel, and Grégory Rogez. Posegpt: Quantization-
based 3d human motion generation and forecasting. In European Conference on Computer Vision,
pp. 417–435. Springer, 2022.

Felipe Maia Polo and Renato Vicente. Effective sample size, dimensionality, and generalization in
covariate shift adaptation. Neural Computing and Applications, 35(25):18187–18199, 2023.

Fabian Mentzer, David Minnen, Eirikur Agustsson, and Michael Tschannen. Finite scalar quantiza-
tion: Vq-vae made simple. arXiv preprint arXiv:2309.15505, 2023.

10

Alberto Maria Metelli, Matteo Papini, Nico Montali, and Marcello Restelli. Importance sampling
techniques for policy optimization. Journal of Machine Learning Research, 21(141):1–75, 2020.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks. In
International Conference on Machine Learning, pp. 1791–1799. PMLR, 2014.

Gerhard Neumann. Variational inference for policy search in changing situations. 2011.

Max B Paulus, Chris J Maddison, and Andreas Krause. Rao-blackwellizing the straight-through
gumbel-softmax gradient estimator. arXiv preprint arXiv:2010.04838, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural
networks, 21(4):682–697, 2008.

Jan Peters, Katharina Mulling, and Yasemin Altun. Relative entropy policy search. In Proceedings
of the AAAI Conference on Artificial Intelligence, volume 24, pp. 1607–1612, 2010.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In International conference on machine
learning, pp. 8821–8831. Pmlr, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Eric P. Xing and Tony Jebara (eds.), Pro-
ceedings of the 31st International Conference on Machine Learning, volume 32 of Proceedings
of Machine Learning Research, pp. 1278–1286, Bejing, China, 22–24 Jun 2014. PMLR.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

H Francis Song, Abbas Abdolmaleki, Jost Tobias Springenberg, Aidan Clark, Hubert Soyer,
Jack W Rae, Seb Noury, Arun Ahuja, Siqi Liu, Dhruva Tirumala, et al. V-mpo: On-policy
maximum a posteriori policy optimization for discrete and continuous control. arXiv preprint
arXiv:1909.12238, 2019.

George Tucker, Andriy Mnih, Chris J Maddison, John Lawson, and Jascha Sohl-Dickstein. Rebar:
Low-variance, unbiased gradient estimates for discrete latent variable models. Advances in Neural
Information Processing Systems, 30, 2017.

Aaron Van Den Oord, Oriol Vinyals, et al. Neural discrete representation learning. Advances in
neural information processing systems, 30, 2017.

Tim Van Erven and Peter Harremos. Rényi divergence and kullback-leibler divergence. IEEE
Transactions on Information Theory, 60(7):3797–3820, 2014.

Quan Vuong, Yiming Zhang, and Keith W Ross. Supervised policy update for deep reinforcement
learning. arXiv preprint arXiv:1805.11706, 2018.

Joe Watson and Jan Peters. Inferring smooth control: Monte carlo posterior policy iteration with
gaussian processes. In Conference on Robot Learning, pp. 67–79. PMLR, 2023.

Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8:229–256, 1992.

11

APPENDIX

A DAPS DERIVATIONS

A.1 SOLVING THE CONSTRAINED OPTIMIZATION PROBLEM

We wish to solve the following constrained optimization problem:

max
q

∫
x

p(x)
∑
z

q(z|x)A(z,x) dx+ βH(q(z|x))

s.t. DKL(q(z|x) ∥ qθ(z|x)) ≤ ϵη,
∑
z

q(z|x) = 1
(9)

Using Lagrangian multipliers, we can convert this into an unconstrained optimization problem:

J (q(z|x), η, λ) =
∫
x

p(x)
∑
o

q(z|x)A(x, z)dx+ βH(q(z|x))

+ η
(
ϵη −

∫
x

p(x)
∑
z

q(z|x) log q(z|x)p(x)
qθ(z|x)p(x)

dx
)

+

∫
x

p(x)
[
λ(x)(1−

∑
z

q(z|x))
]
dx

(10)

Differentiating J with respect to q(z|x) and setting to zero yields:

δJ (q, η, λ)

δq
=

∫
x

∑
z

δ

δq

[
p(x)q(z|x)

(
η log qθ(z|x)

− η log q(z|x)− λ(x) +A(x, z)− β log q(z|x)
)]

dx

0
!
= p(x)

(
η log qθ(z|x)− η log q(z|x)− η − λ(x) +A(x, z)− β log q(z|x)− β

)
(11)

Re-arranging terms gives us the optimal nonparametric target distribution, q∗(z|x):

q∗(z|x) = exp
(A(x, z) + η log qθ(z|x)

η + β

)
exp

(η + β + λ(x)

η + β

)−1

= qθ(z|x) exp
(A(x, z)− β log qθ(z|x)

η + β

)
exp

(η + β + λ(x)

η + β

)−1

,

(12)

whereby re-writing the last line in Eq. 12, we can see that the optimal policy is a posterior distribu-
tion with a prior that is the parametric policy qθ(z|x). This gives us the following dual function:

G(η, λ(x)) =
∫
x

p(x)λ(x)dx+ ηϵη

+

∫
x

p(x)
∑
z

q∗(z|x)
[
η log qθ(z|x)− (η + β) log q∗(z|x)− λ(x) +A(x, z)

]
dx

=

∫
x

p(x)λ(x)dx+ ηϵη + (η + β)

∫
x

p(x)
∑
z

q∗(z|x)dx

(13)

Since the optimal λ(x) normalizes q∗(z|x), we have:

12

exp
(η + β + λ∗(x)

η + β

)
=

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)
λ∗(x) = (η + β) log

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)
− η − β

(14)

Plugging this into the dual, we get:

G(η, λ∗(x)) =

∫
x

p(x)
[
(η + β) log

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)
− η − β

]
dx+ ηϵη

+ (η + β)

∫
x

p(x)
∑
z

q∗(z|x)dx

= (η + β)

∫
x

p(x)
[
log

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)]
dx+ ηϵη

(15)

We can now differentiate with respect to η to optimize our stepsize.

δG(η, λ∗(x))

δη
=

δ

δη

[
(η + β)

∫
x

p(x)
[
log

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)]
dx+ ηϵη

]
(16)

Letting v =
∑

z exp
(

A(x,z)+η log qθ(z|x)
η+β

)
and u = log v, we have that δu

δv = v−1 and:

δv

δη
=

∑
z

(β log qθ(z|x)−A(x, z)

(η + β)2

)
exp

(A(x, z) + η log qθ(z|x)
η + β

)
(17)

Applying the chain rule, using δu
δη = δu

δv
δv
δη , we get:

δG(η, λ∗(x))

δη
=

∫
x

p(x)
[∑

z

(β log qθ(z|x)−A(x, z)

η + β

) exp
(

A(x,z)+η log qθ(z|x)
η+β

)
∑

z′ exp
(

A(x,z′)+η log qθ(z
′|x)

η+β

)
+ log

∑
z

exp
(A(x, z) + η log qθ(z|x)

η + β

)]
dx+ ϵη

=

∫
x

p(x)
[∑

z

log
qθ(z|x)
q̃∗(z|x)q

∗(z|x) + logZq∗

]
dx+ ϵη

= ϵη − Ex∼p(x)

[
DKL

(
q∗(z|x) ∥ qθ(z|x)

)]
(18)

It can be seen that computing this value requires computing the partition function, Zq∗ , and this
requires enumerating over all possible sequences of z. Similarly, the outer summation cannot be
easily computed, rendering the optimization of η using the KL divergence difficult in our setting.
For this reason, we make use of the Effective Sample Size to optimize η, as described below.

A.2 ESS-BASED TRUST REGION

Setup. Given an arbitrary datapoint x, let qθ(z | x) be the proposal distribution. Let q̃∗(z | x)
denote the unnormalized target from Eq. 5, with partition function

Z(x) =
∑
z

q̃∗(z | x), q∗(z | x) =
q̃∗(z | x)
Z(x)

.

Drawing z1:K ∼ qθ(· | x), define the normalized importance weights

wk =
q∗(zk | x)
qθ(zk | x) .

13

Definition The effective sample size (ESS) associated with weights {wk}Kk=1 is

ÊSSK(x) =

(∑K
k=1 wk

)2
∑K

k=1 w
2
k

.

Scale invariance. If instead we had used the unnormalized target q̃∗, then

w̃k =
q̃∗(zk | x)
qθ(zk | x) = Z(x)wk.

The ESS is invariant to such rescaling:
(
∑

k w̃k)
2∑

k w̃
2
k

=
(Z

∑
k wk)

2

Z2
∑

k w
2
k

=
(
∑

k wk)
2∑

k w
2
k

.

Thus one may compute ÊSSK using either q∗ or q̃∗.

Normalized ESS ratio. For convenience, we define the normalized ESS ratio

ρ̂K(x) =
1

K
ÊSSK(x) =

1

K

(
∑K

k=1 wk)
2∑K

k=1 w
2
k

=

(
1
K

∑K
k=1 wk

)2
1
K

∑K
k=1 w

2
k

.

This form makes both numerator and denominator empirical means, so the strong law of large num-
bers applies directly.

Definition (Rényi–2 divergence). For two distributions p, q with p absolutely continuous w.r.t. q,
the order–2 Rényi divergence is

D2(p∥q) = log
∑
z

p(z)2

q(z)
.

Lemma 1 (Population ESS and Rényi–2). Assume Eqθ [w
2] < ∞, which holds in the case of finite

discrete distributions with full support. Then, as K → ∞,

ρ̂K(x)
a.s.−−→ ρ(x) =

(Eqθ [w])
2

Eqθ [w
2]

=
1

Eqθ [w
2]

= exp
(
−D2(q

∗∥qθ)
)
.

Proof. By the strong law,

1

K

K∑
k=1

wk → Eqθ [w],
1

K

K∑
k=1

w2
k → Eqθ [w

2],

almost surely. Since q∗ is normalized,

Eqθ [w] =
∑
z

qθ(z | x) q
∗(z | x)
qθ(z | x) = 1.

Moreover, by the definition of D2,

Eqθ [w
2] =

∑
z

qθ(z | x)
(q∗(z | x)
qθ(z | x)

)2
=

∑
z

q∗(z | x)2
qθ(z | x) = exp

(
D2(q

∗∥qθ)
)
.

Therefore ρ(x) = 1/E[w2] = exp(−D2(q
∗∥qθ)).

Corollary 1 (KL trust region from ESS target). By monotonicity of Rényi divergences in their order
(Van Erven & Harremos, 2014),

KL(q∗∥qθ) = D1(q
∗∥qθ) ≤ D2(q

∗∥qθ).
Hence, if ρ̂K(x) is adapted to match a target level ρtarget, then the update satisfies the KL trust-
region bound

KL(q∗∥qθ) ≤ − log ρtarget.

Remarks. (i) ρ̂K is a biased finite-sample estimator of the population ρ(x), but converges almost
surely by the strong law. (ii) In practice, we treat η as a trainable parameter and update it with
stochastic gradient descent on (ρ̂K − ρtarget)

2, thereby driving ρ̂K toward ρtarget.

14

B TRAINING DYNAMICS AND STABILITY

MNIST

0 100k 200k

Step

0

1

2

3

β (schedule)

0 100k 200k

Step

0.76

0.78

0.80

0.82

Normalized ESS (target=0.75)

0 100k 200k

Step

10

20

30

40

Val KL to prior (↓)

0 100k 200k

Step

-120

-100

-80

-60

Val log p(x|z) (↑)

final β
β = 0.01 β = 1.0

CIFAR-10

0 100k 200k

Step

0

2

4

6
β (schedule)

0 100k 200k

Step

0.32

0.33

0.34

0.35

Normalized ESS (target=0.33)

0 100k 200k

Step

200

300

400
Val KL to prior (↓)

0 100k 200k

Step

-2k

-1k

0

1k

Val log p(x|z) (↑)

final β
β = 0.01 β = 1.0

ImageNet 256

0 100k 200k 300k

Step

0

20

40

β (schedule)

0 100k 200k 300k

Step

0.22

0.24

0.26

Normalized ESS (target=0.25)

0 100k 200k 300k

Step

2k

4k

6k

Val KL to prior (↓)

0 100k 200k 300k

Step

-100k

0

100k
Val log p(x|z) (↑)

final β
β = 1.0

LAFAN

0 100k 200k

Step

0.0

0.5

1.0

1.5

β (schedule)

0 100k 200k

Step

0.50

0.52

Normalized ESS (target=0.5)

0 100k 200k

Step

100

200

300

400

Val KL to prior (↓)

0 100k 200k

Step

-4k

-3k

-2k

-1k
Val log p(x|z) (↑)

final β
β = 0.01

Figure 6: A summary of key metrics for DAPS throughout training.

15

C ABLATIONS: β AND ESS-TARGET (CIFAR-10)

We scan β ∈ {0.1, 1, 5, 10} and ESS-target ∈ {K/4,K/2, 3K/4} and report the metrics below.

0 100k 200k

Step

0

2

5

7

10

β (schedule)

0 100k 200k

Step

-2k

-1k

0

1k

Val log p(x|z) (↑)

0 100k 200k

Step

100

200

300

400
Val Latent Prior KL (↓)

β
0.1 1 10 5 5 to 0.01 5 to 1

Figure 7: (1) An overview of different β values, averaged across the 3 different ESS targets. (2) The
scheduled β curves are averaged over the 10 seeds from the final experiments, which use an ESS
target of 0.33.

0 100k 200k

Step

50

100

150
η

0 100k 200k

Step

-1k

0

Val log p(x|z) (↑)

0 100k 200k

Step

100

200

300

400
Val Latent Prior KL (↓)

β 0.1 1 5 10 ESS Target 0.25 0.5 0.75

Figure 8: The joint performance of various β and ESS combinations. It can be seen that the choice
of ESS target has the desired effect, namely, the attenuation of the η trajectory throughout training.

D ABLATION: NUMBER OF BASELINE SAMPLES (MNIST)

0 100k 200k

Step

−15

−10

Advantage

0 100k 200k

Step

−160

−140

−120

−100

Val ELBO (↑)

0 100k 200k

Step

5

6

7

Val L2 (↓)

Value Samples
4 8 16 32

Figure 9: Key metrics w.r.t the number of samples used in the advantage estimation.

16

E PERFORMANCE SUMMARY

MNIST

0 100k 200k

Step

4

5

6

7

Train L2 (↓)

0 100k 200k

Step

-150

-100

-50

Val β ELBO (↑)

0 100k 200k

Step

-150

-100

-50

Val log p(x|z) (↑)

0 100k 200k

Step

4

5

6

7

Val L2 (↓)

Model DAPS FSQ GR-MCK Gumbel PPO VQ-VAE Final Beta β = 0.01 β = 1.0 no β

CIFAR-10

0 100k 200k

Step

20

30

40

Train L2 (↓)

0 100k 200k

Step

-3k

-2k

-1k

0

1k

Val β ELBO (↑)

0 100k 200k

Step

-6k

-4k

-2k

0

Val log p(x|z) (↑)

0 100k 200k

Step

175

200

225

250

Val FID (↓)

Model DAPS FSQ GR-MCK Gumbel PPO VQ-VAE Final Beta β = 0.01 β = 1.0 no β

ImageNet 256

0 100k 200k 300k

Step

100

200

300

Train L2 (↓)

0 100k 200k 300k

Step

-100k

0

Val β ELBO (↑)

0 100k 200k 300k

Step

-100k

0

100k
Val log p(x|z) (↑)

0 100k 200k 300k

Step

50

100

150

200

250

Val FID (↓)

Model DAPS FSQ GR-MCK VQ-VAE Final Beta β = 1.0 no β

LAFAN

0 100k 200k

Step

10

15

20

25

30
Train L2 (↓)

0 100k 200k

Step

-5k

-4k

-3k

-2k

-1k
Val β ELBO (↑)

0 100k 200k

Step

-5k

-4k

-3k

-2k

-1k
Val log p(x|z) (↑)

0 100k 200k

Step

20

30

Val L2 (↓)

Model DAPS FSQ GR-MCK Gumbel VQ-VAE Final Beta β = 0.01 no β

Figure 10: A summary of training curves averaged over all seeds, ± 1 SE.

17

F VISION MODEL ARCHITECTURE AND PARAMETER SUMMARY

Vision Recognition Model Architecture

Patch Feed Forward (Encoder Input)

Dense Kernel (Dpatch, H) + Bias (H)

Latent Embedding (Decoder Input)

Embed Table (V,H)

Transformer

Encoder Block 1

Layer Norm Scale (H) + Bias (H)

MultiHead Attention
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,HR) + Bias (HR)

Dense Kernel (HR,H) + Bias (H)

· · ·

Encoder Block N

Repeat: LN → MHA → LN → MLP

Encoder–Decoder Block 1

Layer Norm Scale (H) + Bias (H)

MultiHead Attention 1
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

MultiHead Attention 2
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,HR) + Bias (HR)

Dense Kernel (HR,H) + Bias (H)

· · ·

Encoder–Decoder Block N

Repeat: LN → MHA → LN → X-MHA → LN → MLP

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H, V) + Bias (V)

Recognition Model. The recognition model
architecture is a standard vision transformer.
Cross attention is used for autoregressive-based
methods, while self-attention is used for VQ-
based methods. We also tried using the ResNet
encoder proposed in VQ-VAE, but found no per-
formance benefit. See F.1 and F.2 for the corre-
sponding variable values.

ResNet Generative Model Architecture

Latent Embedding (ResNet Input)

Embed Table (V,H)

ResNet Decoder

Conv Kernel (3, 3, H,H2) + Bias (H2)

Residual Block 1

Conv Kernel (3, 3, H2, H2) + Bias (H2)

Batch Norm Scale (H2) + Bias (H2)

Conv Kernel (1, 1, H2, H2) + Bias (H2)

Batch Norm Scale (H2) + Bias (H2)

· · ·

Residual Block N

Repeat: Conv → BN → Conv → BN

ConvT Kernel (4, 4, H2, H3) + Bias (H3)

Batch Norm Scale (H3) + Bias (H3)

· · ·

ConvT Scale (4, 4, H3, 6) + Bias (6)

Generative Model. The vision generative model
architecture is a standard ResNet decoder. This
model takes as input a latent sequence (of length
64 for CIFAR-10, and length 1, 024 for Ima-
geNet) and converts it to a sequence of em-
beddings using the embedding table. This is
then reshaped into a square tensor of embeddings
(8×8×128 for CIFAR-10, and 32×32×128 for
ImageNet) to be processed by the ResNet. After
which, convolutional transpose layers are used to
upsample the tensor to the final image dimension,
including an additional 3 channels for the RGB
variance. See F.1 and F.2 for the corresponding
variable values.

18

F.1 IMAGENET-256 VISION HYPERPARAMETERS

Config (ImageNet-256)

model:
block_size: 1024 # Latent length
vocab_size: 1024 # V
embed_dim: 128 # H

data:
image_size: 256
num_patches: 1024 # 32x32 patches

recog_attn: # Self Attention (VQ methods)
transformer:
num_heads: 4 # N_h
num_layers: 2 # N
mlp_ratio: 4 # R
embed_dim: ${model.embed_dim}
decoder_block_size: ${model.block_size}
qkv_dim: ${model.embed_dim}

patch_ffwd: [dense:${model.embed_dim}]

recog_cross: # Cross Attention (non-VQ methods)
<<: *recog_attn
transformer:
<<: *recog_attn.transformer
grow_target_every: 8 # Autoreg. cache frequency
encoder_block_size: ${data.num_patches}

generative:
resnet:
hidden_dim: 64 # H_2
activation: relu
norm: batch_norm
residual:
num_blocks: 2 # N
hidden_dim: 64 # H_2
activation: relu
norm: batch_norm

Network Hyperparameter Summary. The configuration above lists the architecture-specific hy-
perparameters used for training ImageNet 256 (shared by all methods). Variable names, indicated
by comments on the right-hand side, correspond to the variables in the Vision Transformer Diagram
featured in F. The autoregressive sampling used by ELBO-based methods can be sped up through
the use of KV caching, as past activations do not need to be recalculated on subsequent forward
passes. The granularity of this caching procedure is controlled by the grow target every at-
tribute, which determines the size of the encoder’s cache window.

19

F.2 CIFAR-10 VISION HYPERPARAMETERS

Config (CIFAR-10)

model:
block_size: 64 # Latent length
vocab_size: 512 # V
embed_dim: 128 # H

data:
image_size: 32
num_patches: 64 # 8x8 patches

recog_attn: # Self Attention (VQ methods)
transformer:
num_heads: 4 # N_h
num_layers: 2 # N
mlp_ratio: 4 # R
embed_dim: ${model.embed_dim}
decoder_block_size: ${model.block_size}
qkv_dim: ${model.embed_dim}

patch_ffwd: [dense:${model.embed_dim}]

recog_cross: # Cross Attention (non-VQ methods)
<<: *recog_attn
transformer:
<<: *recog_attn.transformer
grow_target_every: 8 # Autoreg. cache frequency
encoder_block_size: ${data.num_patches}

generative:
resnet:
hidden_dim: 64 # H_2
activation: relu
norm: batch_norm
residual:
num_blocks: 2 # N
hidden_dim: 64 # H_2
activation: relu
norm: batch_norm

Network Hyperparameter Summary. The configuration above lists the architecture-specific hy-
perparameters used for training CIFAR-10 (shared by all methods). Variable names, indicated by
comments on the right-hand side, correspond to the variables in the Vision Transformer Diagram
featured in F. This design follows the architectures presented in Van Den Oord et al. (2017) and
Alexey (2020).

20

G TRAJECTORY MODEL ARCHITECTURE AND PARAMETER SUMMARY

Trajectory Recognition Model (Transformer)

1D Resample Convolution (Time)

ConvT Kernel (K1, F,H) + Bias (H)

Transformer

Encoder Block 1

Layer Norm Scale (H) + Bias (H)

MultiHead Attention
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,HR) + Bias (HR)

Dense Kernel (HR,H) + Bias (H)

· · ·

Encoder Block N

Repeat: LN → MHA → LN → MLP

Encoder–Decoder Block 1

Layer Norm Scale (H) + Bias (H)

MultiHead Attention 1
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

MultiHead Attention 2
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,HR) + Bias (HR)

Dense Kernel (HR,H) + Bias (H)

· · ·

Encoder–Decoder Block N

Repeat: LN → MHA → LN → X-MHA → LN → MLP

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H, V) + Bias (V)

Recognition Model. The trajectory recogni-
tion model architecture shares a similar struc-
ture to the vision recognition model. Instead
of using an image patcher (as in the ViT), we
use a 1D convolutional network to embed the
trajectory sequence. Cross attention is used
for autoregressive-based methods, while self-
attention is used for VQ-based methods.

Trajectory Generative Model (Transformer)

Latent Embedding (Transformer Input)

Embed Table (V,H)

Transformer

Decoder Block 1

Layer Norm Scale (H) + Bias (H)

MultiHead Attention
Query (H,Nh, H/Nh) Key (H,Nh, H/Nh)

Value (H,Nh, H/Nh) Out (Nh, H/Nh, H)

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,HR) + Bias (HR)

Dense Kernel (HR,H) + Bias (H)

· · ·

Decoder Block N

Repeat: LN → MHA → LN → MLP

Layer Norm Scale (H) + Bias (H)

Dense Kernel (H,H) + Bias (H)

1D Resample Convolution (Time)

Conv Kernel (K2, H,H) + Bias (H)

Output Head

Dense Kernel (H,F) + Bias (F)

Generative Model. The trajectory generative
model architecture is similar in symmetry to the
trajectory recognition model. After processing
the embedded latent sequence, the sequence is
resampled by a 1D convolutional network to
reach the desired trajectory segment length. The
result is a continuous trajectory of length 32
with 127 features per timestep.

21

G.1 LAFAN TRAJECTORY HYPERPARAMETERS

Config (Trajectory: LAFAN)

model:
block_size: 64 # Latent length
vocab_size: 1024 # V
embed_dim: 128 # H

trajectory:
length: 32 # Segment length
feature_dim: 127 # F

traj_recog_attn: # Self Attention (VQ methods)
resample_conv1d:
output_length: ${model.block_size}
output_channels: ${model.embed_dim}
stride: 2
kernel_size: 4 # K_1

transformer:
num_heads: 4 # N_h
num_layers: 2 # N
mlp_ratio: 4 # R
embed_dim: ${model.embed_dim}
decoder_block_size: ${model.block_size}
qkv_dim: ${model.embed_dim}

traj_recog_cross: # Cross Attn (non-VQ methods)
<<: *traj_recog_attn
transformer:
<<: *traj_recog_attn.transformer
grow_target_every: 8 # Autoreg. cache frequency
encoder_block_size: ${model.block_size}

traj_generative: # Generative model (all
methods)↪→

transformer:
<<: *traj_recog_attn.transformer

resample_conv1d:
output_length: ${trajectory.length}
output_channels: ${model.embed_dim}
stride: 2
kernel_size: 4 # K_2

output_ffwd: [dense:${trajectory.feature_dim}]

Network Hyperparameter Summary. The configuration above lists the architecture-specific hy-
perparameters used for training the LAFAN dataset. Variable names, indicated by comments on the
right-hand side, correspond to the variables in the Trajectory Transformer Diagram featured in G.
The recognition model and generative models are highly symmetric. These networks reconstruct
randomly sampled trajectory segments of length 32 with feature dimension 127. In order to decou-
ple the block size from the length of the trajectory segment, we use a 1D convolutional network to
resample the trajectory length to the model’s block size. This operation is then reversed at the output
of the generative model to achieve the desired segment length.

22

H MODEL-SPECIFIC HYPERPARAMETERS

MNIST

Parameter DAPS Other
Learning rate 3e-4 {3,3,3,3}e-4
Initial β (GR-MCK / Gumbel) 3 3
ESS Target 3K/4 –
Number of Baseline Samples (K) 8 –
τ (GR-MCK / Gumbel) – 1.0 / 1.0
Commitment Coefficient (FSQ) – 0.25
Levels (FSQ) – [8, 6, 5]

CIFAR-10

Parameter DAPS Other
Learning rate 3e-4 {3,3,3,3α1}e-4
Initial β (GR-MCK / Gumbel) 6 3 / 6
ESS Target K/3 –
Number of Baseline Samples (K) 8 –
τ (GR-MCK / Gumbel) – 1.0 to 0.75 / 1.0
Commitment Coefficient (FSQ) – 0.25
Levels (FSQ) – [8, 8, 8]

ImageNet 256

Parameter DAPS Other
Learning rate 3e-4 {3,3,1}e-4
Initial β (GR-MCK) 50 10
ESS Target K/4 –
Number of Baseline Samples (K) 8 –
τ (GR-MCK) – 1.0 to 0.75
Commitment Coefficient (FSQ) – 0.25
Levels (FSQ) – [8, 5, 5, 5]

LAFAN

Parameter DAPS Other
Learning rate 3e-4 {3,3,1α1,1α1}e-4
Initial β (GR-MCK / Gumbel) 2 2 / 2
ESS Target K/2 –
Number of Baseline Samples (K) 8 –
τ (GR-MCK / Gumbel) – 1.0 / 1.0
Commitment Coefficient (FSQ) – 0.5
Levels (FSQ / VQ) – [10, 10, 10]

Figure 11: A summary of model-specific hyperparameters.

Note: The order for Other is: VQ-VAE, FSQ, GR-MCK, and Gumbel (by default, where applica-
ble). The x α y notation means a start rate of x and final rate of xy/10 using cosine decay.

23

I DOWNSTREAM ROBOTICS EXPERIMENT DETAILS

Dancing

Running

Walking

Figure 12: In our downstream experiment, we use different language commands to generate motion
styles with DAPS, and use a physical consistent decoder given by an RL policy and a robot simulator
to decode the discrete latent representation.

We train a low-level policy with DeepMimic to imitate motions from the LAFAN1 dataset on a
Unitree H1 robot simulated in MuJoCo. Unlike the conventional DeepMimic formulation, where
motion reference information for the next timestep (site positions, joint angles, and velocities) is ex-
plicitly given as a goal to the policy, we provide the policy with a compact embedding of the desired
future motion as the goal. We condition the high-level policy—which produces these embeddings—
on language information and motion goals. For the former, we use BERT embeddings of a brief
description of the motion file. For the latter, we provide the encoder with the last 32 timesteps and
future 32 timesteps of the center of mass (COM) trajectory, relative to the robot’s base frame. The
resulting output is a compact vector of 64 latent indices.

We train the low-level policy conditioned on these embeddings with PPO using the LocoMujoco
framework (Al-Hafez et al., 2023). The policy transforms the embedded indices with a 1D con-
volutional layer, then concatenates the resulting features with standard proprioceptive information:
joint angles, joint velocities, IMU information (projected gravity and torso angular velocities), and
the previous timestep’s action, ultimately feeding these into a multilayer perceptron of size [2048,
1024, 512] with elu activations, resulting in a 19-dimensional vector of torques to be applied to
each motor of the Unitree H1 robot. The policy is executed at 100 Hz.

J DATASETS AND PREPROCESSING

Images. For ImageNet-256, we randomly crop and flip the images. All images are standardized
using their empirical mean and standard deviation. CIFAR-10 and MNIST are also standardized
similarly.

Trajectories (LAFAN). For the LAFAN dataset, we standardize the data online using the Welford
algorithm (for numerically stable variance estimation). Each motion sequence is normalized to have
zero mean and unit variance along each feature.

24

DAPS Gumbel

GR-MCK PPO

VQVAE FSQ

Figure 13: Label-conditioned samples from downstream model using discrete flow matching.

25

DAPS Gumbel

GR-MCK PPO

VQVAE FSQ

Figure 14: Samples obtained by decoding random, uniform prior latent codes.

26

DAPS GR-MCK VQ-VAE FSQ PPO True

Figure 15: CIFAR validation reconstructions vs. ground truth for six methods.

27

DAPS GR-MCK VQ-VAE FSQ True

Figure 16: ImageNet 256 validation reconstructions vs. ground truth.

28

	Introduction
	Problem Setting and Related Work
	Discrete Autoencoding via Policy Search (DAPS)
	Experiments
	Results
	Discussion
	Conclusion
	DAPS Derivations
	Solving the Constrained Optimization Problem
	ESS-based Trust Region

	Training Dynamics and Stability
	Ablations: and ESS-Target (CIFAR-10)
	Ablation: Number of baseline samples (MNIST)
	Performance Summary
	Vision Model Architecture and Parameter Summary
	ImageNet-256 Vision Hyperparameters
	CIFAR-10 Vision Hyperparameters

	Trajectory Model Architecture and Parameter Summary
	LAFAN Trajectory Hyperparameters

	Model-Specific Hyperparameters
	Downstream Robotics Experiment Details
	Datasets and Preprocessing

