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Multi-Embodiment Locomotion at Scale
with extreme Embodiment Randomization

Nico Bohlinger!, Jan Peters':

Abstract— We present a single, general locomotion policy
trained on a diverse collection of 50 legged robots. By combining
an improved embodiment-aware architecture (URMAv2) with
a performance-based curriculum for extreme Embodiment
Randomization, our policy learns to control millions of mor-
phological variations. Our policy achieves zero-shot transfer to
unseen real-world humanoid and quadruped robots.

Fig. 1.  (Top) We collected a diverse set of 50 legged robots, including
15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods. (Bottom) We train
the policy on all robots simultaneously using 25600 parallel environments.
The performance-based curriculum on extreme Embodiment Randomiza-
tion leads to the policy seeing gradually more challenging embodiments
throughout training. This results in a curriculum of up to 10 million different
embodiments per training run. Here different generated varations of the
ANYmal C, Nao v5 and Unitree G1 are shown as examples.

I. INTRODUCTION

Recent advances and availability of powerful robot hard-
ware, like humanoid robots, have enabled researchers all
around the world to tackle more complex tasks in robotics
[1], [2]. Deep Reinforcement Learning (DRL) has shown
impressive results in many of these tasks, especially in the
field of locomotion [3], [4]. With more and more robot plat-
forms being developed and finding their way into research
labs and real-world applications, the current paradigm of
training a control policy tailored to a specific robot can
become increasingly inefficient. Robot platforms change,
adapt, and evolve over time, but many current training
approaches do not consider robot morphologies as a key
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factor. Their learning process is agnostic or simply unaware
of the specific characteristics and capabilities of the robot’s
embodiment, making cross-embodiment transfer difficult or
even impossible. We build upon the recently introduced
Unified Robot Morphology Architecture (URMA) [5], an
embodiment-aware learning framework that addresses these
challenges for the field of robot locomotion. We train a single
unified embodiment-aware policy across 50 different legged
robots with massive Embodiment Randomization (ER). This
results in a curriculum of up to 10 million embodiments per
training run, in order to learn a robust and adaptive general
locomotion policy, that can be directly zero-shot transferred
to unseen humanoid and quadruped robots in the real world.

II. RELATED WORK

Robot locomotion has seen significant advancements in
recent years, particularly with the rise of DRL techniques [3],
[4], [6]. Leveraging fast and highly parallelizable simulators,
like Issac Gym/Sim [7] or MuJoCo XLA (MJX) [8], in
combination with strong Domain Randomization (DR), and
the scalability of on-policy DRL algorithms, like Proximal
Policy Optimization (PPO) [9], has enabled learning ro-
bust and high-performing locomotion policies for various
quadruped and humanoid robots. Techniques such as DR
[10] and student-teacher learning [4] are used to bridge the
sim-to-real gap and other methods, like curriculum learning,
help to speed up and stabilize the training process [11].
While training directly on the real robot system would be
ideal to make the policy fully aware of the true capabilities
of its embodiment, it is often impractical due to safety
concerns, wear and tear, and the extensive time required for
the unparallelized training [12].

In the pursuit of obtaining a foundation model for robotics
tasks, like locomotion, that can generalize across different
embodiments, the concept of embodiment-aware learning
and the technical challenge of different amounts of sensors
and actuators (meaning different observation and action
spaces in the language of DRL) come into play. It is
natural to consider the field of Multi-Task Reinforcement
Learning (MTRL) here, where a single policy is trained
to solve multiple different tasks. However, many existing
MTRL approaches simply zero-pad observations and actions
or learn different input and output heads for each task, which
can severely limit their ability to generalize across different
embodiments, as they neglect their structural similarities [5].
Therefore, prior work has proposed Graph Neural Networks
(GNNs) as an architecture to better capture the structure of
robot embodiments [13]. Following work has used Trans-
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Fig. 2.

Overview of URMAV2. We extend the original URMA architecture to improve its scalability, learning stability and empirical performance in

the massively multi-embodiment setting. We increase the capacity of the encoder and core network, add WeightNorm layers for more stable training, and
replace the original universal decoder with a streamlined attention-based decoding mechanism.

formers in combination with different graph-based features
or attention mechanisms to improve the scalability in the
multi-embodiment setting [14]. Only recently, the URMA [5]
could show the applicability of multi-embodiment learning
to real-world robots. While the initial study only used 16
robots and could not show sim-to-real transfer to seen or
unseen humanoids, following work has shown embodiment
scaling laws for training URMA on up to 1000 offline
generated robots (based on three template morphologies) and
demonstrated its transfer to a real humanoid [15].

III. METHOD

We build upon the original URMA architecture and
training framework, and scale it to the massively multi-
embodiment setting of 50 different base robots with 10
million variations. To achieve this, we modify the neural net-
work architecture to be larger, more stable and leverage the
attention mechanism also for the policy output (see Figure 2),
which we call Unified Robot Morphology Architecture v2
(URMAV2). Furthermore, we introduce a performance-based
curriculum learning strategy in combination with extreme ER
to expose the policy to gradually more diverse and difficult
embodiments.

A. URMAv2 Architecture

Inputs: Following the original URMA architecture, the
inputs are split into three categories: per-joint description
vectors {d;}jey for the set J of all joints in a given
robot that uniquely describe a joint’s static properties (e.g.,
rotation axis, torque limits), per-joint observations {0;};c s
containing dynamic state information (e.g., position, veloc-
ity), and general robot observations o, (e.g., trunk velocity,
gravity vector). URMAV2 includes an additional per-joint
observation to indicate whether a joint should track its
nominal position or can be controlled freely, allowing for
task-specific joint-level conditioning. Also, we remove the
feet-specific observations and their encoding from the policy
network, as contact sensors are not available on many of the

considered robots. The critic network keeps the feet obser-
vations and now also receives the noise-free observations to
better estimate values.

Joint Encoder: URMAV2 keeps the same attention-based
joint encoder, which processes each joint’s description (at-
tention keys) and observation vector (attention values), and
aggregates them into the combined joint latent vector
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where f4 (with latent dimension L;) and fy, are the
encoders for the joint descriptions and joint observations,
respectively, and 7 is the learnable temperature parameter of
the softmax. URMAV2 uses a wider Multilayer Perceptron
(MLP) for fy (2x 256 units) for the policy network to
increase its capacity for the larger number of robots and
variations.

Core Network: The joint latent vector contains all joint
information in a fixed-size vector, so it can be concatenated
with the fixed-size general observations and processed by the
core network hy to generate the action latent vector

(1
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URMAV2 uses a deeper stack of 5 instead of 3 hidden
layers to increase the model capacity. To stabilize training,
WeightNorm layers [16] are used around every Dense layer,
which decompose the weights as w = gm, where the
optimizer acts on g, a learnable scalar, and v, representing
the raw weights.

Action Decoder: The most significant architectural
change is the replacement of URMA’s universal decoder
with an attention-based decoding mechanism. Instead of
concatenating the action latent vector in batch with encoded
joint description latents to produce actions for every joint,
URMAV2 computes the mean action u; for each joint via
a simple dot product between the action latent vector Zaction



and the corresponding joint’s attention weights «; that were
generated in the encoder:

[ = Ziaction * O 3)

Also, the per-joint standard deviations are predicted with a
linear layer o, from the same joint description encoding
calculated for the attention weights, which results in actions
being sampled from

aj ~ N(uj,00(f5(d;))). 4)

This creates a streamlined architecture that is both conceptu-
ally simpler, computationally more efficient and empirically
more performant than the original URMA decoder.

B. Embodiment Randomization

To improve the generalization capabilities of the policy
across different embodiments, we apply extreme ER online
during training (see Figure 1). ER differs from standard DR
in that all the generated values are seen by the policy through
the description vectors, allowing the policy to condition
and adapt to them. We use DR after the ER sampling to
further modify the sampled parameters but keep them hidden
from the policy, to add robustness and improve sim-to-real
transfer. Our ER includes scaling of: body part size and
position in every dimension, coupled and decoupled mass
and inertia, center of mass, inertia and body part and joint
axis orientation, IMU position, motor torque and velocity
and position limits, joint damping and friction and armature
and stiffness, joint nominal position, PD gains, and action
scaling factor. Our framework samples a new embodiment
during every episode step with a probability of 0.2% which
corresponds to once every 10 seconds of simulated time on
average at the highest curriculum level. This leads to up to
10 million different embodiments per training run.

C. Performance-based Curriculum

When drastically increasing the number of robots and their
variations, the learning problem becomes significantly more
challenging. To tackle this, we introduce a performance-
based curriculum learning strategy that attaches every com-
ponent of the learning framework to a single curriculum
coefficient 5 € [0, 1]. This coefficient is initialized to 8 =0
and is increased by nAS whenever an episode is deemed
successful, e.g., a minimum tracking error, episode length,
or return threshold is reached. n is the number of consecutive
successful or unsuccessful episodes, depending on whether (8
should be increased or decreased, and allows the curriculum
to quickly adapt to the current performance of the policy. AS
is a small constant step size that determines the granularity of
the curriculum. We attach all training components: domain
and embodiment randomization ranges, perturbations, sam-
pling probabilities, terrain attributes, termination conditions,
and reward penalty coefficients, to this single curriculum
coefficient /3. This significantly helps to speed up the training
process for challenging embodiments, especially humanoids,
and leads to more stable training runs.
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Fig. 3. Comparison of the training performance of URMA, URMAv2,
zero-padding and multi-head baselines when training on all 50 robots.
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Fig. 4.  Different setups of URMAV?2 trained on 49 robots and zero-shot

performance evaluated on the left-out robot. We test on the MAB Silver
Badger and Unitree Go2 for quadrupeds, and the Unitree H1, Unitree G1
and Booster T1 for humanoids.

Furthermore, we define all mentioned components in
a percentage-based manner based on the robot’s nominal
parameters from the URDF, which allows us to use the
exact same parameters, ranges and reward coefficients for all
robots. For any given robot, only the nominal joint positions
and the PD gains have to be specified, the rest of the training
framework is fully shared between all robots.

IV. EXPERIMENTS

We train URMAV2 on a set of 50 legged robots, including
15 quadrupeds, 23 humanoids, 8 bipeds and 4 hexapods,
collected from various freely available URDFs (see Figure 1).
We use MJX as the physics engine and PPO as the DRL
algorithm, which we implement with the RL-X library [17].
With a total of 25600 parallel environments (512 per robot),
we collect 1.6 million samples (32768 per robot) and use
16 minibatches of size 102400 (2048 per robot) for 10
epochs for every policy update. We train for a total of 5
billion environment steps (100 million per robot), which
takes approximately 40 hours on a single NVIDIA A100
GPU.

Figure 3 compares the training performance of URMAv2
with the original URMA architecture, as well as a zero-
padding and multi-head baseline (one head per robot). We
measure the performance by the average curriculum coeffi-
cient 3 over all robots. URMA and URMAV2 significantly
outperform the zero-padding and multi-head baselines, show-
ing the effectiveness of the embodiment-aware architecture in



Fig. 5.
1), MAB Silver Badger (row 2), and Booster T1 (row 3). We also deploy
the policy trained on all 50 robots on the Unitree HI (row 4).

Shows the zero-shot transfer of URMAV2 to the Unitree Go2 (row

general. URMAV2 outperforms URMA in terms of learning
speed and final performance (8 = 0.88 vs. § = 0.82).

Figure 4 shows the zero-shot transfer performance of
URMAV2 trained on 49 robots and evaluated on the left-
out robot. For quadrupeds, we test on the Unitree Go2 and
MAB Silver Badger (has an additional spine joint), and
for humanoids, we test on the Unitree H1, Unitree G1 and
Booster T1. URMAV2 shows strong zero-shot performance
on especially the quadruped robots, even the MAB Silver
Badger, which proved to be challenging in the original
URMA study due to its additional spine joint that is not
present in any other training robot. Zero-shot performance
for the humanoids is clearly lower, but still a significant
improvement over the reported O return for the Unitree H1 in
the original URMA study. In simulation, the policy is able to
control all three humanoids fairly well, especially the Booster
T1 and the Unitree G1, but under server perturbations or
really rough terrain, it still falls occasionally.

A. Sim-to-Real Transfer

While inspecting the learned policy in simulation can give
a good indication of its performance, the ultimate test is
its transfer to the real robots. Figure 5 shows the zero-
shot sim-to-real transfer of URMAV2 trained on 49 robots
to the Unitree Go2, MAB Silver Badger, and Booster T1.
The policy is able to control both quadrupeds very well,
even under disturbances like pushes and pulling on the legs.
The policy is able to walk forward and sidewards reliably
on the Booster T1, but struggles with turning and walking
backwards, leading to regular falls. We could not zero-shot
transfer to the Unitree H1 as the policy was not stable
enough, but we transfered to URMAV2 policy trained on all
50 robots, which was able to locomote well on the H1 in
every direction.

V. CONCLUSION

We presented URMAV2, an improved embodiment-aware
architecture for learning a general locomotion policy across
a diverse set of 50 legged robots with extreme ER and
a performance-based curriculum. While URMAvV2 shows
strong training performance and zero-shot transfer to unseen
quadruped and humanoid robots in simulation, sim-to-real
transfer to unseen humanoids still remains challenging. Even
more embodiment diversity through more base robots and
curriculum learning methods that can explore the embod-
iment space more effectively could help to improve the
generalization capabilities to obtain a true foundation model
for robot locomotion.
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