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TD-GRPC: Temporal Difference Learning with Group Relative Policy
Constraint for Humanoid Locomotion

Khang Nguyen1, Khai Nguyen2, An T. Le3, Jan Peters3,4,5, Manfred Huber1, Vien Ngo2, and Minh Nhat Vu6
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Fig. 1: Locomotion Tasks Performed by the Unitree H1-2 Humanoid with TD-GRPC: standing, sitting on a chair, walking, running,
crawling under a tunnel, climbing stairs, balancing on a ball-board toy, and navigating through standing poles while avoiding collision.

Abstract— Robot learning in high-dimensional control set-
tings, such as humanoid locomotion, presents persistent chal-
lenges for reinforcement learning (RL) algorithms due to
unstable dynamics, complex contact interactions, and sen-
sitivity to distributional shifts during training. Model-based
methods, e.g., Temporal-Difference Model Predictive Control
(TD-MPC), have demonstrated promising results by combining
short-horizon planning with value-based learning, enabling
efficient solutions for basic locomotion tasks. However, these
approaches remain ineffective in addressing policy mismatch
and instability introduced by off-policy updates. Thus, in this
work, we introduce Temporal-Difference Group Relative Policy
Constraint (TD-GRPC), an extension of the TD-MPC frame-
work that unifies Group Relative Policy Optimization (GRPO)
with explicit Policy Constraints (PC). TD-GRPC applies a
trust-region constraint in the latent policy space to maintain
consistency between the planning priors and learned rollouts,
while leveraging group-relative ranking to assess and preserve
the physical feasibility of candidate trajectories. Unlike prior
methods, TD-GRPC achieves robust motions without modifying
the underlying planner, enabling flexible planning and policy
learning. We validate our method across a locomotion task suite
ranging from basic walking to highly dynamic movements on
the 26-DoF Unitree H1-2 humanoid robot. Through simulation
results, TD-GRPC demonstrates its improvements in stability
and policy robustness with sampling efficiency while training
for complex humanoid control tasks.

I. INTRODUCTION

Humanoid locomotion is one of the most challenging
domains in control and reinforcement learning (RL), due
to its inherently high-dimensional and dynamically complex
body structure [1], [2]. Achieving robust and adaptive control
to accomplish locomotion tasks requires an algorithm that
can not only plan effectively in the face of environmental
uncertainty but also learn generalizable behaviors from lim-
ited iterations. While model predictive control (MPC) offers
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strong short-term decision-making capabilities via real-time
trajectory optimization, its effectiveness is often bounded by
model accuracy alongside the need for meticulously hand-
crafted cost functions. In contrast, RL enables more flexible,
data-driven behavior learning but typically suffers from sam-
pling inefficiency and unstable policy updates, especially for
model-based RL (MBRL) approaches [3]–[5].

While MBRL holds great promises for sample efficiency
by leveraging learned dynamics models for planning and
value estimation [13], [14], it often suffers from compound-
ing model errors and planning biases in games [8], [9], [15],
[16], in quadruped robots control [17]–[19], and particularly
in high-dimensional tasks such as in humanoid control [12].
Offline approaches to MBRL have attempted to mitigate
these limitations by decoupling data collection from learning
[5], [14]. Additionally, PlaNet [20] and Dreamer variants
[20]–[22] have explored latent dynamics for improving pol-
icy learning from pixels [20], [23]. Nevertheless, many of
these methods still exhibit weak generalization and lack the
temporal abstraction necessary for robust and trustworthy
long-horizon reasoning [4], [24], [25].

Earlier works have attempted to merge planning and
learning more tightly. Temporal-Difference Model Predictive
Control (TD-MPC) [26] addresses these issues by training
latent dynamics models jointly with value functions using
TD learning, avoiding the pitfalls of purely supervised model
learning and enabling better credit assignment over long
horizons. TD-MPC2 [11] further refines this framework
by introducing stabilized actor-critic updates in the latent
space, achieving improved consistency in off-policy learn-
ing. However, challenges persist despite these improvements
due to the mismatch between training targets and planner-
induced policies, destabilizing off-policy MBRL [24], [27].
Moreover, the lack of constraints during policy improvement
steps can result in aggressive updates that cause significant
distribution shifts, as studied in [28]–[31].

To bridge this gap, recent advancements have demon-
strated promising results by combining the planning effi-

mailto:khang.nguyen8@mavs.uta.edu
mailto:minh.vu@ait.ac.at
https://arxiv.org/abs/2505.13549v1


TABLE I: Comparison of policy learning- and optimization-based attributes across prior model-free and model-based approaches, including
MPC [6], SAC [7], MuZero [8], EfficientZero [9], LOOP [10], TD-MPC2 [11], TD-M(PC)2 [12], and our proposed method. The highlighted
columns introduce policy constraints and group-relative rankings, which are critical for further policy optimization of humanoid locomotion.

Method
Attr. Continuous

controller
Model learning

objective
Value function

learning
Policy

constraint
Group-relative

advantage
Inference
strategy

Computation
cost

MPC [6] ✓ not defined ✗ ✗ ✗ CEM High
SAC [7] ✓ not defined ✓ ✗ ✗ policy Low

MuZero [8] ✗ reward + value ✓ ✗ ✗ MCTS-based policy Moderate
EfficientZero [9] ✗ reward + value ✓ ✗ ✗ MCTS-based policy Moderate
LOOP [10] ✓ state ✓ ✗ ✗ CEM-based policy Moderate

TD-MPC2 [11] ✓ reward + value + state ✓ ✗ ✗ CEM-based policy Low
TD-M(PC)2 [12] ✓ reward + value + state ✓ ✓ ✗ CEM-based policy Low

TD-GRPC (Ours) ✓ reward + value + state ✓ ✓ ✓ CEM-based policy Low

ciency of MPC with the adaptability of TD learning. Their
variants extend this hybrid paradigm by incorporating latent
dynamics models and stabilized value estimation, enabling
more scalable and robust control in continuous settings.
However, key challenges remain unresolved, particularly the
mismatch between learned policy rollouts and the TD targets
used in off-policy training, leading to degraded performance
and instability over time and failing to accomplish the tasks.

In this work, we propose to alleviate these limitations by
extending the TD-MPC framework [11] with Group Relative
Policy Optimization (GRPO) [32] to improve stability and
sample efficiency in humanoid locomotion settings. Inspired
by recent state-of-the-art techniques in constrained policy
optimization, our method further combines a trust-region
constraint directly on the policy prior in the latent space,
preserving planning feasibility while mitigating distributional
drift during learning. In addition, our technique achieves a
faster convergence rate than other baselines. Our contribu-
tions are summarized as follows:

• We propose a TD-GRPC framework, which integrates
GRPO with explicit trust-region constraints in the latent
space. In addition, we provide theoretical insights into
its supporting role in stabilizing off-policy MBRL.

• We empirically validate TD-GRPC on the locomotion
suite of HumanoidBench [33], demonstrating signif-
icant improvements in sample efficiency and policy
robustness across a set of humanoid locomotion tasks.

II. RELATED WORK

Temporal-Difference Model Predictive Control: Hu-
manoid locomotion poses unique challenges in control due
to its high-dimensional continuous action spaces, unstable
dynamics, and complex contact behaviors from the envi-
ronment [34]. TD-MPC has demonstrated its potential to
address these difficulties by combining the short-horizon
planning strategies of MPC-based approaches alongside RL’s
sample-efficient, value-driven adaptability. Through this line
of research, notable works [10], [11], [26] have revealed
that incorporating TD learning into MPC-based methods
allows for learning flexible value functions without the need
for meticulously designed cost functions. In particular, TD-

MPC2 [11] extends the vanilla TD-MPC framework [26] by
learning more scalable latent world models for continuous
control, mitigating compounding model errors, and stabi-
lizing planning. These insights are critical for humanoid
locomotion, where model inaccuracies can rapidly destabilize
gaits. Thus, by integrating TD learning with MPC-styled
control paradigms, modern frameworks enhance sample ef-
ficiency, robustness to modeling errors, and adaptability to
high-dimensional motor tasks, making them well-suited for
complex humanoid behaviors. Our work further extends
by algorithmically improving stability and data efficiency
through GRPO, similar to language models, and with an ad-
ditional explicit trust-region constraint for rolled-out policies
from the latent representations.

Policy Constraint for Off-Policy Learning: Policy mis-
matching for robot learning, especially for humanoid lo-
comotion, remains a fundamental challenge in off-policy
learning, which is highly exposed to shifts between the
learned rolled-out actions and TD targets. Moreover, the
accumulation and compound of bootstrapping errors further
induce cumulative errors and poor generalization [35], [36].
Offline-policy RL methods have greatly improved policy
learning from fixed datasets. Previous works in this scope
handled the distributional shifts by explicitly regularizing
the learned policies towards the expert policies [35], [37].
In contrast, others [28], [38] employ importance sampling
techniques to correct for out-of-distribution queries. Alter-
native approaches, such as in-sample learning [29], [39],
recover reliable policies implicitly by restricting updates to
observed actions, bypassing explicit distribution constraints.
The off-policy challenge is also critical in MBRL when
leveraging policy or value priors for planning. For instance,
LOOP [10] proposes actor regularization control, introducing
a conservatism mechanism during planning to stabilize on-
line learning. Unlike these methods, our approach enforces
distributional constraints directly on the policy prior without
altering the planner, enabling greater flexibility in planning
while preserving stability and fast policy updates.

To recap, we compare attributes between our proposed
method and prior model-free and model-based approaches in
Tab. I on policy constraint and optimization alongside model
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Fig. 2: Overview of TD-GRPC for Humanoid Locomotion: Starting from an initial state s0 encoded into latent state z0 with an encoder
hθ , a latent dynamics model dθ takes an action at and the latent state zt to predict the next latent state zt+1 across H steps of MPPI
planning horizon. In each step, the reward, Q-value, and action are estimated via the MLPs Rθ , Qθ , and πθ , enabling latent-space planning
with TD targets. At each state, sampled groups of actions are rolled out to evaluate Q-values, which are used to compute softmax-based
advantage scores Ag of the gth group. These scores are then used in the GRPC objective to guide the policy toward high-value actions
while minimizing variance. To prevent excessive policy shifts, a trust-region constraint is imposed via a KL divergence penalty between
the current and a prior MPPI-derived policies, enforcing residual learning with bounded policy divergence.

learning objectives, value function learning, and use cases.

III. TEMPORAL DIFFERENCE LEARNING WITH GROUP
RELATIVE POLICY CONSTRAINT

A. Problem Formulation

Any humanoid locomotion task can be modeled as an
infinite-horizon Markov Decision Process (MDP) character-
ized as M = (S,A,P, r, γ), with S is the state space, A is
the action space, P : S × A → S is the dynamics function,
r : S ×A → R is the reward function, and γ ∈ (0, 1] is the
discount factor. The problem is to learn the parameters θ for
the policy network Πθ : S → A that continuously controls
the robot with optimal state-based actions by maximizing the
discounted cumulative rewards along a trajectory Γ:

Jπ = EΓ∼Πθ

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where Γ = (st, at) with each action at is sampled from
the policy network Πθ(st), and st = P(st−1, at−1) is the
transitional state based on the previous state and action.

Traditional model-free methods primarily focus on learn-
ing this policy directly, but they usually require abundant
training data. On the other hand, model-based methods can
be more sample-efficient as a learned dynamics model is used
to simulate outcomes. Still, they often struggle with planning
over long horizons due to inaccuracies in the model and
high computation costs. Due to these, Hasen et al. [11], [26]
proposed the integration of a sampling-based MPC method,
such as MPPI [40], as a local trajectory optimizer for short-
horizon planning using a learned latent dynamics model, and
then extended it with a value function that predicts future
returns. Action sequences of length H are sampled as latent
trajectories generated by the learned dynamics model, and
estimate the total return ϕΓ of a sampled trajectory Γ:

ϕΓ = EΓ

[
γHQθ(zH , aH) +

H−1∑
t=0

γtRθ(zt, at)

]
, (2)

where zt = hθ(st) is the latent representation that selectively
captures the relevant dynamics of the state st, rather than all
observation dimensions, zt = dθ(st−1, at−1) represents the
next latent representation under the latent dynamics model
dθ, r̂t = Rθ(st, at) and q̂t = Qθ(st, at) denote the predicted
reward and value under MLPs with at ∼ N (µt, σt) describes
the trajectory distributions in Eq. 2, which are expressed as:

µt =

∑k
i=1 ΩiΓ

∗
i∑k

i=1 Ωi

, σ2
t =

∑k
i=1 Ωi(Γ

∗
i − µj)2∑k

i=1 Ωi

, (3)

where Ωi = exp(τϕ∗
Γ,i), τ is a temperature parameter, and

Γ∗
i denotes the ith of top-k trajectory corresponding to return

estimate ϕ∗
Γ. In the RL-based robot learning context, Eq.

2 can therefore be called as an H-step look-ahead policy,
where the RL-based planner iteratively maximizes the cost
(reward) of the first step of the planning horizon until the
learning objective for locomotion is accomplished.

B. TD Learning with Group Relative Policy Constraint

1) Policy Constraint as Residual Learning: In TD-MPC2
[11], the value function is learned using approximate policy
iteration, similar to conventional off-policy RL methods. To
further understand how various sources of approximation
error influence the overall performance of the H-step look-
ahead planner policy, we look into Lemma 3.1 from [41],
which characterizes the asymptotic sub-optimality of the
planner-induced policy µk in terms of the value approxi-
mation error of the policy πk, the model prediction error in
total variation distance, and the planner sub-optimality.

Lemma 3.1 (Singh and Yee [41]): Suppose we have a
value function V π(s) = Eπ [

∑∞
t=0 γ

tr(st, at) | s0 = s] such
that maxs|V ∗(s)−V̂ (s)|≤ εv . The performance of the 1-step
greedy policy πV̂ is bounded by:

1− γ

2γ

∣∣∣Jπ∗
− JπV̂

∣∣∣ ≤ εv

Following Theorem 1 in [10], we assume that the nominal
policy πk is obtained through approximate policy iteration,



Algorithm 1: TD-GRPC
Input : T : trajectory length, H: planning horizon

of MPPI, G: number of groups, S: number
of iterations, D: latent buffer

1 function td grpc training(T , H , G, S, D)
2 while training do
3 // collecting trajs using latent-space MPPI
4 for t = 0, . . . , T do
5 at ∼ Πθ(hθ(st))
6 (st+1, rt) ∼ P(st, at),Rθ(st, at)
7 D ← D ∪ (st, at, rt, st+1)
8 for step = 0, . . . , S do
9 // H-step sampling from latent buffer

10 {st, at, rt, st+1}gt:t+H ∼ D for G groups
11 µG, σG = compute moments(at) (Eq. 3)
12 zt = hθ(st) if st is the first observation
13 for i = t, . . . , t+H do
14 zi+1 = dθ(zi, ai) (Eq. 10a)
15 r̂i = Rθ(zi, ai) (Eq. 10b)
16 // group sampling & policy constraint
17 for g = 1, . . . , G do
18 âgi ∼ πθ(zi)
19 ε = (âgi − µG)/σG

20 âgi ← threshold(âg
i , ε) (Eq. 4)

21 q̂gi = Qθ(zi, âgi ) (Eq. 10c)
22 Ag

i = softmax(q̂g
) (Eq. 5)

23 L(i)
π = 1

G

∑G
g=1 A

g
i log πθ(â

g
i | zi)

24 Lπ = 1
H

∑t+H
i=t

[
L(i)
π + βLKL

]
(Eq. 9)

25 θ ← θ − η∇θLπ

and the resulting planner policy at the kth iteration is denoted
as µk = πH,k. Let the value approximation error be bounded
as ∥Qk − Qπk∥∞≤ εk, the model approximation error be
εm = maxs,a DTV(P || P̂) with DTV as total variation
distance, and the planner sub-optimality be εp,k. Let the
reward function be bounded as r(s, a) ∈ [0, Rmax], and
define the upper bound of the value function as Qmax =
Rmax/(1 − γ). Therefore, the planner’s sub-optimal policy
performance that satisfies the following uniform bound:

lim sup
k→∞

1− γH

2
|V ∗ − V µk | ≤

lim sup
k→∞

[
E(εm, H, γ) +

εp,k
2

+
γH(1 + γ2)

(1− γ)2
εk

]
,

where the model error constant E is defined as:

E(εm, H, γ) = Rmax

H−1∑
t=0

γttεm + γHHεmVmax.

Thus, with policies π, π′ ∈ Π and the reward’s upper
bound is Rmax, the policy divergence is lower bounded by
the performance gap as the following expression:

(1− γ)2

2Rmax

∣∣∣Jπ − Jπ′
∣∣∣ ≤ max

s
DTV (π′ || π)

To ensure stable policy updates in high-dimensional and
sensitive control environments, we impose a trust-region con-
straint on the policy learning process with Kullback–Leibler
(KL) divergence between roll-out and reference policies.
Specifically, we constrain the updated policy π to remain
close to a reference or prior policy πold by imposing
the following divergence condition DKL(π || πold) ≤ ε,
where ε is a small adaptive threshold, enforcing a residual
learning objective, encouraging the policy to improve upon
the previous iteration while limiting drastic changes [42],
[43]. Moreover, it mitigates the risk of destabilizing learned
behaviors, critical in continuous control settings, especially
for locomotion skills.

In practice, we implement this constraint as a policy
constraint loss LPC under the Lagrangian version [44]:

LPC = max {DKL(π || πold)− ε, 0} , (4)

2) Group Relative Policy Constraint: We adopt and im-
prove GRPO [32] to enhance action group-based explicit
advantage refinement. Specifically, GRPO enhances entropy-
regularized policy gradient methods by leveraging group-
wise action comparisons, enabling the policy to learn from
relative action preferences rather than relying on potentially
noisy absolute value targets. In standard actor-critic methods,
policy gradients are directly scaled by absolute Q-values
or advantage estimates, which may be sensitive to reward
scaling and value estimation errors. These limitations become
especially pronounced in long-horizon tasks such as robotic
locomotion. GRPO addresses this issue by constructing a
relative preference distribution across sampled groups.

Formally, at each state s, a set of G actions {a1, . . . , aG}
is sampled, and their Q-values {q1, . . . , qG} are computed.
These are used to define softmax-based advantage scores:

Ai(q) =
exp(qi/τ)∑G
j=1 exp(qj/τ)

, (5)

where q = Qθ(s, ai) denotes the estimates, and τ is a
temperature parameter and 0 ≤ Ai(·) ≤ 1 as its property.

As {ai}Gi=1 is a group of G actions sampled from a policy
πθ(s) at the state s with ri = rθ(s, ai) and qi = Qθ(s, ai) are
the reward and estimated value for each action, respectively,
we assume that ||∇θ log πθ(a | s)||= C, and qi, ri are
bounded above with ∀a ∈ A and ∀s ∈ S. We obtain:

Var [∇θLsoftmax] ≤ Var [∇θLstd-norm] , (6)

with Lsoftmax and Lstd-norm are the softmax-based and standard
normalized advantage scores, respectively. Additionally, the
normalized scores are unbounded, but the advantage scores
are bounded in the range of 0 to 1, the variance of gradient
of Lsoftmax is thus smaller than that of Lstd-norm:

||∇θLsoftmax|| is bounded, ||∇θLstd-norm|| is unbounded (7)

yields more stable policy updates at some constant C that
asymptotically bounds ||∇θ log πθ(a | s)||. Two keys favor
softmax-based over normalized advantages. First, their out-
puts lie between 0 and 1, limiting the impact of outliers.



Fig. 3: Episode Returns of TD-GRPC and Baselines on H1–2 in Humanoid Locomotion Tasks: TD-GRPC achieves rapid convergence
over others in standing, walking, running, sitting, navigating through poles, hurdling, and sliding tasks, while it performs worse in crawling
tasks. In general, TD-GRPC shows slightly better data-efficiency than TD-M(PC)2 and significantly better sampling-efficiency than SAC and
TD-MPC2, alongside the fact that TD-GRPC outperforms TD-MPC2 and SAC on many tasks quantitatively. Nevertheless, all benchmarked
algorithms fail to accomplish more challenging tasks, such as stair-climbing and balancing on a ball-board platform.

Meanwhile, normalized advantages induce large magnitudes
under noise, leading to high-variance gradients. Second,
policy gradients scale with the advantage values. If the
advantage is very large or small, the gradient steps are dispro-
portionately unstable. Therefore, softmax-based advantages
smooth out extreme values and act like a soft attention
mechanism, giving more stable updates.

With the group relative weights in Eq. 5 and based on Eq.
6 and Eq. 7, the improved GRPO objective is defined as:

LGRPO
π (θ) =

1

G

G∑
i=1

Ai(q) log πθ(ai | s) (8)

where µk denotes the behavior policy at kth iteration from
the buffer D obtained from Eq. 3. The KL constraint ensures
the updated policy remains within a trust region of π. The
overall policy objective combines Eq. 4 with Eq. 8:

Lπ(θ) =
1

G

G∑
i=1

Ai(q) log πθ(ai | s))︸ ︷︷ ︸
improved GRPO

+β logµ(a | s)︸ ︷︷ ︸
policy constraint

, (9)

where β is a weighting coefficient controlling the penalty
strength. The second term of Eq. 9 imposes a residual-style
regularization equivalent to the trust-region [43].

Meanwhile, the latent dynamics dθ, encoder hθ, reward
network Rθ, and value network Qθ are concurrently opti-
mized by the following model objective:

L(θ; Γi) = ∥dθ(zi,ai)− hθ(si+1)∥22 (10a)

+ ∥Rθ(zi,ai)− ri∥22 (10b)

+ ∥Qθ(zi,ai)− [ri + γQθ(zi+1, πθ(zi+1))]∥22 (10c)

The training procedure with temporal difference learning
and group relative policy constraints is summarized in Alg.
1 along with the pipeline shown in Fig. 2. Meanwhile, the

inference process remains the same as in TD-MPC [26] with
cross-entropy method [45] on rolled-out learned policies.

IV. EXPERIMENTAL RESULTS & ANALYSIS

We evaluate our proposed method on HumanoidBench
[33] with 10 locomotion tasks, including standing, walking,
running, sitting on a chair, crawling under a tunnel, navigat-
ing through poles while avoiding collision, hurdling, climb-
ing stairs, sliding, and balancing on a ball-board platform, on
the 26-DoF Unitree H1-2 humanoid with two legs (6-DoF
each ×2) and two arms (7-DoF each ×2), which is more
dynamically flexible compared to H1 with 21 DoFs. While
training, we also include the hands in the robot’s model to
ensure that the learned policies consider both hands’ mass,
although the robot does not encounter manipulation tasks.
Additionally, H1-2 weighs about 70 kg compared to H1’s 47
kg, presenting challenges for learning body dynamics due to
its significantly heavier build. For comparison, we select the
following three state-of-the-art RL methods as baselines:

• Soft Actor-Critic (SAC) [7]: a model-free, off-policy
RL algorithm with maximum entropy RL [46].

• TD-MPC2 [11]: the state-of-the-art MBRL that com-
bines MPC with TD learning for diverse continuous
control tasks in the DeepMind control suite [47].

• TD-M(PC)2 [12]: the most recent variant of TD-MPC2
for humanoid locomotion that utilizes KL-regularized
policy learning to overcome value overestimation..

A. Quantitative Comparisons
As shown in Fig. 3, we compare the episode returns TD-

GRPC against the baselines on the humanoid locomotion
tasks mentioned. All algorithms are run with the planning
horizon H of 3, size of latent buffer D of 1, 000, 000,
discount factor γ of 0.995, and learning rate of 0.0003 on an
AMD Ryzen 9 7950X3D CPU and an NVIDIA RTX 4090
GPU. For TD-GRPC, we set the number of groups G as 3.
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Fig. 4: Behavioral Analysis of H1-2 in Humanoid Locomotion Tasks: (a) Walking and Running Backwards: walking direction
comparisons between TD-MPC2, TD-M(PC)2, and our approach. TD-GRPC directs H1-2 to move forward, but TD-MPC2 and TD-M(PC)2

make it walk/run backward. (b) Sitting Stability: sitting pose comparisons between TD-MPC2, TD-M(PC)2, and TD-GRPC. TD-GRPC
achieves optimal sitting leg pose. All frames are taken from the last state of the evaluation episode. (c) Crawling Pose and Height: The
crawling pose and height produced by TD-MPC2 are better than those generated by TD-M(PC)2 and TD-GRPC. (d) Balancing is Hard for
Heavy Body: Due to its heavy body weight, all three methods suffer difficulties in keeping H1-2 balance itself on the platform. However,
TD-GRPC can balance the robot for a short period; meanwhile, TD-MPC2 and TD-M(PC)2 make the robot’s legs flick the board away
and fail immediately. (e) Navigating through Standing Poles: TD-M(PC)2 and TD-GRPC induce a standing behavior without navigating,
while SAC and TD-MPC2 produce valid motions but collide with poles and fail. (f) Arm-Balancing Helps Locomotion: Freezing the upper
body of H1-2 makes walking and running unstable. This experimental finding is evaluated with both TD-M(PC)2 and TD-GRPC.

1) Standing: TD-GRPC effectively trains H1-2 to stand
upright and stably faster than TD-MPC2 and TD-M(PC)2.
Both TD-GRPC and TD-M(PC)2 surpass the reward of 800.
Meanwhile, SAC and TD-MPC2 fail to teach the robot to
stand within 200, 000 iterations.

2) Walking: As with the standing task, H1-2, when trained
with TD-GRPC, can walk more rapidly than other baselines.
Both TD-M(PC)2 and TD-GRPC gain the reward of more
than 750 within 500, 000 iterations, but TD-GRPC allows
the robot to walk at 400, 000th iteration. SAC and TD-MPC
fail to enable the robot to walk during the same training
period. However, the walking behavior among the algorithms
is further analyzed in Sec. IV-B.1.

3) Running: The running task is defined analogously to
the walking task, but with a goal speed higher than walking
speed. While SAC and TD-MPC2 fail to generate proper
running policies in 450, 000 iterations, TD-M(PC)2 and TD-
GRPC successfully enable the H1-2 to run, but TD-GRPC
converges faster than TD-M(PC)2 does. The illustrative be-
havior for this task is presented in Sec. IV-B.1.

4) Sitting: Similar to the standing and walking tasks, TD-
GRPC continues showing faster convergence than SAC, TD-
MPC2, and TD-M(PC)2 in learning to sit on the chair. Unlike
other algorithms, the experiments also confirm that the robot
can sit steadily in a good pose with TD-GRPC, as described
in Sec. IV-B.2. Both TD-M(PC)2 and TD-GRPC-generated
policies exceed the reward of 600 within 200, 000 iterations.

5) Crawling: SAC and TD-MPC2, on the other hand,
show their superior capabilities to get the robot to crawl
through the tunnel with the rewards of over 800 within
300, 000 iterations. TD-M(PC)2 and TD-GRPC get the robot
to crawl, but not enough to pass to the other end of the tunnel;
their poses are visually explained in Sec. IV-B.3.

6) Balancing: The reward learned by TD-MPC2, TD-
M(PC)2, and TD-GRPC are approximately similar on the
H1-2. The same phenomenon applies to SAC and TD-MPC2.
This experiment is considered a hard task for H1-2 due to
its heavy weight; the behavior is provided in Sec. IV-B.4.

7) Navigating through Standing Poles: The rewards
gained by TD-M(PC)2 and TD-GRPC are higher than those
achieved by SAC and TD-MPC. Within 500, 000 train-



TABLE II: Solving ability of SAC [7], TD-MPC2 [11], TD-M(PC)2 [12], and our proposed method, TD-GRPC, of locomotion tasks on
H1-2 in HumanoidBench [33]: ✓ for tasks that are solved sufficiently, ● for tasks that need additional mild refinements for success,
and ✗ for tasks that need further intensive policy-constraint learning of whole-body and selective environmental dynamics features.

Method
Task Locomotion Tasks in HumanoidBench Environment [33]

stand walk run sit crawl pole hurdle stair slide balance

SAC [7] ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗ ● ✗

TD-MPC2 [11] ✗ ✗ ✗ ● ✓ ✗ ✗ ✗ ● ✗

TD-M(PC)2 [12] ✓ ● ● ● ● ● ✗ ✗ ● ✗

TD-GRPC (Ours) ✓ ✓ ✓ ✓ ● ● ● ✗ ● ●

ing iterations, TD-GRPC again shows its convergence well
beyond TD-M(PC)2, alluding that the task is concluded.
Nevertheless, the robot’s behaviors from TD-M(PC)2 and
TD-GRPC are distinct from those performed by SAC and
TD-MPC2, as studied in Sec. IV-B.5.

8) Stair-Climbing: Learning whole-body dynamics is in-
tricate for all baseline methods and our proposed method
in stair-climbing tasks. Unlike walking or running, climbing
stairs requires more than locomotion on an even surface; the
robot has to change its foot height iteratively during stepping
up. All methods struggle at a reward value of 200.

9) Hurdling: Hurdling is a running variant; however, the
robot must jump over the tracks while running. During
this task, TD-GRPC can let the robot jump over one track
without collision, while others generate sub-optimal actions
and fail. Evidently, TD-GRPC promotes the robot to learn
as it produces higher learning reward curves than other
methods, surpassing the reward threshold of 100.

10) Sliding: Similar to the stair-climbing objective, slid-
ing requires the robot to climb up a hill-like landscape
without needing foot-stepping behavior. All benchmarked
methods and TD-GRPC are able to learn this task at the
reward of 200, and generate physically-meaning actions (i.e.,
knee-walking) to achieve the task’s goal. However, the robot
can only go up one hill and not go to other hills.

B. Qualitative Comparisons & Behavioral Analysis

Not just upon task completion, we outline selected hu-
manoid locomotion tasks and analyze our findings on the
robot’s behavior as lessons learned for humanoid locomotion.

1) Walking & Running Backwards: While TD-MPC2 and
TD-M(PC)2 perform well on H1, they fail to correct walking
and running poses on the H1-2, where they both make the
robot walk or run backward with its head looking in the
opposite direction. SAC is neither able to run nor walk
the H1-2 properly. TD-GRPC successfully enables forward
locomotion for walking and running, as shown in Fig. 4a.

2) Sitting Stability: The robot is able to sit stably on the
chair with limited jerky motions while training with TD-
GRPC, but not TD-MPC2 and TD-M(PC)2. In addition, the
leg poses are learned to be put appropriately when sitting, as
shown in Fig. 4b. While trained with SAC and TD-MPC2,
the robot can not sit stably on the chair.

3) Crawling Pose & Height: Righteously crawling with
proper poses is more challenging for TD-M(PC)2 and TD-
GRPC. As shown in Fig. 4c, they both stuck at sub-optimal

poses and could not crawl to the other end of the tunnel,
failing to complete the tasks. On the contrary, TD-MPC2
completes its tasks with good body posture and head height.

4) Balancing is Hard for Heavy Body: Compared to H1,
which is lighter, H1-2 suffers from different body dynamics
to keep itself balanced on the ball-board platform. We find
that TD-GRPC allows the robot to balance for a period of
time before failing. In contrast, TD-M(PC)2 and TD-MPC2
fail to generate physical behavior for balancing from the
beginning: their legs flick the board away instead of standing
on it, as illustrated in Fig. 4d.

5) Navigation through Standing Poles: Despite the high-
return rewards of approximately 600 from TD-M(PC)2 and
TD-GRPC, the robot’s behavior through these algorithms
differs from when learning with SAC and TD-MPC2, where
the task requires the robot to move forward while avoiding
collision with the poles to gain rewards. Meanwhile, the
policies trained on SAC and TD-MPC2 tell the robot to go
to the side of the room and follow the room edge, effectively
avoiding collision as a safe strategy. However, the robot
collides with the poles and falls, unable to accomplish the
task. TD-M(PC)2 and TD-GRPC direct the robot to move
forward, go back, and repeat such actions until the episode
ends. As a result, the robot does not move much, staying at
the same spot, but is still gaining rewards (Fig. 4e).

6) Arm-Balancing Helps Locomotion: Throughout lo-
comotion experiments on HumanoidBench, we observe
that the robot arms are “ill-posed” and not in optimal
states. While investigating such behaviors, we find that
arm-balancing helps humanoid locomotion despite random
arm movements while executing tasks. For instance, we
lock both arms at fixed positions, and make it learn a
locomotion task (e.g., walking, running). Consequently, the
robot could not accomplish the tasks when learning with
different algorithms. Fig. 4f reflects their intricacy and barely
complete the tasks, where the robots unsteadily fall during
their learning episodes. Constraining these arms’ poses could
further benefit robot actions in real-world scenarios.

C. Demonstration

Besides solving abilities of algorithms learned from quan-
titative and qualitative results in Tab. II, the demonstration
video of our experiments can be seen in the supplementary
document for comparisons of H1-2’s performance across
locomotion tasks between benchmarked algorithms.



V. CONCLUSIONS

We presented TD-GRPC – a framework incorporating
GRPO, explicit policy constraints, and TD learning for stable
policy updates during learning humanoid locomotion tasks.
Via this RL-based method, we achieve robust and sample-
efficient learning by constraining policy rollouts in latent
space without restricting planner flexibility. Our results on
HumanoidBench with the 26-DoF Unitree H1-2 humanoid
demonstrate that TD-GRPC surpasses existing baselines in
stability and quantitative and qualitative performances and
sets a foundation for scalable, constraint-aware RL in high-
dimensional complex humanoid control.
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