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Abstract

Large Language Models (LLMs) enable planning from natural language instruc-
tions using implicit world knowledge, but often produce flawed plans that require
refinement. Instead of directly predicting plans, recent methods aim to learn a
problem domain that can be solved for different goal states using classical planners.
However, these approaches require significant human feedback to obtain useful
models. We address this shortcoming by learning hierarchical domains, where low-
level predicates and actions are composed into higher-level counterparts, and by
leveraging simulation to validate their preconditions and effects. This hierarchical
approach is particularly powerful for long-horizon planning, where LLM-based
planning approaches typically struggle. Furthermore, we introduce a central error
reasoner to ensure consistency among the different planning levels. Evaluation
on two challenging International Planning Competition (IPC) domains and a long-
horizon robot manipulation task demonstrates higher planning success rates than
state-of-the-art domain synthesis and LLM-modulo planning methods, while con-
structing high-quality models of the domain. Resources, videos and detailed exper-
iment results are available at https://claudius-kienle.github.io/lodge.

1 Introduction

Task planning has a long-standing history with applications in many domains, from flight planning
[1, 2], logistics [3], to robot programming [4–6]. With the success of LLMs, recent work has also
explored various ways to integrate them into task planning, among others to specify the task in natural
language instead formal planning languages, or to access their world knowledge to automatically
fill under-specified descriptions or clarify ambiguous instructions [7, 8]. However, the unreliability
of LLMs limits their effectiveness as task planners [9]. In particular, long-horizon plans often are
unreliable, as the LLM’s accuracy on extended action sequences degrades significantly, ultimately
resulting in educated guesses by the LLM [7, 10]. This has led to hybrid approaches, where the LLM
translates between natural language and formal language [11, 12], combined with classical planners
for planning, or combining LLM-based planning with verification mechanisms to automatically detect
and correct errors in generated plans [8]. However, integrating planners in task planning requires
defining the planning domain, which describes the world in terms of objects, their properties, the
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actions available to the agent as well as possible constraints. These domains are challenging to write
correctly, even for humans. Methods that learn a domain model currently still require significant
human feedback to validate or correct them [13].

To address these challenges, we propose a novel approach for hierarchical task plannning and learning
of domain models with grounded execution (LODGE). LODGE generates plans from natural language
instructions and learns an explicit domain model during planning. This model is iteratively refined
and used to suggest plan candidates, preventing the repeated suggestion of plans that make the same
wrong assumptions about the domain. LLMs often struggle to generate long-horizon plans [9, 14]. To
address this, we propose to hierarchically decompose planning and domain model learning. We first
generate an abstract domain and plan that is subsequently decomposed into sub-plans. Hierarchical
decomposition enables partial re-planning of sub-plans while maintaining alignment with a common
domain across hierarchy levels, as well as reusing previously learned sub-plans cached in storage.
Additionally, we verify the feasibility of sub-plans in simulation and correct symbolic state changes
with observed state-transitions in simulation. A central error reasoner addresses feasibility violations
and triggers re-planning of affected sub-plans. With that, our contributions are as follows:

• Joint Planning and Domain Learning: We introduce a framework for joint planning
and domain model learning. It learns from planning mistakes by evaluating environment
feedback about task plans and correcting the domain model and task plan during planning.

• Task Decomposition: We propose a hierarchical decomposition strategy, orchestrated by a
central LLM-reasoning mechanism that simplifies complex tasks into manageable sub-plans.

• Feasibility Verification and Retracting: We introduce a motion verification system that
tests plan feasibility in simulation, paired with a centralized error reasoner that analyzes
verification failures to determine their causes and suggest fixes to either domain models or
skill mappings at specific hierarchy levels.

2 Related Work

We will now discuss classical AI planners as well as their integration with LLMs for planning,
problem translation or domain learning.

AI Planners Automated planning addresses the problem of generating action sequences to achieve
desired goals. One of the most influential planning approaches was STRIPS [15], which introduced a
formal representation of actions and state transitions [16, 17]. Building on STRIPS, the Planning
Domain Definition Language (PDDL) [18, 19] was introduced to provide a standardized framework
to represent planning problems and express planning tasks. Alternative approaches, such as Answer
Set Programming (ASP) [20] and Linear Temporal Logic (LTL) [21, 22], are tailored for temporal, or
reactive tasks. Several hierarchical planners have been proposed, which decompose the task goal into
increasingly fine-grained sub-goals for short-horizon subtasks [23–28]. Hierarchical decomposition
aids long-horizon planning but requires handling dependencies between sub-plans [29, 30].

LLMs as Planners Early work leveraged LLMs to generate feasible plans directly from natural
language descriptions with plans formulated in natural language [4, 31] or structured with coding
languages [6, 32–35]. Developing valid plans requires geometric reasoning, where the LLM has to
interpret spatial relations between objects. Liang et al. [6] introduced hierarchical decomposition,
allowing LLMs to define and later implement unknown functions. Researchers have also explored
defining the task for the LLM via formal planning languages [36] to avoid the ambiguities of
natural language task descriptions. The LLM then has to combine geometric reasoning from the
natural language instruction, with symbolic reasoning, where abstract representations define the
domain. For a more comprehensive survey, we refer to [37, 38]. While most LLM-based methods
benefit from the flexibility of natural language instructions and avoid rigid planner syntax, they lack
correctness guarantees. Validating such plans is challenging, and even state-of-the-art LLMs struggle
to efficiently plan simple planning problems, as they lack explicit reasoning mechanisms and rely on
pattern recognition rather than structured planning [39, 40, 10, 41, 42, 14, 43, 36].

LLMs as Problem Translators for Planning Recent research avoids reliance on LLMs for actual
planning and instead combines LLMs with classical planners. One common approach is to translate
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natural language instructions into formal problem definitions with an LLM. A classical planner then
computes a plan given the problem definition and a predefined domain model [12, 36, 44]. The
syntax and semantics of problem definitions can be verified by external verifiers [45] or self-critiqued
by the LLM [44]. Silver et al. [46] use an LLM to write a program for a given PDDL domain
that can efficiently solve new tasks. Instead of using classical planners for planning, LLMs can
also be prompted to plan on the generated problem and predefined domain. LLM-planners have
the advantage of providing feedback via LLM-generated plans, whereas classical planners give no
feedback when a task is unsolvable [36]. The correctness of LLM-generated plans can be verified
with external tools [44, 8] or task-specific critiques [8]. However, such hybrid approaches struggle
with long-horizon planning and research often considers short plan sequences with not more than 10
actions [44]. Even recent LLMs struggle to propose good plans for complicated domains, making
plan refinement inefficient. Additionally, these methods assume predefined domain models, which
are by themselves hard to construct for many domains.

Learning Domain Models with LLMs Constructing domain models is complex, but crucial for
autonomous planning systems. The construction with LLMs is particularly promising for open-world
domains, but remains underexplored [47]. Some approaches verify generated domains with self-
critique or classical tools [48, 49], while others generate multiple domain candidates and evaluate them
using metrics or environment interaction [50–52]. Guan et al. [13] propose an LLM-based framework
to construct PDDL planning domains by translating predefined skills into action definitions. Following
the construction, they iteratively correct the domain with human feedback by translating between
natural language and formal descriptions. Oswald et al. [53] translate natural language descriptions
of planning domains to PDDL with LLMs, with focus on creating high-quality reconstructions of
ground-truth PDDL domains. Mahdavi et al. [51] avoid human feedback by evaluating the correctness
of plans generated from the domain. The authors propose to sample N domains with an LLM and
evaluate each domain model by evaluating the correctness of plans sampled from the domain.

LODGE learns domain models in conjunction with task planning and avoids human feedback during
planning. In contrast to Mahdavi et al. [51], we propose a targeted refinement of domain models
after interacting with the environment, instead of measuring the correctness of sampled domains and
selecting the best performing domain. Unlike Oswald et al. [53], our work does not assume access to
ground truth domains during inference, making our approach more applicable to novel domains.

3 Problem Statement

We focus on long-horizon sequential plans that require geometric and symbolic reasoning. Given a
natural language task instruction I , our objective is to plan a feasible sequence of skill π1, . . . , πk

that accomplishes the intended task. The skills πi[V] are part of a predefined skill library πi ∈ Π
and parameterized by a set of variables V that can be grounded with the known objects oi ∈ O
that exist in the domain. The implementation of these skills is unknown and only a description and
parameter signatures are accessible. We assume a closed-world setting, where the initial state s1
is fully known and includes all relevant objects and their states. The skills can be executed in a
simulated environment S(πi(o1, . . . , oj)) to determine successful execution and optionally return a
short description of the occurred exception during execution. We denote a sequence o1, . . . , oj by
o1:j . Additionally, we assume a predicate library Fpred, where each predicate pi[V] ∈ Fpred encodes
a property of the current state s, such as grasps(obj) or stacked(obj1, obj2). Each predicate pi has
a corresponding classifier Cpi(s; o1:j) with access to a simulation that evaluates whether pi with
objects o1:j holds in state s. We write the evaluation of all predefined predicates Fpred on state s as
CFpred(s). We assume deterministic execution, where applying a sequence of skills π1:k in the same
environment and from the same initial state s1 always results in the same final state sk+1.

The ground truth domain model D = ⟨F ,A⟩ consists of fluents F , which define the state variables,
and actions A an actor can perform. Every action a ∈ A consists of preconditions prec[V] that define
when a can be executed, and effects eff[V] that define the effect of a on the state. An action is said to
be grounded if it is instantiated with objects oi for each variable V , otherwise we refer to it as a lifted
action [13]. We assume a partially defined domain Dpred = ⟨Fpred ⊆ F , []⟩ comprising the predefined
predicates. We distinguish between skills π and actions a: Actions are part of the domain model and
are used for planning. Skills on the other hand are the low-level primitives the actor can execute on
the state. We later map an action a to one or more skills. LODGE leverages an LLM for various
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Figure 1: LODGE: A framework for joint task planning and domain model learning.

sub-problems, including action decomposition and translation of lifted actions into predefined skills.
We use a temperature of 1 for all prompts and zero-shot prompting.

4 Hierarchical Task and Motion Planning with Joint Domain Model Learning

We propose LODGE, a novel hierarchical task planner for long-horizon tasks described in natural
language that simultaneously constructs and refines an explicit model of the domain during planning
(see Fig. 1). We propose to decompose (see Sec. 4.1) task planning and domain model learning
hierarchically, which reduces the complexity of planning across hierarchy levels and enables more
robust planning of long-horizon task sequences. We ensure the bidirectional alignment (see Sec. 4.2)
of plans and domains across hierarchy levels, which is required to combine the generated subplans at
different hierarchy levels to one valid hierarchical plan. Subplans are validated against the domain
model, and executed in a simulated environment to verify the correctness of the domain model against
the simulation. We propose a central motion feasibility reasoner (see Sec. 4.3) that is triggered if
misalignments between the domain and simulator are detected, diagnoses them, corrects the domain,
and initiates re-planning of the affected sections of the plan.

4.1 Jointly learning hierarchical plans and domain models

Joint planning and domain model learning enables the planner to learn from planning mistakes. Given
the user instruction I , predefined domain Dpred and initial state s1, we prompt the LLM to complete
the domain D1, notably define the necessary lifted actions a1:k and define a goal state g1 that would
be needed to fulfill the instruction,

D1, g1 = LLMdomain(I, CFpred(s1),Dpred,Π).

The LLM also has access to the skill library Π containing the skills supported by the agent. The
generated domain D1 contains new actions ai and newly defined predicates pj,new /∈ Fpred. The
motion verification (Sec. 4.3) verifies that the predefined predicates for every grounded action of
a candidate plan hold. Newly added predicates, on the other hand, are not assessed during motion
verification, since no corresponding classifier Cpnew is available. The predicted goal state g1 and
domain D1 are checked for syntax and semantic errors [45].

Instead of directly generating one action for each of the predefined skills Π, we explicitly instruct
the LLM to define high-level actions where needed. This significantly simplifies domain generation.
We observed that the LLM produces more accurate definitions when freely generating only a few
high-level actions, than directly generating all required low-level actions. Therefore, enforcing the
use of predefined skills at topmost or intermediate planning levels increases complexity of the domain
to generate, leading to decreased accuracy in the domains proposed by the LLM.

We use the domain model D1 and problem P1 := ⟨O, s1, g
1⟩ to subsequently generate a plan

candidate a11:k
a11:k = [a11, . . . , a

1
k] = GenPlanLLM(D1,P1).

We rely on LLM-generated plans because classical planners produce no feedback when the domain
is unsolvable. Additionally, planners can exploit flaws in the generated domain and cannot respect
weak user instructions, like temporal ordering of sub-actions [13]. However, we still speculatively

4



run a planner in parallel and, should a valid plan exist, supplement the prompt for GenPlanLLM with
the planner-generated plan as a plan suggestion. Ablation 6 inspects how using the plan found by
classical planners influences task planning performance.

Once GenPlanLLM proposes a plan candidate a11:k, we iterate over every action a1j of that plan to either
map it to one of the predefined skills πi ∈ Π or further decompose it into a sub-plan a21:n. Action
decomposition enables to plan at an abstract level for long-horizon tasks that would require long
skill sequences. Since the LLM-suggested plan candidates become less accurate with increased plan
length, decomposing the task reduces the plan lengths at every level, which improves the correctness
of plan candidates significantly.

Mapping and Translation To decide whether a lifted action a1i matches a predefined skill πj , we
prompt the LLMtranslate with the skill library Π the action a1i to propose a sequence of predefined
skills to implement a1i

π1:k = [π1, . . . , πk] = LLMtranslate(a
1
i ,Π,O).

We instruct the LLM to parameterize the skills with the variables of the action a1i where appropriate.
This results in a lifted skill sequence, that can be grounded with the objects o ∈ O given used in the
grounded action a1i . If this skill sequence consists of only one skill, we mark a1i as leaf node and start
motion verification (Sec. 4.3). We otherwise decompose a1i .

Decomposition The goal of decomposing an action a1i is to find a lower-level action sequence
a21:n = [a21, . . . , a

2
n] that implements the high-level action a1i , e.g. decomposing Grasp into Approach,

CloseGripper, and Lift. The action a1i in the action sequence causes a state transition from si before
the action to the state si+1 after the action. The preconditions of a1i are a subset of si, and the effect
defines the state change from si to si+1 [45]. To decompose a1i , we define a new problem definition

P2 := ⟨O, si, eff(si, si+1)⟩,whereby (1)
eff(si, si+1) := {p(o1:k) | p ∈ P, o1:k ⊆ O, Cp(si; o1:k) ̸= Cp(si+1; o1:k)} . (2)

Analog to the LLMdomain, the LLM is tasked to complete the domain D2, including introducing a set
of lower-level actions that are required to implement a1i

D2 = LLMdecomp(a
1
i ,P2,Dpred,Π, π1:k).

In contrast to LLMdomain, we pass the entire problem P2 and lifted action a1i , instead of the natural
language instruction I and start state s1. We additionally inject the proposed skill sequence π1:k

generated during Mapping and Translation. Passing the skill sequence helps to align the decision of
LLMtranslate with the content of decomposition.

4.2 Knowledge Preservation and Hierarchy Level Alignment

Dividing the planning problem hierarchically presents two key challenges: preserving knowledge
across different levels of abstraction and ensuring alignment between the planning problems at the
different hierarchy levels to ultimately produce a coherent hierarchical plan.

To maintain knowledge consistency, predefined predicates Fpred and objects O are retained across
hierarchy levels and made available for action decomposition. If new predicates are added during
domain generation at one hierarchy level, these predicates are also available at all lower planning
levels. Retaining the predefined predicates is crucial as the Motion Verification (see Sec. 4.3) relies
on them to verify feasibility.

Mitigating goal overshoots and side effects The decomposition of a high-level action a with
effects eff(a) generates a low-level action sequence a1:k with joint effects eff(a1:k). In order for
the high-level action to remain aligned with the low-level action sequence, the effects eff(a) must
be identical to the joint effects eff(a1:k). It holds that eff(a) ⊆ eff(a1:k), as the goal state of the
lower-level problem P equals the upper-level effects eff(a). However, the joint effects eff(a1:k) can
be a superset of the upper-level effects eff(a) such that more predicates change than initially assumed
in F . We group these predicates eff(a1:k) − eff(a) into the two groups depending on their cause:
overshoots and side effects. Overshoots are predicates that define a state change on objects that
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are parameters of the grounded action a. Side effects on the other hand describe state changes on
objects that are not listed in the parameters of the action. For example, when the high level action
pick-up(object ) has the effect grasp(object ), but during decomposition, the low-level action
sequence leads to a joint effect of [grasp(object ), door-open(drawer ), closed-gripper],
eff(a1:k) contains two predicates not given in eff(a). The predicate closed-gripper is due to an
overshoot and door-open(drawer ) a side effect of the decomposition.

These misalignments between hierarchy levels can break plan correctness at the upper level. After ac-
tion a, the upper-level state reflects eff(a), but the actual state after executing the lower-level sequence
a1:k has changed by eff(a1:k). Considering the example from above, if the action close-gripper
follows next, requiring not(closed-gripper), the plan seems valid at the upper level but fails
after decomposition because the lower-level effect sets closed-gripper to false.

We detect misalignments and prompt LLMdecomp to correct action a’s effects, aligning them with its
decomposed sequence a1:k. Fixing effect overshoots is simpler than addressing side effects, since
the side effects operate on objects not defined in the upper-level action. Addressing side effects
consequently requires the LLMdecomp to add new variables to the upper-level action. Smaller models
like GPT4o-mini handle overshoots well but struggle correcting misalignments caused by side effects.

4.3 Verifying Skills in Simulation, Reasoning about Mistakes, and Retracting

LLMdomain and LLMdecomp generate the domain model based on their world knowledge and provided
input. As a consequence, the domain model is highly contingent on the world knowledge of the LLM.
Modeling errors and the lack of planning capabilities of the LLM, thus, can result in invalid plans.
We therefore verify the plan in simulation to check its feasibility and the correctness of the domain
model.

Motion Verification Given a grounded leaf action a(o1:k), the mapped predefined skill π, and
the current state si, we first verify whether the preconditions of the action hold in the current state,
such that pred(a) ⊆ CFpred(si; o1:k). We then execute π in simulation and verify that it executed
without an error message. The simulation is in state si+1 after execution. We lastly verify that the
effects observed in simulation equal the effects of a, such that eff(a) = eff(si, si+1) (see Eq. 2). We
verify that the preconditions and effects of predefined predicates hold in the simulation. Predicates
introduced by the LLM on the other hand will not be validated as no matching predicate classifier C
exists for them. Instead, we assume custom predicates used in an action a to be defined correctly and
rely on the LLM to detect incorrectly defined custom predicates without motion verification.

Error Reasoning and Retracting A failed verification for an action ai in a plan a1:k can be
caused by an incorrectly defined domain model, a mistake in the plan candidate, or an incorrect
mapping to a predefined skill. We propose a centralized error reasoner LLMreasoner that analyzes the
occurred verification failure to determine its cause. The reasoner receives the chat history of previous
LLM calls at all hierarchy levels and a summary of the motion verification, either comparing the
expected effect given in the domain model with the observed effect given by the classifiers CFpred ,
or the occurred error message raised while executing the skill π in simulation. The reasoner then
determines the cause for the misalignment. The output of LLMreasoner is either the action ai that
should be corrected, or one of the previous skills π indicating the mapping from action to skill being
the reason for the misalignment. We also prompt the reasoner to suggest a fix, either of the action, or
the mapping. Once decided, we retract to the level that introduced the lifted action, or the mapping
and re-prompt the related LLM with the suggested fix given by the reasoner.

5 Experiments

We evaluate the effectiveness of LODGE on the IPC domains logistics and household proposed by
Guan et al. [13] in Section 5.1 and compare it against state-of-the-art domain generation approaches
as well as related task planners. We additionally apply our task planner to a long-horizon robotic
assembly task from the FurnitureBench Benchmark [54] in Section 5.2 to qualitatively evaluate its
performance.
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Domain Errors Tokens
Env Model Method # Defs # Pred # Eff # Retries In-C In-T Out

L
og

is
tic

s 4o-mini GuanL [13] 3.7 5.7 1.4 – 32k 70k 10k
LODGE (ours) 2.1 0.2 0 16 38k 128k 13k

4.1-mini GuanL [13] 1 2 0 – 19k 22k 3k
LODGE (ours) 0.3 0 0 5 28k 64k 8k

H
ou

se
ho

ld 4o-mini GuanL [13] 6.7 12.6 8.5 – 110k 399k 52k
LODGE (ours) 6.1 1.7 0 19 43k 199k 13k

4.1-mini GuanL [13] 3.8 7.3 1.3 – 118k 245k 32k
LODGE (ours) 2.5 0.8 0.2 14 65k 188k 18k

Table 1: Accuracy and efficiency of generated domain models with GuanL [13] and LODGE. We
evaluate 10 seeds of GuanL and learn the domain model for all tasks from scratch with LODGE.
LODGE produces more accurate domain models, with fewer definitions missing (# Defs), as well
as fewer errors in the actions’ predicates (# Pred) and effects (# Eff). In-C states the cached input
tokens, while In-T records the total input tokens used.

5.1 Planning Benchmark

We perform quantitative evaluation of LODGE on the IPC domains household and logistics introduced
by Guan et al. [13]. Tasks in both domains are long-horizon and the average plan has a length of
23 skills. The household domain contains 22 different skills, while the logistics domain contains 6.
Details about the two environments are given in Appendix A and in the work of Guan et al. [13].
We evaluate LODGE’s ability in learning accurate domain models as well as its ability to compute
correct plans. While we could reuse the learned domain for subsequent tasks of the same domain, we
explicitly delete learned domains and artifacts, to evaluate how robustly our approach can develop
domains from scratch. We avoid prompt caching between tasks to not influence LLM responses by
previously planned tasks. Additionally, we limit the overall number of re-planning iterations to 20.
We use the task instructions, domain descriptions and skill descriptions from Guan et al. [13]. The
definition of a predefined skill looks like the following:
def heat_food_with_pan(food: str, pan: str):

"""This action enables the robot to heat food which is heatable with a pan. The food should be
placed on the pan, and the pan needs to be placed on a stove burner before executing this action.
Note that the food is no longer pickupable after it has been heated."""

We evaluate the impact of omitting specific descriptions in Ablation 6.

Domain Learning We evaluate the correctness of the learned domains on the two IPC domains
and compare them to the domains generated by the method proposed by Guan et al. [13], referred to
as GuanL. Guan et al. construct the domain using an LLM and correct it with human feedback. We
compare our method to GuanL’s domain construction method. As we are interested in comparing the
quality of generated domains automatically with LLMs, we leave out the human feedback correction
proposed by Guan et al. [13].

We categorize the errors as either missing definitions (# Defs), e.g. predicate or action definitions, or
incorrect preconditions (# Pred) or effects (# Eff ). While Guan et al. [13] generate the entire domain
model, LODGE constructs a task-centric domain model. To compare the two domain models, we
identify the errors per task and then average them over the tasks. The errors per task are defined
by retrieving the skills required to solve the task and summing up the errors in the matching action
definitions of the domain model. To determine the robustness of both approaches, we generate the
domain with GuanL 10 times and average the results. LODGE constructs a new domain for every
new task, which naturally evaluates robustness as we do not retain domains across tasks.

Table 1 evaluates the domain correctness of LODGE with GuanL [13]. Domains generated with
LODGE have fewer missing definitions and significantly fewer mistakes in the action preconditions
and effects, particularly with GPT-4.1-mini. One failure mode of LODGE are missing actions that
are required to complete the task. This is often due to planning failures at early stages, when future
actions have not been added to the domain yet.
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Figure 2: The hierarchical planning of LODGE for the FurnitureBench lamp-assembly environment,
including decomposition of pick-up bulb and re-planning within screw-in bulb .

While excessive retrying with LLMs would gradually improve the performance, it also comes with
heavy API and compute usage. We limit LLM interactions by allowing a maximum of 20 re-planning
steps per task. Table 1 compares the token usage of our approach to GuanL and shows the average
number of re-planning iterations per task. LODGE requires moderately more tokens than GuanL [13]
in the logistics domain. The increased token usage is primarily due to many re-planning iterations
in few tasks using GPT4.1-mini, and the failed tasks for GPT4o-mini, which all used the maximum
of 20 re-planning iterations. The significantly reduced token usage of LODGE on the Household
domain is mainly due to learning the part of the domain model relevant to solve the task, while GuanL
generates the entire domain model. Note that we discard learned domains and planning artifacts
across the tasks of an environment. Retaining them would greatly reduce the token usage (see Abl. 6).

Task Planning We compare LODGE to different task planning methods to evaluate its task planning
ability. The LLM Planner baseline generates a plan sequence given natural language instruction I ,
domain description and predefined skills Π with descriptions. LLM Planner + Simulation additionally
has access to the same simulator LODGE uses to evaluate plan candidates. Simulation feedback
about plan candidates will be reprompted a maximum of 20 times such that the LLM can propose a
corrected plan. We lastly evaluate using the domains from GuanL for planning. We manually translate
natural language instructions into goal definitions using the predicates defined in the domain of GuanL
and programmatically translate the start state into the set of predicates used in the domains. We
manually correct syntax issues present in the domains of GuanL to enable planning with a classical
planner. We do not apply human feedback to correct domains [13].

Planner Type Logistics Household

LLM Planner [9] 1 / 21 3 / 24
+ Simulation 17 / 21 13 / 24
GuanL [13] 0 / 21 0 / 24
LODGE (ours) 20 / 21 13 / 24

Table 2: Planning success rate with GPT4.1-
mini

Table 2 shows the number of successfully planned
tasks on the IPC domains using GPT-4.1-mini as
LLM for all planners. LODGE outperforms the
LLM Planner and GuanL baselines. While LODGE
performs only slightly better than LLM Planner +
Simulation, our approach simultaneously learned
the domain model by interacting with the simula-
tion. LLM Planner + Simulation corrected the plans
directly and did not learn, eschewing benefits for
future planning tasks. Additionally, we found that
LODGE generates more efficient plans for planning-
heavy tasks. On the logistics domain, LODGE found plans that are four skills shorter than the plans
of LLM Planner + Simulation on the same tasks. This can be motivated by the domain model and
classical planner, which LODGE uses to sample plans. All domains generated by GuanL were still
unsolvable without human correction. Upon manual evaluation, we found that many domains used
duplicate predicates for one property of the state, e.g. appliance-on and appliance-off. The actions
often only operated on one predicate and left out the other, making the domain unsolvable.

5.2 FurnitureBench

We evaluate LODGE on the task planning for a robotics assembly task of the FurnitureBench
Benchmark [54]. The IPC domains investigated earlier are tailed to work with formal language
task planning, e.g. by defining different skills for grasping from a furniture and grasping from a
receptacle. Related work often denotes such domains as PDDL domains. Evaluating LODGE on
the FurnitureBench assembly investigates how well LODGE can plan tasks for domains with a skill
library less tailored to task planning. Additionally, while most skills in the IPC domain are only
defined when executed in the right order, causing an error message to be returned when executed in a
different state, the skills in the FurnitureBench domain are general-purpose low-level robot skills.
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Only considering the plan executability as feedback signal in such environments as in [51] cannot
help to detect modelling errors in the domain. Detecting simulation feasibility violations for this
environment therefore mostly requires to detect unsatisfied preconditions or misaligned effects rather
than errors caused during skill execution. We evaluate LODGE with GPT4.1-mini for this domain.

Figure 2 depicts the progress of planning the skill sequence to assemble a lamp, which consists
of three parts: bulb, base and hood. The Figure also depicts how the decomposition of the task
significantly reduces the plan length at the topmost layer. Additionally, the initially decomposed
grasp-part bulb is reused during its second invocation grasp-part hood , not requiring any
LLM calls to again decompose that action. A video of the planning, including the re-planning until a
valid plan was found, is available on the website of the paper.

6 Ablation

DD Planner GPT4o-mini GPT4.1-mini

✓ ✓ 7 / 21 12 / 21
✓ ✗ 1 / 21 11 / 21
✗ ✓ 2 / 21 15 / 21
✗ ✗ 1 / 21 20 / 21

Table 3: Impact of using domain descriptions (DD)
and plans from a classical planner (Planner) on
planning success in the logistics domain.

Using plans from a classical planner Using
plans found by classical planners during do-
main learning presents a trade-off: The plan
could exploit a flaw in the domain model that
LLM-planners do not exploit. However, weaker
LLMs struggle to suggest accurate plan candi-
dates, even when re-prompting them with feed-
back about the issue in the plan. Table 3 shows
how using plans found by a classical planner im-
pacts the performance of LODGE. The increased
success rate for GPT4o-mini and decreased suc-
cess rate for GPT4.1-mini highlights this trade-
off. We therefore use the classical planner for GPT4o-mini, while relying on GPT4.1-mini to suggest
plan candidates. Supplying the domain description to the LLM does seem to help for GPT4o-mini,
while it reduces the success rate for GPT4.1-mini. It remains open to future work to inspect in detail
how leaving out different parts of information, e.g. function descriptions, impacts learning domain
models and planning.

Logistics Household
w/o w w/o w

# Retries 4 3 8 6
Uncached Input Tokens 27k 17k 47k 39k
Total Input Tokens 54k 31k 130k 113k
Output Tokens 8k 6k 12k 8k

Table 4: Impact of retaining (w) or deleting (w/o) the
domain model on token usage for successful tasks.

Retaining domains across tasks The
learned domain model can be retained for
future tasks on the same domain. Retain-
ing the domain and plan artifacts can sig-
nificantly reduce the LLM usage during
planning, thereby speeding up planning.
We tested injecting the domain model of
previous tasks in the initial prompt of
LLMdomain along with the other informa-
tion. Table 4 shows the impact of retain-
ing the domain model on the token usage
for successfully planned task. Retaining
domains reduces the number of re-planning iterations until LODGE finds a valid plan. Retaining the
domain does not affect unsuccessful tasks, as they always use the maximum of 20 re-plans.

7 Conclusion

We propose LODGE, a hierarchical task planner that jointly learns the domain model while developing
the plan. The planner decomposes the task hierarchically, initially learning an abstract domain model
and plan that is iteratively refined into sub-domains and sub-plans. We introduce a novel central
error reasoner that verifies the feasibility of plan candidates in simulation and analyzes infeasible
plans to detect and correct misalignments between the simulation and learned domain model. We
evaluate LODGE on two IPC domains and one FurnitureBench environment. Our experiments show
that LODGE successfully learns task-centric domain models for complex IPC domains and generates
more accurate domain models than related work, while jointly solving more tasks successfully than
existing planning methods. The evaluation on the FurnitureBench environment shows that LODGE
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can solve tasks for real-world task planning domains that are not tailored to formal languages. While
LODGE provides strong performance on hierarchical domain learning and planning, there are several
directions for future work. First, we assume access to a library of predefined predicates, which is
required to evaluate the state of the simulation. Future work could investigate combining LODGE with
approaches for predicate learning [55] such that predicates must not be known in advance. Second,
the decomposition of tasks requires alignment of the hierarchy levels during planning. Realigning two
planning levels is non-trivial due to goal overshoots and side effects. Future work could investigate
on more sophisticated approaches to realignment that work robustly even for smaller LLMs. Lastly,
the impact of auxiliary information supplied to LODGE, like domain or function descriptions, is open
to future investigation.
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Category Logistics Household

# of tasks 21 24
# of actions 6 22
# of params and literals 54 271
avg plan length 23.2 21.6
avg types of skills 6 7.9

Table 5: Details about IPC domains

A IPC Domains

Details about the IPC planning domains used in Experiment 5.1 are listed in Table 5.

A.1 Logistics

Task 1: Transport package package_0 to location location_2

load_truck(’package_0’, ’truck_1’)
fly_plane(’plane_0’, ’location_1’, ’location_0’)
unload_truck(’package_0’, ’truck_1’)
load_plane(’package_0’, ’plane_0’)
fly_plane(’plane_0’, ’location_0’, ’location_1’)
unload_plane(’package_0’, ’plane_0’)
drive_truck(’truck_0’, ’location_2’, ’location_1’)
load_truck(’package_0’, ’truck_0’)
drive_truck(’truck_0’, ’location_1’, ’location_2’)
unload_truck(’package_0’, ’truck_0’)

Task 2: Transport package package_3 to location location_3, package package_4 to loca-
tion location_0, package package_1 to location location_2, package package_0 to location
location_0 and package package_2 to location location_4

load_truck(’package_1’, ’truck_1’)
load_plane(’package_4’, ’plane_0’)
load_plane(’package_0’, ’plane_0’)
drive_truck(’truck_1’, ’location_4’, ’location_5’)
unload_truck(’package_1’, ’truck_1’)
load_plane(’package_1’, ’plane_0’)
fly_plane(’plane_0’, ’location_5’, ’location_2’)
unload_plane(’package_4’, ’plane_0’)
load_truck(’package_4’, ’truck_0’)
load_plane(’package_3’, ’plane_0’)
unload_plane(’package_1’, ’plane_0’)
unload_plane(’package_0’, ’plane_0’)
load_truck(’package_0’, ’truck_0’)
drive_truck(’truck_0’, ’location_2’, ’location_0’)
unload_truck(’package_4’, ’truck_0’)
unload_truck(’package_0’, ’truck_0’)
drive_truck(’truck_0’, ’location_0’, ’location_1’)
load_truck(’package_2’, ’truck_0’)
drive_truck(’truck_0’, ’location_1’, ’location_2’)
unload_truck(’package_2’, ’truck_0’)
load_plane(’package_2’, ’plane_0’)
fly_plane(’plane_0’, ’location_2’, ’location_5’)
unload_plane(’package_3’, ’plane_0’)
load_truck(’package_3’, ’truck_1’)
unload_plane(’package_2’, ’plane_0’)
load_truck(’package_2’, ’truck_1’)
drive_truck(’truck_1’, ’location_5’, ’location_3’)
unload_truck(’package_3’, ’truck_1’)
drive_truck(’truck_1’, ’location_3’, ’location_4’)
unload_truck(’package_2’, ’truck_1’)

A.2 Household

Task 1: put apple_2 on side_table_2

go_to("dining_table_1")
put_on("mug_1", "dining_table_1")
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go_to("fridge_1")
open("fridge_1")
pick_up("lunch_box_2", "fridge_1")
go_to("dining_table_1")
put_on("lunch_box_2", "dining_table_1")
open_small("lunch_box_2")
pick_up_from("apple_2", "lunch_box_2")
go_to("side_table_2")
put_on("apple_2", "side_table_2")

Task 2: heat pizza_1 with pan_2, and put it on plate_2

go_to("dining_table_1")
put_on("mug_1", "dining_table_1")
go_to("cabinet_2")
open("cabinet_2")
pick_up("pizza_box_1", "cabinet_2")
go_to("countertop_2")
put_on("pizza_box_1", "countertop_2")
open_small("pizza_box_1")
go_to("drawer_1")
pick_up("pan_2", "drawer_1")
go_to("countertop_2")
put_on("pan_2", "countertop_2")
transfer("pizza_1", "pizza_box_1", "pan_2")
pick_up("pan_2", "countertop_2")
go_to("stove_burner_2")
put_on("pan_2", "stove_burner_2")
heat("pizza_1", "pan_2")
go_to("cabinet_3")
open("cabinet_3")
pick_up("plate_2", "cabinet_3")
go_to("countertop_2")
put_on("plate_2", "countertop_2")
go_to("stove_burner_2")
pick_up("pan_2", "stove_burner_2")
go_to("countertop_2")
put_on("pan_2", "countertop_2")
transfer("pizza_1", "pan_2", "plate_2")

B Example Prompts

System Prompt
You are a planning expert tasked with developing a world model for planning based on a user instruction.

---

<!-- when generating content for the sections listed below, follow the specified format exactly. -->
### Explanation
<!-- task specific explanation and chain-of-thought reasoning -->

### Change/Add Action(s)
1. {action-name-1}: {(add|edit|delete)}

- Description: {description what happens during the action}
- PDDL Definition:

‘‘‘pddl
{pddl_action_definition}
‘‘‘

### Change/Add Predicate(s)
- ({predicate_name} {predicate_args...}): {predicate_description}

### Change Initial State
<!-- add predicates that should be changed, without text, leave ’None’ if no change -->
({predicate_4}): {(true|false|remove)}
({predicate_8}): {(true|false|remove)}

### Change Goal State
<!-- add predicates that should be changed, without text, leave ’None’ if no change -->
({predicate_7}): {(true|false|remove)}

### Final thoughts

B.1 LLMdomain
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### User Instruction
place fork_1, spoon_1 and knife_1 on dining_table_1, please take the fork first and the knife last

### Predicates
- (at-agent ?a - agent ?loc - furniture_appliance): Agent is at a specific furniture piece or appliance.
- (holding ?a - agent ?obj - household_object): Agent is holding an object.
...

### Types
household_object furniture_appliance agent - object
...

### Objects
drawer_1 ... - drawer fridge_1 - fridge ...

### Initial State
(at-agent robot dining_table_1) (holding robot mug_1) ...

### Skill Library
go_to_a_furniture_piece_or_an_appliance, pick_up_an_object_on_or_in_a_furniture_piece_or_an_appliance,

...

### Your Task
1. Define the goal: Based on the user instruction, create a PDDL goal that reflects the objective the

user wants to accomplish.
2. List of predicates: Inspect the predicates that will be used to describe the state of the world and

the relationships between entities in the domain.
3. Define actions:

- Based on the goal and available skills in the skill library, define a set of PDDL actions that
enable planning toward the goal.

- Preferably define high-level actions that abstract over one or more low-level skills to support
hierarchical planning.

- Each PDDL action should:
- Have a clear and descriptive name
- Include a general-purpose description (not instance-specific)
- Include a PDDL definition: (:action <action_name> :parameters <parameters> :precondition <

precondition> :effect <effect>)
- You are encouraged to:

- Define high-level composite actions when they simplify planning.
- Define individual PDDL actions for each skill you intend to use.
- Avoid unnecessary actions - only include those essential to achieving the goal.

B.2 LLMtranslate

### Predefined Skills
‘‘‘python
def go_to_a_furniture_piece_or_an_appliance(furniture_or_appliance: str):

"""This action enables the robot to navigate from one normally immovable piece of furniture to
another (e.g., dining tables, side tables, cabinets, and sinks) or an appliance (e.g.,
refrigerators, coffee makers, microwaves, and washers)."""

...

def pick_up_an_object_on_or_in_a_furniture_piece_or_an_appliance(object_id: str, furniture_or_appliance:
str):

"""This action enables the robot to pick up an object in/on a large piece of furniture (e.g., dining
tables, drawers, cabinets) or an appliance (e.g., dishwashers and refrigerators). The furniture

piece or appliance should be opened if it is openable. The object to pick up should not be stacked
on top of other household items."""

...

...
‘‘‘

### Objects
drawer_1 drawer_2 ... - drawer fridge_1 - fridge ...

### Previous skill executed
; no previous skill

### PDDL Action Definition
put_object_on_furniture: add

- Description: Agent places a held object on a specified furniture piece or appliance. Agent must be
at that furniture piece.

- PDDL Definition:
‘‘‘pddl
(:action put_object_on_furniture

:parameters (?a - agent ?obj - household_object ?furn - furniture_appliance)
:precondition (and (holding ?a ?obj) (at-agent ?a ?furn))
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:effect (and (not (holding ?a ?obj)) (agent-hand-empty ?a) (at-object ?obj ?furn))
)
‘‘‘

### Task
Your task is to map the PDDL action ‘put_object_on_furniture‘ to an implementation using the predefined

skills provided.
1. Analyze the PDDL action’s preconditions and effects
2. Identify which predefined skill(s) can accomplish the same effect as the PDDL action
3. Create a sequence of skill calls that implements the PDDL action. You may include additional skills

not mentioned in the PDDL action if they are necessary

Output the action sequence inside a markdown Python code block:

Important Rules:
- Use only the predefined skills listed above
- Select skills that achieve the same end result as the PDDL action’s effect
- You may need to use multiple skills to properly implement a single PDDL action
- Assume the preconditions are already satisfied - i.e., you don’t need to include skills to make them

true again (e.g., no need to grasp_object if (holding ?a ?item) is already true).
- However, you must include all skills required to implement the effects, including any intermediate

steps required by the predefined skills, even if the PDDL action does not mention them explicitly (
e.g., if the effect is a clean floor, and the cleaning skill requires the vacuum to be turned on
first, you must include turning on the vacuum before cleaning).

Output Format
- First, explain your reasoning
- Then output a Python list containing the sequence of function calls that implements the PDDL action.

Use following variables to reference pddl parameters, or strings if you need additional arguments
where no pddl parameter exists

‘‘‘python
from variables import a_agent, obj_household_object, furn_furniture_appliance
‘‘‘

B.3 LLMdecompose

You are given a high-level PDDL action and supporting context. Your task is to decompose this high-level
action into a set of meaningful, lower-level PDDL actions that result in the same effect.

---

### High-level Action ‘(prepare_and_place_potato robot potato_1 plate_2)‘
prepare_and_place_potato: add

- Description: Composite high-level action that slices, heats, and places the potato on a plate
using the correct predicate.

- PDDL Definition:
‘‘‘pddl
(:action prepare_and_place_potato

:parameters (?a - agent ?p - potato ?pl - plate)
:precondition (and (holding ?a ?p) (not (heated ?p)) (not (sliced ?p)))
:effect (and (sliced ?p) (heated ?p) (at-receptacle ?p ?pl) (agent-hand-empty ?a) (not (

holding ?a ?p)))
)
‘‘‘

### Predicates
- (at-agent ?a - agent ?loc - furniture_appliance): Agent is at a specific furniture piece or appliance.
- (holding ?a - agent ?obj - household_object): Agent is holding an object.
...

### Types
household_object furniture_appliance agent - object
...

### Objects
drawer_1 drawer_2 ... - drawer fridge_1 - fridge ...

### Initial State
(at-object cup_1 drawer_4) (at-object lamp_1 side_table_2) ...

### Goal State
(at-receptacle potato_1 plate_2) (heated potato_1) ...

### Predefined Skill
go_to_a_furniture_piece_or_an_appliance, pick_up_an_object_on_or_in_a_furniture_piece_or_an_appliance,

...

### Suggested Decomposition
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‘‘‘pddl
put_an_object_on_or_in_a_furniture_piece_or_an_appliance(p_potato, ’cutting_board_1’)
go_to_a_furniture_piece_or_an_appliance(’cabinet_1’)
...
put_an_object_on_or_in_a_furniture_piece_or_an_appliance(pl_plate, ’cabinet_4’)
‘‘‘

---

### Instructions
Follow the steps below to complete the decomposition:
1. Describe the Initial State
2. Understand the High-Level Action: Examine the :precondition and :effect. Identify what state change

it induces.
3. Plan the Transition: Determine how the state should evolve from the :precondition to the :effect

using grounded, lower-level actions. Refer to the suggested decomposition for inspiration. You may
generalize, refine, or restructure it as needed for correctness and abstraction. Use reasoning to
bridge the gap.

4. Define Lower-Level Actions: Construct new actions that together implement the high-level action.
- Only include actions that result in state change.
- Do not include meta-actions like confirm, complete, sense, or computation-related steps.
- You may define new predicates if needed
- Define individual PDDL actions for each skill you intend to use.

5. Specify the Goal State: List the predicates that reflect the intended outcome of the high-level
action.

B.4 LLMreasoner

You are given a decomposition hierarchy and a record of skills executed in a simulated environment. The
last skill has failed during execution. Your goal is to identify why the observed effect of the
simulation diverged from the expected effect of that skill. The simulation and skill
implementations are correct and fixed - you cannot modify them. Your focus is on reasoning about
the planning model and its action decomposition.

---

### Context:

Initial World State:
(at-object cup_1 drawer_4) (at-object lamp_1 side_table_2) ...

Decomposition Hierarchy
- (put_down_object robot mug_1 drawer_1): put_an_object_on_or_in_a_furniture_piece_or_an_appliance(’

mug_1’, ’drawer_1’)
- (go_to robot fridge_1): go_to_a_furniture_piece_or_an_appliance(’fridge_1’)
- (pick_up_object robot potato_1 fridge_1)

Executed Python Skill for PDDL Action ‘pick_up_object‘:
pick_up_an_object_on_or_in_a_furniture_piece_or_an_appliance(obj_household_object,

loc_furniture_appliance)

Execution Failure:
Door of fridge_1 is not open

---

Your Task:
1. Summarize the state before executing the failed action.
2. Identify the cause of the deviation

- could executing additional skills fix the error?: State the skills that should have been executed
for the action.

- if not, are any expected effects missing from the PDDL domain definition?: Adapt the PDDL action.
- or, were any skills redundant, missing, or incorrectly ordered?
Note that:
- The simulation and predefined skills are correct and unchangeable
- Do not assume the current expected effects are correct - critically assess and revise them as
needed

- Also add negated predicates to the PDDL action effects and don’t just delete them

Assistant response
### 1. State Before Executing the Failed Action

- The robot is at ‘fridge_1‘.
- The ‘fridge_1‘ is closed (since there is no predicate ‘(is-open fridge_1)‘).
- The potato (‘potato_1‘) is inside ‘fridge_1‘.
- The robot’s hand is empty.
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- Other environment details: multiple open furniture and appliances, but importantly, ‘fridge_1‘ is not
open.

### 2. Cause of Deviation and Analysis

(...)

### Final Notes

- The failure was not due to skill implementation errors but due to an incomplete PDDL model ignoring
the prerequisite of door state.

- No skills are redundant or incorrectly ordered per se, but the planner must be informed of the opening
requirement to plan the ‘open‘ action prior to ‘pick_up‘.

- This reasoning applies to all picking from openable furniture/appliances (fridge, cabinets, drawers,
etc.).

---

### Updated PDDL ‘pick_up_object‘ Action Definition

‘‘‘pddl
(:action pick_up_object

:parameters (?a - agent ?obj - household_object ?loc - furniture_appliance)
:precondition (and

(at-agent ?a ?loc)
(at-object ?obj ?loc)
(agent-hand-empty ?a)
(not (holding ?a ?obj))
(imply (openable ?loc) (is-open ?loc))
)

:effect (and
(holding ?a ?obj)
(not (at-object ?obj ?loc))
(not (agent-hand-empty ?a))

)
)
‘‘‘

User prompt to get decision of reasoner
Determine the most probable fix type based on the following options:
- the pddl action (pick_up_object robot potato_1 fridge_1) should be implemented with multiple skills: ’

multiple-skills’
- the pddl action can be implemented with one skill, but the action definition must be corrected: ’pddl-

fix’

Additionally, reference the predefined Python skill or PDDL action that must be corrected.

Provide your final decision in the following format:
- Type of Fix: ‘<chosen-fix-type>‘
- Correction: ‘<corrected-skill-or-action>‘

Example 1:
- Type of Fix: ‘pddl-fix‘
- Correction: ‘(go-to arm banana)‘
Example 2:
- Type of Fix: ‘multiple-skills‘
- Correction: ‘grasp_part("banana")‘

Final decision of reasoner
- Type of Fix: ‘pddl-fix‘
- Correction: ‘pick_up_object‘

B.5 GenPlanLLM

### Predicates
- (at-agent ?a - agent ?loc - furniture_appliance): Agent is at a specific furniture piece or appliance.
- (holding ?a - agent ?obj - household_object): Agent is holding an object.
...

### Actions
1. slice_potato: add

- Description: Slices a potato item.
- PDDL Definition:

‘‘‘pddl
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(:action slice_potato
:parameters (?a - agent ?p - potato)
:precondition (and (holding ?a ?p) (not (sliced ?p)))
:effect (sliced ?p)

)
‘‘‘

...
4. prepare_and_place_potato: edit

- Description: Composite high-level action that slices, heats, and places the potato on a plate
using the correct predicate.

- PDDL Definition:
‘‘‘pddl
(:action prepare_and_place_potato

:parameters (?a - agent ?p - potato ?pl - plate)
:precondition (and (holding ?a ?p) (not (heated ?p)) (not (sliced ?p)))
:effect (and (sliced ?p) (heated ?p) (at-receptacle ?p ?pl) (agent-hand-empty ?a) (not (

holding ?a ?p)))
)
‘‘‘

### Objects
drawer_1 drawer_2 ... - drawer fridge_1 - fridge ...

### Initial State
(at-agent robot drawer_1) (holding robot mug_1) ...

### Goal State
(at-receptacle potato_1 plate_2) (sliced potato_1) (heated potato_1)

### Output Format:
Your output should contain two parts:

1. Reasoning:
Given the information provided, you should compute the plan to solve the problem.
Add a short paragraph to explain your reasoning process.

2. Final Plan:
Provide the best plan. Format it like this:
If you think additional PDDL actions are needed, add them to the plan too.

‘‘‘plan
(first-action arg1 arg2)
(unknown-action arg1 arg2)
...
(last-action arg1 arg2)
‘‘‘
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