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GENBOT-1K
~1000 Embodiments: Humanoids, Quadrupeds, and

Figure 1: One Policy, Two Worlds, Many Robots. We study embodiment scaling laws by training a
single policy on ~1,000 procedurally generated “blueprint” embodiments in simulation. Our policy
zero-shot transfers to real-world embodiments, including modified joint constraints (circled in red).

Abstract: Cross-embodiment generalization underpins the vision of building gen-
eralist embodied agents for any robot, yet its enabling factors remain poorly un-
derstood. We investigate embodiment scaling laws, the hypothesis that increas-
ing the number of training embodiments improves generalization to unseen ones,
using robot locomotion as a test bed. We procedurally generate ~1,000 embodi-
ments with topological, geometric, and joint-level kinematic variations, and train
policies on random subsets. We observe positive scaling trends supporting the
hypothesis, and find that embodiment scaling enables substantially broader gener-
alization than data scaling on fixed embodiments. Our best policy, trained on the
full dataset, transfers zero-shot to novel embodiments in simulation and the real
world, including the Unitree Go2 and H1. These results represent a step toward
general embodied intelligence, with relevance to adaptive control for configurable
robots, morphology co-design, and beyond.
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1 Introduction

Two millennia ago, Heraclitus wrote that no one steps into the same river twice. Today, one might
say that no agent acts with exactly the same body twice. Robotic embodiments change with injury,
aging, tool use, manufacturing variation, and upgrades, and this variability will only grow as robots
become more capable and widely deployed in the real world. Leveraging heterogeneous deploy-
ment data and understanding how to apply learned policies to novel, unseen embodiments would be
instrumental to building generalist robots via data flywheels. However, it is unclear how to enable
policies to transfer across a large number of distinct embodiments.

Scaling has been a key driver of progress in deep learning, which can occur along multiple dimen-
sions. Scaling dataset size and model size has improved generalization in vision [1-8] and lan-
guage [9-18]. In robotics, scaling the number of tasks [19-28] and environments [22, 24, 25, 28—
38] enable cross-task and cross-environment generalization. In this work, we explore a distinct
and underexplored dimension of scaling: robot embodiment, the physical structure of robots. We
hypothesize that scaling the number of training embodiments leads to better generalization to un-
seen embodiments, as the policies learn to capture shared control strategies across different physical
structures. We conceptualize this hypothesized relationship as embodiment scaling laws.

Studying this hypothesis requires addressing several open challenges. First, policy architectures
need to (i) incorporate embodiment structure, (ii) adapt to varied observation and action spaces, and
(iii) scale to large numbers of embodiments. Second, scaling experiments demand a large dataset of
robot embodiments. We postulate that at least ~ 103 embodiments are needed to reveal a glimpse of
long-term trends, whereas existing literature is limited to ~ 10" in the real world [21, 27-30, 38, 39]
and ~ 102 in simulation [40]. Achieving this scale requires scalable and safe training and evaluation,
which is only feasible in simulation at this point in time.

In simulation, we adopt a controlled setup to provide the first empirical validation of embodiment
scaling laws. Proprioceptive locomotion serves as a foundational testbed: it has a small sim-to-real
gap, depends primarily on morphology and dynamics, and avoids confounding factors from per-
ception such as camera viewpoint, visual encoding, or rendering fidelity. We procedurally generate
GENBOT-1K, a collection of ~1,000 blueprint robot descriptions, spanning humanoids, quadrupeds,
and hexapods, by varying topology, geometry, and joint-level kinematic constraints. To handle var-
ied state and action spaces, we extend Unified Robot Morphology Architecture (URMA) [41] into
a wider multi-head attention architecture. We adopt a two-stage learning framework [42, 43] for
scalable cross-embodiment learning: (i) train single-embodiment expert policies with Reinforce-
ment Learning (RL), and (ii) distill these experts into a single embodiment-aware URMA policy via
behavior cloning (BC). By varying the number of embodiments used for BC, we quantify the effect
of embodiment scaling on generalization to unseen embodiments.

Overall, we present a large-scale empirical study of embodiment scaling laws across ~1,000 robot
embodiments. We design a general reward formulation, training curriculum, and domain random-
ization that enable scalable training of RL expert policies without embodiment-specific tuning, ac-
cumulating a total of 2 trillion simulation steps. We observe positive scaling trends supporting the
hypothesis, and find that embodiment scaling enables substantially broader generalization than data
scaling on fixed embodiments. The best policy, trained on 2 billion expert demonstration steps
across the full set of training embodiments, zero-shot transfers to real-world robots, including the
Unitree Go2 with varied kinematic constraints and the H1 humanoid. The findings underscore the
potential of embodiment scaling for general embodied intelligence, and open up opportunities for
embodiment-adaptive control, morphology co-design, and beyond.

2 Related Work

Cross-embodiment generalization. One goal of cross-embodiment learning is to enable control
policies to generalize across robot embodiments without retraining. Prior efforts often focus on
transferring policies between a small number of robots by aligning dynamics, learning shared em-



beddings [44, 45], or extracting transferable skills [46, 47]. However, these methods are only able
to transfer to a single or a few target embodiments. Related work about scalable network archi-
tectures, such as graph neural networks [48, 49] or Transformers [50, 51], scale to more complex
embodiments by conditioning on embodiment-specific information, but these works mostly use un-
realistic and simplified robots that are not suitable for real-world transfer. More recent approaches
can be trained on a larger number of realistic robot embodiments, but they often rely on existing low-
level controllers [52, 53], embodiment-specific decoders [54], other action abstractions [55, 56], or
assume a fixed observation and action space [57], limiting their generalization capabilities to pre-
defined morphological structures. URMA [41] solves this issue by introducing a unified joint-level
control architecture for arbitrary robot morphologies, but is validated only on 16 robots without
studying scaling effects. Our work demonstrates broader cross-embodiment generalization than
prior works by training a single policy on ~1,000 embodiments, achieving zero-shot transfer to
unseen embodiments in both simulation and the real world.

Robot locomotion. In recent years, Deep Reinforcement Learning (DRL) has been applied to sin-
gle embodiment robot locomotion to great success. The combination of scalable on-policy RL
algorithms, such as Proximal Policy Optimization (PPO) [58], with fast and highly parallelizable
simulators has enabled the training of powerful locomotion policies for quadruped [59—65] and hu-
manoid robots [66—70]. Techniques such as student-teacher learning [71, 72], curriculum learning
[73-75], and domain randomization [73, 76, 77] have enabled zero-shot sim-to-real transfer of these
policies. Less data-hungry methods for learning directly on real robots, utilizing model-based or off-
policy RL algorithms [78-81], and non-learning methods, such as Model Predictive Control (MPC)
[82, 83], have also been proposed for legged locomotion, but generally trade their efficiency for
worse performance with less robust gaits on challenging terrain or under strong perturbations.

Robot embodiment generation. Prior research in robot embodiment generation has pursued several
directions. One prominent direction focuses on optimizing robot designs for specific tasks, where
procedural and learning-based techniques generate embodiments tailored for enhanced performance
in tasks such as locomotion [84—86] or manipulation [87]. Closer to our objectives is the use of em-
bodiment generation to develop generalizable robot policies. Existing works have explored methods
based on simplified kinematic trees [51, 88], randomization within a fixed morphology [57], diverse
sensor configurations [56], or varied hand structures [89]. However, these approaches are generally
limited to a single robot class or topological template. In contrast, we introduce a comprehensive
procedural generation framework that spans multiple morphology classes, including quadrupeds,
hexapods, and humanoids, while varying topology, geometry, and kinematics for each of them. This
enables a large-scale systematic study of embodiment scaling in locomotion.

3 Methodology

Generalizable cross-embodiment robot learning aims to train a control policy that can control di-
verse seen and unseen robot embodiments to solve a common task. Formally, let £ denote a set of
embodiments sampled from Pg, where each embodiment e € £ is defined as a triplete = (G, T, K),
where T specifies the joint topology (i.e., number and connectivity), G denotes link geometry (e.g.,
shape and size), and C describes additional kinematic properties (e.g., joint types and range of mo-
tion). The control problem of each embodiment e is defined by a Markov Decision Process (MDP)
M = (Se, Ae, Pe, R, H), where S., A, and P, denote the state space, action space, and transi-
tion dynamics; R, is the reward function; and H is the episode horizon. At any particular time step
t, a policy predicts an action a; € A, conditioned on the robot state s; € S, and the embodiment
descriptor ¢(e). In the specific case of robot locomotion, the policy is additionally conditioned on a
x-y-yaw velocity command v; € R3 with respect to the trunk frame, i.e., a; ~ 7(s¢, ¢(e), vy).

During training, we optimize the policy to maximize the expected cumulative reward across training
embodiments &y, C € with trajectories 7 = {(so, ag), - - ., ($g, am)} sampled from M.:
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Figure 2: Overview of our approach for studying embodiment scaling laws. We procedurally
generate GENBOT-1K, a dataset of ~1000 diverse robot embodiments with structured variations in
topology, geometry, and kinematics. We train a single cross-embodiment policy using the URMA
architecture, which handles varying observation and action spaces via attention-based joint encod-
ing. We systematically vary the number of training embodiments to study how generalization scales
with embodiment quantity. The policy trained on the full training dataset transfers zero-shot to novel
simulated robots and real-world hardware with different morphologies.

The generalization performance is evaluated on a held-out set of embodiments et = € \ Eirain:

H
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We note that both learning and generalizing across embodiments present significant challenges.
Differing observation and action spaces require policies to handle variable-sized and structurally
different inputs and outputs. Variations in kinematic constraints, self-collision profiles, and contact
dynamics introduce embodiment-specific behaviors that complicate the optimization landscape of
policy learning. Even further, generalizing to unseen embodiments demands that the policy captures
meaningful shared control features that can be applied to novel physical embodiments.
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Scaling hypothesis. We hypothesize that generalization improves with the number of training em-
bodiments, i.e., larger |Eyin| leads to higher Jiey. Intuitively, training on more diverse embodiments
encourages the policy to extract structural features that transfer to novel robots. For instance, despite
differences in leg length or joint placement, many embodiments share similar locomotion dynamics
and constraints. Discovering a scaling trend would provide empirical support for an embodiment
scaling law and offer actionable insights for building general-purpose control policies.

Empirical setup. To study the hypothesis, we fix a constant test set by randomly holding out 20% of

the generated embodiments. The remaining 80% serve as the pool for constructing training subsets
5&2:1 C Eurain at varying proportions ¢ € (0, 1]. For each subset, we train a separate policy 71'&?1: and
evaluate it on the fixed .. This setup enables a systematic analysis of generalization performance

J[est(wt(r?i: ) as a function of training set size, probing for evidence of an embodiment scaling law.

Next, we describe how we generate diverse embodiments (Section 3.1), construct a policy to handle
varying observation and action spaces (Section 3.2), and train it on many embodiments (Section 3.3).

3.1 Embodiment Generation

We adopt a procedural generation pipeline to produce diverse robot embodiments spanning three
commonly used morphology classes: humanoid [41, 67, 90-94], quadruped [41, 55, 65, 73, 75, 95—
99], and hexapod [41, 100-106]. Our generated robots follow common design patterns using real-
istic base components, such as link shapes, dimensions, and motor properties, but are procedurally
composed into novel embodiments by varying their parameters. Geometric variation is introduced
by scaling individual links and overall body size. Topological variation is achieved by changing the
number of knee joints per leg within each morphology class. We also vary joint limits to implement
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Figure 3: Empirical distributions of embodiment variations in GENBOT-1K. The statistics re-
flect geometric (a), topological (b,c), and kinematic (d) variability of embodiments in our dataset.

kinematic variations. In total, we generate 1,012 distinct robots, including 348 humanoids, 332
quadrupeds, and 332 hexapods, to form the GENBOT-1K dataset (Figure 1). Our resulting dataset
is diverse in various aspects, as reflected in post-generation statistics (Figure 3). More details about
the generation process are provided in Appendix B.

3.2 Cross-Embodiment Policy Architecture

To train a policy that can control ~1000 different embodiments with different state and action
spaces, we use URMA, an embodiment-aware architecture for robots with arbitrary numbers of
joints [41]. URMA handles the differently sized partially observable states (observations) o of dif-
ferent embodiments by splitting them into fixed-length general observations o, and varying-length
joint-specific observations o;, depending on the set of joints J of the current embodiment ¢ (i.e.,
o = (04, {0j}jes))- The embodiment descriptors ¢(e) are used to generate joint description vectors
d;, which can uniquely describe every joint of the embodiment and are made up of the fixed dynam-
ics and kinematics properties of the joint and its underlying motor. The joint-specific observations
are processed by an attention encoder and are summed up into t;le joint latent vector
R L e (fo(dy)/7) o 3
Jjoints jze;] VB! ] ELd exp (f¢(dJ)/T)f¢( J)? ( )
where fy (with latent dimension Lg) and f,, are the encoders for the joint descriptions and joint
observations, respectively, and 7 is the learnable temperature parameter of the softmax. Intuitively,
the attention mechanism fuses joint observations based on their descriptions so that Zj,ines has global
information about the embodiment. The encoded joint latent vector is then concatenated with the
general observations and processed by a core network to generate an action latent vector Zacion =
ho(og, Ejoims). To handle the differently sized action spaces, URMA concatenates the action latent
vector with each encoded joint description vector in batch to decode a single action for each joint:
a; = Mu(gw(dj);zactiomzj)a 4
where g, is the action encoder for the joint descriptions, (i, is the final action decoder. In our work,
we incorporate multi-head attention [107] into URMA, enabling the policy to attend to different
joint-level features in parallel and better capture complex inter-joint dependencies (Appendix C.2).

3.3 Two-Stage Policy Learning

To scale cross-embodiment policy learning to a large number of robots, we adopt a two-stage
paradigm. First, we train embodiment-specific expert policies using standard RL. Then, we col-
lect demonstration data from these experts and train a single student policy via imitation learning,
conditioned on embodiment descriptors. This approach allows learning across ~1000 robots while
maintaining tractable memory usage and stable training dynamics. The setup also mirrors real-world
data pipelines, where large datasets are collected offline and reused across training runs (e.g., [21]).

Expert training. We develop a unified RL locomotion training pipeline applicable to all em-
bodiments with minimal tuning. Key components include extensive domain randomization,
performance-based curriculum learning, and regularization terms that encourage stable and natu-
ral locomotion (e.g., penalizing jittering movements and excessive ground contact). All robots in
one morphology class share one set of hyperparameters for scalable training.
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Figure 4: Results on embodiment scaling. We evaluate generalization performance as a function
of the number of training embodiments. (a) In-class study: policies are trained and tested within
the same morphology class (humanoid, quadruped, or hexapod). (b) Cross-class study: We train
policies on the full training set (green) and compare performance against policies trained on only
the individual classes, while all policies are evaluated on the test set containing all classes. The pro-
portion of training embodiments (i € {0.05,0.2,0.4,0.6,0.8,1.0}) is denoted in the x-axis. While
the underlying reward function is the same, the reward scales differ across classes due to inherent
differences in the embodiments (e.g., humanoids are less stable than quadrupeds) and unnormalized
reward formulations (e.g., humanoids experience larger ground contact forces).
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Training robust policies for ~1,000 robot embodiments is computationally demanding. We use
NVIDIA Isaac Lab [108] to train single-embodiment policies across 4,096 parallel environments
with PPO [58]. Training all experts takes approximately 5 days on 160 NVIDIA RTX 4090/3090
GPUs, totaling over 2 trillion simulation steps. Full training details are provided in Appendix A.

Student distillation. Given expert policies {7 }ece,,..,» We collect a demonstration dataset by
rolling out each policy for 600 timesteps in 4,096 parallel environments, totaling 2 billion samples
across all embodiments. We then train URMA by minimizing the Mean Squared Error (MSE):

Loc = By coa0m |I7(st,6()) — acl ] )
where D is the expert demonstration dataset. The student policy conditions on the embodiment
descriptor ¢(e), enabling it to generalize across the generated embodiments with different geometry,
topology, and kinematics. Training the model on the full demonstration dataset takes one week using
a NVIDIA H100 GPU. More details about the distillation process can be found in Appendix C.

4 Experiments

In this section, we conduct a large-scale empirical study to investigate the scaling behavior of cross-
embodiment learning. Our experiments are designed to answer the following key research questions:

Q1. How does the generalization performance of the cross-embodiment policy scale with the
number of training embodiments? (Sec. 4.1)

Q2. Can the learned policy generalize zero-shot to unseen embodiments, including real-world
robots, and handle varied kinematic constraints? (Sec. 4.2)

Q3. Does the policy network learn meaningful, structured representations of the space of robot
embodiments and morphologies through cross-embodiment training? (Sec. 4.3)

4.1 Studying Embodiment Scaling Laws

We train and evaluate our policies under multiple setups, with results illustrated in Figure 4. We ana-
lyze generalization patterns from three perspectives below. Additional results on out-of-distribution
generalization are provided in Appendix D.

Scaling within each embodiment class. We conduct training and evaluation separately for each
morphology class (humanoid, quadruped, and hexapod) in GENBOT- 1K, resulting in curves C1-C3.
For each morphology class, we observe a clear scaling trend: increasing the number of training
embodiments from 0.05 to 1.0 can double the cumulative reward. The rate of convergence varies
by class: for quadrupeds and hexapods, performance saturates around 100 training embodiments,
while for humanoids, it continues to improve steadily with more training data, likely due to greater



Figure 5: Zero-shot generalization to unseen real-world robots. Our URMA policy, trained on
817 diverse simulated embodiments, successfully transfers zero-shot to control the Unitree Go2
quadruped and Unitree H1 humanoid in the real world. a, b: The policy can perform forward and
backward locomotion on cobblestone and grass terrain with the Go2. ¢, d, e, f: We test the policy’s
adaptation to kinematic constraints by artificially restricted the joint limits on the right rear knee of
the Go2 by 20%. The policy effectively compensates for the limited range of motion, resulting in a
stable limping gait on gravel (d) and indoors (f), compared to the unrestricted gait (c, e). g, h: Zero-
shot transfer on the H1 works well in a lab environment, showing decent forward and backward
locomotion. i: Walking side-to-side with H1 is slower as in simulation but stable in the real world.

instability and control difficulty. This suggests that more challenging embodiments may benefit
more from larger-scale embodiment scaling.

Scaling across embodiment classes. We train on the full combined dataset of all three classes and
evaluate on a unified test set (C4). The resulting curve begins at a reward of 18 and rises consistently
to nearly 30, demonstrating that scaling across diverse embodiments enables broader generalization.
We further evaluate the policies trained on individual morphology classes (corresponding to C1-C3)
on the combined test set, obtaining (C5—C7). Since each of these models has only seen a single
morphology class during training, their performance on the mixed test set is limited. In contrast,
the best point on C4 achieves 2—5x higher average reward than C5—C7, demonstrating that training
across diverse morphology classes enables substantially broader generalization.

Comparison with pure data scaling. To disentangle the effects of embodiment diversity from data
quantity, we collect a dataset using only 5% of the training embodiments and vary the number of
trajectories per embodiment for distillation (C8). We find that performance quickly saturates: the
policy nearly reaches its peak at 0.2 data scale (4x data as 0.05), with negligible gains beyond that.
This highlights that, if the goal is to achieve broad embodiment-level generalization, it is ineffective
to only increase data volume on a small set of embodiments. Embodiment scaling is essential.

4.2 Real-World Generalization Test

To validate real-world transfer capabilities, we conducted zero-shot deployments of our best-
performing policy, trained on the full training set of 817 simulated embodiments, on two real robots:
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Figure 6: Visualization of the embodiment latent space. t-SNE projection of the action latent
vectors on the complete GENBOT- 1K dataset from the URMA policy trained on the full training set.
Points are colored by morphology class. The clear clustering based on morphology class, and finer
sub-structures related to the number of knee joints or kinematic and geometric properties, suggest
that the policy learns a meaningful and structured representation of diverse embodiments, capturing
functional similarities that help during cross-embodiment learning and enable generalization.

the Unitree Go2 quadruped and the Unitree H1 humanoid, neither of which was included in the
training set Ey,in, although robots with similar kinematic structures were present.

Figure 5 shows the policy successfully generalizing to the two real robots without any fine-tuning or
modifications, using only the URDF of the respective robot to generate the embodiment descriptor
¢(e). The Go2 demonstrated robust and stable walking gaits across diverse terrains such as grass,
cobblestone, and gravel (a-c). Similarly, the H1 was able to maintain stable locomotion, tracking
the desired velocity commands while walking on flat ground with rubber mats in a lab environment
(g-1). While the transfer worked for both robots, the policy transferred worse to the H1 compared to
the Go2, highlighting the need for potentially even more diverse humanoid robots in the training set.

To probe the policy’s ability to handle kinematic variations in the real world, we artificially restricted
the joint limits of the knee joints of the Go2 in 12 different configurations. We enforce different joint
limits by pushing towards the artificial limits with high gains when the joint angles exceed them.
Figure 5 (d, f) shows that the policy was able to transfer the adaptations it learned in simulation as it
keeps the restricted rear right leg further back and maintains a stable limping gait.

4.3 Understanding Learned Embodiment Representations

To gain insight into the internal representations learned by our policy, we performed a t-distributed
Stochastic Neighbor Embedding (t-SNE) [109] analysis on the action latent vectors Zyeion produced
by URMA for each embodiment. Figure 6 shows that the learned representations naturally cluster
according to the robot morphology, clearly distinguishing humanoids, quadrupeds, and hexapods.
For all three morphologies, large clusters around the number of knee joints separate most of the
latent space, showing the impact of additional joints on the policy. Many finer sub-clusters emerge
based on different geometric and kinematic variations for a given number of knee joints. This
structured representation indicates that our policy captures meaningful embodiment-specific features
that generalize, mostly, within the morphology classes, whereas patterns across classes are less clear.
Additional visualizations using PCA [110] and UMAP [111] can be found in Appendix F.

5 Conclusion

We conceptualize embodiment scaling laws and provide preliminary empirical evidence through a
large-scale study on robot locomotion, using a procedurally generated dataset GENBOT-1K. Our
results show that increasing the number of training embodiments improves generalization to unseen
ones, with more challenging morphologies benefiting from continued scaling. Scaling across em-
bodiment classes further enhances generalization, while simply increasing data volume on a fixed
set of robots yields diminishing returns. We also demonstrate successful sim-to-real transfer of the
learned cross-embodiment policy. As robotic platforms grow more diverse, the ability to learn from
and generalize across embodiments becomes increasingly critical. We hope this work offers a step
toward general-purpose cross-embodiment intelligence.



Limitations

While our work provides empirical evidence for embodiment scaling laws in robot learning, several
limitations remain.

First, regarding task setup, our study focuses exclusively on locomotion on flat terrain for a highly
controlled, foundational study. Extending this analysis to more complex tasks, such as vision-based
manipulation or loco-manipulation, is an interesting exploration for future work.

Second, although our procedural generation pipeline produces a wide range of embodiments varying
in topology, geometry, and joint constraints, it does not exhaustively cover the design space. Several
factors, including body mass distribution, joint damping, and actuation type, are held fixed within
a morphology class. Expanding the generation space to include such parameters could yield more
robust generalization and offer further insights into the scaling behavior.

Finally, real-world experiments are limited to two physical robot platforms. Although we have mod-
ified their joint limits to create more kinematic variations, and existing results already demonstrated
promising zero-shot transferability, broader validation on more diverse physical platforms, such as
modular or reconfigurable robots, would provide stronger support for the generality of our findings.

Despite these limitations, we believe our study represents an important step toward understanding
embodiment-level generalization and highlights the key role of embodiment scaling in the pursuit of
generalizable robot learning.
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Appendix

A Expert Training

A.1 Observation and Action Space

The observation space of the expert policies includes the joint angles, joint velocities, previous ac-
tions, trunk angular velocities, gravity vector and the command velocities. The observation space of
the critics includes the same observations as for the policies, but also includes privileged informa-
tion: the trunk linear velocity, trunk height over the ground, feet contact states and feet air times.

The policies control the robots at 50 Hz with a PD controller, where the target joint angles are
generated by scaling the action of the policy and adding it to the nominal joint configuration of the
robot: Grarget = Gnominal +0 -a. We define the nominal joint configuration as a standing pose of a robot
and use the same configuration for all robots of the same morphology class (see Appendix B.3). For
the action scaling factor o, we use 0.3 for quadrupeds and hexapods, and 0.75 for humanoids. For
the PD controller, we use K,, = 20 and K4 = 0.5 for quadrupeds, K, = 25 and K; = 0.5 for
hexapods, and K, = 60 and Ky = 2.0 for humanoids.

A.2 Domain Randomization

To enable sim-to-real transfer of the trained policies, we add strong domain randomization during
training. We use a performance-based curriculum learning approach, where the domain randomiza-
tion ranges are increased from O (or their mean if not zero-centered) to the final values in Table 1 over
the course of training. This curriculum approach allows the policy to learn basic locomotion first
in the simplest possible environment before adapting to wider variations. We define a curriculum
coefficient from O to 1, which is multiplied with the domain randomization ranges (and the reward
penalty coefficients). The coefficient of an environment is increased by 0.01 if the policy completed
the episode without falling, and the average tracking error of the target x,y velocity is below 0.4 m/s,
and the coefficient is reduced by 0.01 otherwise.

Every embodiment in GENBOT-1K uses the same domain randomization ranges. The "starting"
values (naming scheme in Table 1) are sampled uniformly at the start of every episode to randomize
the starting state of the robot. The "noise" values are sampled uniformly for every simulation step
to add noise to the observations. The values of every other parameter are sampled uniformly every
simulation step with a probability of 0.002 (on average every 500 steps / every 10 seconds). Pushes
are applied as linear velocities to the trunk of the robot.
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Table 1: Domain randomization configuration. Domain randomization values and ranges for
every randomized parameter during the expert RL training. The values in the table are the maximum
values and ranges in the curriculum when reaching the final curriculum coefficient of 1.

Parameter Value

Max action delay 1

Chance for action delay 0.05

Min & max motor strength 0.5, 1.5)
Min & max P gain factor 0.5, 1.5)
Min & max D gain factor 0.5, 1.5)
Min & max joint position offset (-0.05, 0.05)
Min & max starting orientation factor (-0.0625, 0.0625)
Min & max starting joint position factor  (-0.5, 0.5)
Min & max starting joint velocity factor  (-0.5, 0.5)
Min & max starting linear velocity (-0.5,0.5)
Min & max starting angular velocity (-0.5,0.5)
Joint position noise 0.01

Joint velocity noise 1.5

Angular velocity noise 0.2

Gravity velocity noise 0.05

Joint observation dropout chance 0.05

Min & max static friction (0.05, 2.0)
Min & max dynamic friction (0.05, 1.5)
Min & max restitution (0.0, 1.0)
Min & max added mass (-2.0, 2.0)
Min & max gravity (-8.81, 10.81)
Min & max joint friction (0.0, 0.01)
Min & max joint armature (0.0, 0.01)
Min & max pushes in x (-1.0, 1.0)
Min & max pushes in 'y (-1.0, 1.0)
Min & max pushes in z (-1.0, 1.0)
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A.3 Reward Function

Table 2 contains all reward terms and coefficients of the reward function for the expert training of
all robots in the GENBOT-1K dataset. Joint-based (T6-T12) and feet-based (T14-T17) reward terms
are calculated as the mean over every joint and foot, respectively, to account for the varying amounts
of joints and feet of the generated embodiments. The coefficients of all penalties are attached to the
curriculum coefficient (see Appendix A.2) and thus linearly increase from O to the final values in
Table 2 over the course of training. This makes the training process less sensitive to the precise
values of the coefficients.

Table 2: Reward terms for the RL training of embodiment-specific experts. All reward terms
and the corresponding coefficients that compose the reward function for the expert training. While
all the coefficients work for all embodiments, for the final experiments, we tweaked four coefficients
for the humanoid embodiments to improve the style of the gait: “! 3.0, "2 1.5, ™ 43.2, ™ 6e-3.

Term Equation Coefficient
T1 Xy velocity tracking exp(—|vgy — czy|?/0.25) 2.0 "
T2  Yaw velocity tracking exp(—|Wyaw — Cyaw|?/0.25) 1.0
T3  Z velocity penalty —|v,|? 2.0
T4  Pitch-roll velocity penalty — |wpiteh, rolt |2 0.05
T5  Pitch-roll position penalty —Bpicch, ron |2 5.0
T6  Joint nominal differences penalty ——|g — ¢"°™ina|? 14.4 73
T7 Joint position limits penalty —Z_L(O.quin < q<09gmx) 1200
T8 Joint velocity limits penalty fZ_L(O.QQmin < ¢ <09Gmx) 10.0
T9  Joint accelerations penalty —1gi|? 5e-6
T10 Joint torques penalty —|7)? 2.4e-4
TI1  Action rate penalty —las —as_1|? 0.12
T12  Action smoothness penalty —las — 2a4—1 + a;—2|? 0.12
T13  Walking height penalty —|h = hnominal|? 30.0
T14  Air time penalty = 1(pp) (0} —0.5) 0.1
T15 Symmetry penalty =15 i(pr}ght) 0.5
T16 Feety distance penalty — | fa e =y disancel” 2.0
T17 Feet force penalty —| frorce|? 8e-3
T18  Self-collision penalty —Lelf-collision 1.0
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A4 PPO Hyperparameters

We use the same PPO hyperparameters for the training of all expert policies, detailed in Table 3.
Searching for better hyperparameters for every embodiment might lead to increased performance
but is impractical when considering training ~ 1000 embodiments. The chosen hyperparameters are
based on common practices in legged locomotion research [41, 74] and preliminary tuning on a
small subset of embodiments.

Table 3: PPO hyperparameters for expert policy training.

Hyperparameter Value
Batch size 98304
Mini-batch size 24576
# epochs 5
Initial learning rate 0.001
Learning rate schedule Adaptive with target KL 0.01
Entropy coefficient 0.002
Discount factor 0.99
GAE A\ 0.95
Clip range 0.2
Max gradient norm 1.0

Initial action standard deviation 1.0

Clip range action mean -10.0, 10.0

Policy and critic hidden layers [512, 256, 128]

Activation function ELU

# training iterations 17500 (quadruped, hexapod), 42500 (humanoid)
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B Embodiment Generation

B.1 Basic Units for Quadruped, Humanoid and Hexapod

Tables 4 and 5 provide the base values for geometry-related and kinematics-related parameters,
respectively, for representative links across quadruped, humanoid, and hexapod morphologies. For
the humanoid class, we report parameters for the trunk and the left-side lower-body links. For
quadruped and hexapod classes, we include the front-left leg. The remaining components are either
symmetric or peripheral to locomotion (e.g., arms or head for humanoids) and therefore omitted.

The base parameter values are partially inspired by the Unitree Go2 and H1 platforms, offering a
degree of realism without exact replication. This design choice is consistent with prior work such
as GenLoco [57], which abstracts physical characteristics from real robots to define a diverse yet
grounded design space. Robots instantiated with these values correspond to a 1.0 variation setting
(i.e., no geometric, kinematic, or topological scaling applied), and serve as the reference point for
applying the variation factors listed in Tables 4 and 5.

To support meaningful evaluation of generalization, these reference robots are excluded from the
training set. Every robot in the training set differs from Go2 and H1 by at least one geometric,
topological, or kinematic variation, along with additional discrepancies due to loose alignment in
parameter values (e.g., each joint in the humanoid closest to H1 differs by a few centimeters, and
the overall height differs by approximately 10 cm). This diversity encourages the learned policy to
capture broadly transferable motion patterns. As discussed in Section 4, empirical results suggest
that the policy has acquired sufficiently generalizable behaviors to support both cross-embodiment
and sim-to-real transfer, which is generally considered highly challenging.

B.2 Generation Algorithm

We construct each robot embodiment in a tree-like structure by iteratively connecting links using
joints, following the URDF specification and the basic units described in Section B.1. The construc-
tion procedure varies slightly across morphologies:

* Humanoids: The root node is the pelvis. We first append the torso and hip links, then
attach the shoulder and arm links for the upper body, followed by the thigh, calf, and foot
links for the lower body.

* Quadrupeds and hexapods: The root node is the trunk. We sequentially append the hip
links to the trunk, then connect the leg and foot links to form the complete body.

To ensure diversity in the generated embodiments, we introduce variations in geometry, topology,
and kinematics during the construction process, as detailed in Section 3. Table 6 summarizes the
variation parameters and their corresponding candidate values. While most parameters are self-
explanatory, we clarify a few specific cases:

* Number of knee joints: If a leg is configured with zero knee joints, the calf link is omitted,
and the thigh link is directly connected to the foot.

* Foot link size: For humanoids, foot links are modeled as boxes and scaled by length; for
quadrupeds and hexapods, foot links are modeled as spheres and scaled by radius.

* Joint limit variation: Joint limits are varied by uniformly scaling the nominal joint ranges
about the nominal joint position, which serves as a fixed point.

B.3 Nominal Joint Configurations

Nominal joint configurations are used to initialize robot poses during training, contribute to reward
terms that discourage deviations too far from these default joint angles, and function as offsets to the
actions of the expert and distillation policies. As such, they serve as useful regularizers for learning
realistic and efficient gaits. To support scalability across diverse morphologies, we generate nominal
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configurations by reusing unit values across the generated embodiments. The nominal joint angles
used are summarized in Table 7.

Table 4: Base geometry and mass parameters for representative link types in the embodiment
generation pipeline used in GENBOT-1K. Geometry dimensions are specified according to shape
type: Sphere (radius), Cylinder (Iength, radius), and Box (length, width, height).

Class Link Name Geometry Type Geometry Dimension (m) Mass (kg)
Humanoid  Pelvis Sphere (0.05,) 5.390
Torso Box (0.08, 0.26, 0.18) 17.789
Hip yaw link  Cylinder (0.02,0.01) 2.244
Hip roll link  Cylinder (0.01, 0.02) 2.232
Thigh Cylinder (0.2, 0.05) 4.152
Calf Cylinder (0.2, 0.05) 1.721
Foot Box (0.28, 0.03, 0.024) 0.474
Quadruped Trunk Box (0.38,0.09, 0.11) 6.921
Hip Cylinder (0.04, 0.046) 1.152
Thigh Box (0.21, 0.025, 0.034) 1.152
Calf Cylinder (0.12,0.013) 0.154
g Foot Sphere (0.022,) 0.040
Hexapod Trunk Box (0.8,0.5,0.1) 6.921
Hip Sphere (0.05,) 0.678
Thigh Cylinder (0.22, 0.03) 1.152
Calf Cylinder (0.22,0.025) 0.154
Foot Sphere (0.03,) 0.040
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Table 5: Motor and joint properties of the generated embodiments in GENBOT-1K.

Class Joint Name Joint Limits (rad) Max. Torque (N-m) Max. Velocity (rad/s)
Humanoid  Torso joint (-2.35, 2.35) 200 23
Shoulder pitch joint (-2.87,2.87) 40 9
Shoulder roll joint (-0.34, 3.11) 40 9
Shoulder yaw joint (-1.30, 4.45) 18 20
Elbow joint (-1.25,2.61) 18 20
Hip yaw/roll joint (-0.43, 0.43) 200 23
Hip pitch (-3.10, 2.50) 200 23
Knee joint (-0.26, 2.00) 300 14
Ankle joint (-0.87, 0.52) 40 9
Quadruped  Hip pitch joint (-1.05, 1.05) 23.7 30.1
Front thigh joint (-1.57, 3.49) 23.7 30.1
Rear thigh joint (-0.52, 4.53) 23.7 30.1
Knee joint (-2.72,-0.84) 45.43 15.7
Hexapod Hip joint (-1.57,1.57) 100 30
Thigh joint (-1.57,1.57) 100 30
Knee joint (-1.57,1.57) 100 30

Table 6: Variation parameters across geometry, topology, and kinematics in the embodiment
generation algorithm. The torso link randomization only applicable to the humanoid class.

Variation Type Parameter Name Candidate Values
Topology Number of knee joints {0,1,2,3}
Geometry Scaling factor for all link size {0.8,1.0,1.2}

Scaling factor for thigh link length  {0.4, 0.8, 1.0, 1.2, 1.6}
Scaling factor for calf link length {04,08,1.0,1.2,1.6}

Scaling factor for foot link size {1.0,2.0}
Scaling factor for torso link size {04,08,1.0,1.2,1.6}
Kinematics Scaling factor for knee joint limits ~ {0.2, 0.6, 1.0}
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Table 7: Nominal joint configurations for generated embodiments in GENBOT-1K. These joint
angles are used to initialize robot poses, define regularization rewards, and function as offsets to the

policy actions. The values are consistent across symmetric limbs.

Class Joint Name Joint Angle (rad)
Humanoid Torso 0.0
Shoulder (Left/Right, pitch/roll/yaw) 0.0
Elbow (Left/Right) 0.0
Hip pitch (Left/Right) -0.4
Hip roll/lyaw (Left/Right) 0.0
Knee (Left/Right) 0.8
Ankle (Left/Right) -04
Quadruped Hip (Front/Rear, Left/Right) +0.1
Thigh (Front, Left/Right) 0.8
Thigh (Rear, Left/Right) 1.0
Knee (Front/Rear, Left/Right) -1.5
Additional knee joints (if any) 0.0
Hexapod Hip (Front/Middle/Rear, Left/Right) 0.0
Thigh (Front/Middle/Rear, Left/Right) 0.79
Knee (Front/Middle/Rear, Left/Right)  0.79
Additional knee joints (if any) 0.0
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C Cross-Embodiment Distillation

C.1 Expert Data Collection

For every embodiment, we run the expert RL policy for 600 simulation steps using 4096 parallel
environments. This results in a total of 1,985,740,800 data samples across all training embodiments.
Note that the episode length during the expert training is 1000 simulation steps (equivalent to 20
physical seconds), thus, the collected data only covers the first half of the episode. Using the full
length may provide more time-correlated data, which we did not analyze due to time constraints. The
final dataset needs around 5 TB of storage using the h5py format without additional compression.

C.2 URMA Architecture Details

The observation space of the URMA policy is split into two parts: joint-specific observations o; and
general observations o4. The joint-specific observations o; include the joint angle, joint velocity,
previous action of the joint (shape: (j(e), 3)). The general observations o, include the trunk linear
velocity, gravity vector, command velocities, PD gains, action scaling factor, total mass of the robot,
robot dimensions, number of joints and feet size (shape: (20,)).

The description vectors d; of the joints include the relative carthesian position of the joint in the
nominal configuration, joint rotation axis, joint nominal angle, maximum joint torque, maximum
joint velocity, joint position limits, p-gain, d-gain and action scaling factor, robot mass and dimen-
sions (shape: (j(e), 18)).

We build on the original URMA neural network architecture, as shown in Figure 7, from Bohlinger
et al. [41] with the following modifications:

* We use multi-headed attention for the encoding of the joint observations and descriptions
to increase the expressiveness of the policy. All our experiments use 3 attention heads.

* We remove the feet-specific attention encoder as not all robots in the real world have foot-
specific sensors, like pressure sensors.

* We directly use the output from the action decoder p, as the action of the policy, instead
of using an additional head to produce a standard deviation and sampling from a Gaussian
distribution, as we train the policy with imitation learning instead of RL.

* We add another encoding layer to the general observations o, to project them into a higher
dimensional latent space before concatenating them with all the joint latent vectors from
the attention heads.

* We use wider feedforward layers (2x the hidden dimensions) throughout the network.

The resulting model has 2.1 million parameters. Overall, it is a compact network with strong induc-
tive biases that leverage the compositional structure of robots.

When applying the actions of the policy to the robots, we use the same PD controllers with the same
nominal joint configurations and action scaling factors as in the expert training (see Appendix A.1).

C.3 Train-Test Set Splits

We split GENBOT-1K into a training set (80%) and a test set (20%) using a deterministic pseudo-
random sampler with a fixed seed, ensuring full reproducibility. The same sampling procedure is
applied independently to each morphology class, except for quadrupeds and hexapods, which share
identical splits due to matched dataset sizes. Detailed test indices are listed in Table 8, and summary
statistics for each category are shown in Table 9.
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Table 8: Train-test splits of GENBOT-1K. Each index refers to one unique embodiment in each
embodiment class. The training set is simply the complement of the test set and thus omitted.

Class Test Set

Humanoid [0, 7, 12, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 63, 71, 72,75, 97, 104, 111,
113, 122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170,
181, 183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260,
261, 266, 272, 276, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327,
342]

Quadruped [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72,75, 97, 104, 111, 113,
122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170, 181,
183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261,
266, 272, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

Hexapod [0, 7, 8, 20, 31, 32, 37, 41, 46, 47, 48, 50, 51, 55, 71, 72, 75, 97, 104, 111, 113,
122, 124, 128, 132, 133, 144, 149, 154, 155, 158, 161, 163, 166, 169, 170, 181,
183, 197, 204, 207, 215, 222, 226, 229, 241, 244, 248, 250, 252, 258, 260, 261,
266, 272, 278, 280, 282, 286, 290, 298, 308, 312, 313, 316, 320, 327]

Table 9: Statistics of train-test splits of GENBOT-1K. The splits have an approximately balanced
distribution over different categories.

Class Total Number Train Set (80%) Test Set (20%)
Humanoid 348 278 70
Quadruped 332 265 67
Hexapod 332 265 67
Total 1012 808 204

C.4 Training Details

We designed an efficient training pipeline that balances disk I/O, CPU preprocessing, GPU utiliza-
tion, and RAM usage. Instead of loading every minibatch directly from disk, we first load a fixed
number of data slices, each containing a small subset of steps from multiple robot embodiments,
into an in-memory buffer. Each slice consists of 100 trajectories with 128 steps per trajectory. Once
the buffer is filled, minibatches are sampled uniformly at random, without replacement, until every
sample has been seen a fixed number of times. This strategy reduces disk access overhead, improves
memory locality, and maintains sample diversity throughout training, though it may introduce local
overfitting and biased gradient estimates.

Because data from different robots have varied observation and action spaces, we load them sepa-
rately and use gradient accumulation to reduce bias in the gradient estimation. Specifically, gradients
are accumulated across multiple minibatches before each optimizer step, helping to balance contri-
butions across robot embodiments. While effective, this approach still suffers from local gradient
bias. A more principled solution would involve zero-padding to form large, uniform batches across
robots, but implementing this would require architectural and pipeline-level changes, which we did
not pursue due to time constraints. In theory, this could lead to smoother optimization and potentially
better final performance.

To ensure numerical stability, we apply gradient clipping with a maximum norm of 5. We use the
AdamW optimizer [112] with 5;=0.9, 82=0.999, and a cosine-annealed weight decay schedule that
decays from 3 x 10~ to 0 over the course of training [113]. The key hyperparameters for distillation
are summarized in Table 10.

Our pipeline requires 128 GB of RAM to maintain the in-memory buffer. Due to the small size of
the URMA policy, training can be efficiently performed on a single GPU (e.g., NVIDIA RTX 4090
or H100). We did not observe significant gains in convergence from increasing batch size, possibly
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Figure 7: URMA with multi-head attention. We extend the original URMA module [41] with
multiple attention heads, each aggregating information from joint observations using distinct atten-
tion distributions. This design enables the model to capture multi-modal dependencies and improves
its capacity to scale across diverse embodiments.

Table 10: Hyperparameters of the distillation pipeline.

Hyperparameter Value

# training samples per embodiment 500 x 4096
Validation set size 100 x 4096
Batch size 64
Gradient accumulation steps 8
Gradient clipping threshold 5

Data slice size 100 x 128
Max slices in buffer 1024
Buffer repeat factor 3
Optimizer AdamW [112]
AdamW betas (0.9, 0.999)

Weight decay schedule
Learning rate schedule

3 x 10~% — 0 (cosine)
Cosine annealing [113]

# epochs 80

due to the structured nature and potential bottlenecks in the model architecture. Further investigation
into the scaling behavior of the training dynamics is left for future work.

D Additional Results on Out-of-Domain Generalization

Table 11: Mean reward by knee-range scale. Values at 0.6 and 0.2 are from GENBOT-1K; values
at 0.1 and 0.001 are from the modified version.

Class 0.6 0.2 0.1 0.001
Humanoid 19 14 16 4

Quadruped 49 36 45 26
Hexapod 34 21 28 20

We evaluate out-of-distribution (OOD) generalization by testing the URMA policy trained on
GENBOT-1K against a modified test distribution with significantly reduced knee joint limits—{0.1,
0.001}, which lie outside the training range of {0.6, 0.2}. Table 11 reports the mean episode reward
across morphology classes at each joint limit scale.

31



Results show that moderate tightening (0.1) induces only mild performance degradation across all
classes. In contrast, extreme tightening (0.001) leads to a sharp drop for the less stable humanoid
class, while quadrupeds and hexapods remain more robust. These results highlight the policy’s
ability to generalize to structurally OOD embodiments, albeit with limitations under severe distribu-
tional shift. While expanding the training distribution to cover a broader range of joint configurations
could improve robustness, such exploration is beyond the scope of this study.

E Additional Details on Real-World Deployment

E.1 Hardware Setup

We evaluated our distilled URMA policy zero-shot on two real-world platforms: the Unitree Go2
quadruped and the Unitree H1 humanoid. For each robot, we used its URDF to produce the em-
bodiment description vectors d;. Before deployment, the policy was converted to the ONNX format
to load it in JAX and guarantee maximum inference speed. The policy inference ran on a Ubuntu
22.04 laptop (Ryzen 9 CPU), interfaced to the robot over a dedicated Ethernet connection. We ran
the control loop at the same 50 Hz and with the same PD gains as in simulation, and sent the target
joint angles to the robot’s internal controller. We limited the commanded x-y-yaw velocity to 0.8 m/s
for the Go2 and 0.5 m/s for the H1, to ensure the robot’s stability and safety during the experiments.

E.2 Implementing Joint Limit Variations

To probe robustness under kinematic constraints, we impose an artificial knee-joint range limited to
20, 40 or 60 % of its nominal range. In simulation, one can enforce such limits by directly clamping
joint angles within the physics engine; in hardware, however, neither the robot’s encoders nor its
embedded PD controller can be modified. Consequently, we introduce a software-level joint-limit
layer into the control loop in order to restrict the target joint angle for affected knee joints to the new
limits. At each control step, the policy’s commanded knee angle is constrained to the prescribed +20,
40 or 60 % bounds. Instead, we implemented a software-based solution that restricts the target joint
angle for affected knee joints to the new limits. To counteract any excursions driven by external
disturbances, we implement an active rejection mechanism: whenever the measured knee angle
violates the software limits, we (1) project the commanded target onto the nearest permissible bound
and (2) elevate the proportional and derivative gains to K;,, = 60 and K; = 1, respectively, until
the joint re-enters the safe region. This procedure enforces a soft joint-limit constraint exclusively
in software—without altering hardware or contravening physical laws—while delivering high-gain
corrective action against environmental perturbations.

F Additional Latent Space Analysis

In addition to the t-SNE analysis, we also apply Principal Component Analysis (PCA) [110] and
Uniform Manifold Approximation and Projection (UMAP) [111] on the action latent vectors Zyction
in Figure 8. Both PCA and UMAP projections reveal clear grouping according to the morphology
class, with humanoid, quadruped, and hexapod embeddings forming distinct clusters. Compared
to the t-SNE analysis, clusters about the topological, geometric, and kinematic variations are less
pronounced and appear to be more cramped.

Furthermore, we show in Figure 9 the t-SNE analysis of the learned joint description latent space
fo(d;) for all joints from all embodiments in the GENBOT-1K dataset. Although the three mor-
phologies still define the rough structure of this latent space, the learned embeddings for the joint
descriptions seem to be much more entangled across the three morphology classes.
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Figure 8: Additional visualizations of the learned embodiment embeddings. PCA (a.) and
UMAP (b.) of the embodiment latent space (i.e., every point represents one robot, aggregated from

all of its joint description vectors).
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Figure 9: Additional visualizations of the learned joint description embeddings. t-SNE visual-
ization of the joint description latent space of all joints from all embodiments in the GENBOT-1K
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dataset (i.e., every point represents one joint of a robot).
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