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Abstract— Predicting agents impacted by legal policies, phys-
ical limitations, and operational preferences is inherently dif-
ficult. In recent years, neuro-symbolic methods have emerged,
integrating machine learning and symbolic reasoning models
into end-to-end learnable systems. Hereby, a promising avenue
for expressing high-level constraints over multi-modal input
data in robotics has opened up. This work introduces an
approach for Bayesian estimation of agents expected to comply
with a human-interpretable neuro-symbolic model we call
its Constitution. Hence, we present the Constitutional Filter
(CoFi), leading to improved tracking of agents by leveraging
expert knowledge, incorporating deep learning architectures,
and accounting for environmental uncertainties. CoFi extends
the general, recursive Bayesian estimation setting, ensuring
compatibility with a vast landscape of established techniques
such as Particle Filters. To underpin the advantages of CoFi,
we evaluate its performance on real-world marine traffic
data. Beyond improved performance, we show how CoFi can
learn to trust and adapt to the level of compliance of an
agent, recovering baseline performance even if the assumed
Constitution clashes with reality.

Index Terms— Neuro-Symbolic Systems, Bayesian Estimation

I. INTRODUCTION

PREDICTING a moving target without knowing its inten-
tions or control methodology is inherently challenging.

Specifically, when limited to the most basic state-space
models, e.g., constant velocity or acceleration systems, only a
vague understanding of the agent’s trajectory can be formed.
When this is the case, e.g., with human-operated vehicles
such as cars or boats, one can leverage knowledge about the
agent’s environment to restrict the predicted state evolution.
For instance, in the case of road vehicles, one can inform
the forward model with the curvature of the road the agent
is currently traversing [1]. However, the insight into purely
geometric aspects does not fully leverage the frequently
available background knowledge on legislative and logical
constraints.

To this end, we present the Constitutional Filter (CoFi),
a novel prediction model coupling an agent’s motion to a
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% Environment
0.35 ::over(x, park).
distance(x, road) ~ normal(20, 0.8).

% Perception
0.1 ::fog(z).

% Background knowledge
visual_line_of_sight(X, Z) :-
    fog(Z), 
    distance(X, pilot) < 50;

    \+ fog(Z), 
    distance(X, pilot) < 100.

% Compliance with Constitution
constitution(X, Z) :- 
    distance(X, road) < 15;

    over(X, park), 
    visual_line_of_sight(X, Z).
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Fig. 1: The Constitutional Filter’s estimation cycle: A
Constitution for a remote-controlled, unmanned aircraft sys-
tem is shown on the left. The right-hand side shows the
tracked drone and the likely compliant areas shaded in blue.

neuro-symbolic model of its internal rules and perception of
its state space. While such models have been employed as
the basis for planning, e.g., mission design for Unmanned
Aircraft Systems in regulated urban environments [2], this
work explores how to apply such techniques for predicting
other agents’ motion without insights into their actual control
and intentions. More specifically, we employ probabilistic
first-order logic, capturing knowledge about the legal and
physical constraints in an uncertainty-aware environment
representation. This permits expressing rules over spatial
relations between the agent’s state-space and geographic
features from potentially inaccurate map data.

In summary, our key contributions are:

• We present the Constitutional Filter (CoFi), an extension
to Bayesian estimation that tracks compliant agents in-
formed by a neuro-symbolic model of the environment’s
and agent’s rules as illustrated in Figure 1.

• We demonstrate how CoFi learns to trust observed
agents, quantifying the degree to which they are ex-
pected to act according to the assumed Constitution.

• We show how CoFi adapts the impact of the Constitu-
tion according to the learned trust, assuring that a faulty
constitution does not degrade filter performance.

Additionally, we provide an open-source implementation of
CoFi as part of our framework for Probabilistic Mission
Design in multi-modal mobility1.

1github.com/HRI-EU/ProMis
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II. RELATED WORK

CoFi is a novel approach for the Bayesian estimation of
compliant agents. To contextualize CoFi, we discuss neuro-
symbolic systems (reasoning), probabilistic robotics (filter-
ing), as well as perception and representation (mapping).

A. Neuro-Symbolic Systems

Neuro-symbolic systems are an emerging field aiming to
intertwine programmatic reasoning on a symbolic level with
the sub-symbolic capabilities of deep learning models.

One of the earliest programmatic reasoning systems based
on first-order logic is Prolog [3]. To additionally embrace un-
certainty into programmatic logic, systems such as Bayesian
Logic Programs [4] and Probabilistic Logic Programs [5], [6]
have been introduced. While they were not formulated for
end-to-end learning with artificial neural networks, languages
such as DeepProbLog [7], NeurASP [8], and SLASH [9]
close this gap and combine the strengths of neural informa-
tion processing and probabilistic reasoning. Recent work has
demonstrated how such systems can be employed as a basis
for Probabilistic Mission Design [2], [10] by encoding, e.g.,
traffic laws in hybrid probabilistic first-order logic [11] as a
basis for planning or granting clearance to an agent.

CoFi follows the idea of encoding the laws and regulations
that govern an agent’s environment in a neuro-symbolic
setting, formulating the agent’s Constitution. In contrast to
ProMis, this enables CoFi to integrate state estimation, sensor
data, and high-level semantic information into a Bayes Filter
for tracking targets with high-level rules of operation.

B. Probabilistic Robotics

One cannot deny the critical role of probabilistic methods
in robotics, commonly based on Bayesian beliefs [12]. For
instance, state-of-the-art localization usually relies on em-
ploying members of the family of Bayes Filters (Section III-
A), such as the Kalman Filter [13], providing a closed-form
solution to recursive tracking in linear and Gaussian systems.

To enable tracking in non-linear systems while keeping
the Gaussian assumption, generalizations such as the Ex-
tended Kalman Filter [14]–[16] and the Unscented Kalman
Filter [17], [18] have been introduced. While the former
relies on a linearization of the model, the latter works
by forwarding samples through the so-called unscented
transform to conserve the Gaussian nature of the estimate.
When dropping linearity and distribution assumptions on the
underlying process, one can employ the Particle Filter [19],
[20] instead. Here, approximate results are obtained using
sequential Monte Carlo techniques.

CoFi is also a member of the Bayes Filters. By introducing
a third step to the paradigm of prediction-correction schemes,
namely the Constitution step, CoFi guides the estimation pro-
cess through the likelihood of a satisfied Constitution given
the state, measurement, and high-level semantic information.
Because CoFi does not alter the roles of the process and
measurement models, it stays compatible with a wide range
of prior work on filter techniques that can complement CoFi’s
insights based on probabilistic first-order logic.

C. Perception and Environment Representation

Numerous sensors have been developed to perceive one-
self and the environment. They range from proprioceptive
sensors, e.g., the Global Navigation Satellite System [21]
and Inertial Measurement Units [22], [23] which inform
about the agent themselves, to exteroceptive sensors such
as cameras [24], [25], Lidar [26], [27], and Radar [28], [29]
which inform about the environment.

These perceptions can be leveraged to improve filter per-
formance significantly [30]. For instance, in the autonomous
driving context, this has been achieved by coupling observa-
tions of lane markings [31] or stop lines [32] with a vehicle’s
proprioception. Similarly, knowledge of the road geometry
can be employed to successfully predict vehicle motion
along a local Frenet coordinate system [1], assuming the
agent follows local traffic regulations. Likewise, high-level
semantic information on the road infrastructure and rules
can be leveraged to improve motion prediction [33], e.g.,
lane count and directionality. Like transportation systems
need to follow road laws, tracking pedestrians profits from
integrating data about local laws and environment features
such as movement patterns and social interactions [34].

Along these lines of research, CoFi integrates high-level
concepts and semantics of the environment by employing a
Statistical Relational Map [35] (StaR Map, see Section III-
B), assigning heterogeneous levels of uncertainty to geo-
graphic features [36]. Hence, in its Constitution, probabilistic
inference across likely states and measurements results in
an additional distribution weighting the estimation process,
encoding how likely the agent’s local laws and assumed
preferences are satisfied.

III. PRELIMINARIES

We present the general formulations and notation of recur-
sive estimation of dynamic systems in a Bayesian setting and
the uncertainty-aware, semantic environment representation
of Statistical Relational Maps, as they will be required later
in Sec. IV for building the Constitutional Filter.

A. Bayesian Filters

Bayesian filters recursively estimate the state xt ∈ X of a
dynamical system at time t ∈ N. While the state is hidden,
a combination of prediction through a process model f with
control inputs ut ∈ RU , U ∈ N and belief updates through an
observation model h with measurements zt ∈ Z is employed
to keep track of xt. More specifically, the system can be
written as

xt = f(xt−1,ut, ex,t) and zt = h(xt,ut, ez,t). (1)

Intuitively speaking, f expresses an expectation on a
state’s evolution within a discrete time-step, while h encodes
the values produced by a sensor. Here, both models are
subject to i.i.d. noise ex,t and ez,t respectively. Depending
on the application, this formulation can slightly change, e.g.,
often the input ut is not part of the computation of the
system’s output zt. We will omit ut for simplicity in the
following.



A Bayesian filter operates in two steps. First, a prior belief
is obtained using the last estimate xt−1 as

p(xt|z1:t−1) =

∫ Process Model f︷ ︸︸ ︷
p(xt|xt−1) p(xt−1|z1:t−1)dxt−1. (2)

Second, once a measurement zt is available, the prediction
is updated using Bayes’ rule

p(xt|z1:t) =

Observation Model h︷ ︸︸ ︷
p(zt|xt) p(xt|z1:t−1)

p(zt|z1:t−1)
, where (3)

p(zt|z1:t−1) =

∫
p(zt|xt)p(xt|z1:t−1)dxt. (4)

As is the case for the Kalman filter, closed-form solutions to
the equations above exist depending on assumptions about
the observed process, e.g., linear state transitions and Gaus-
sian noise. Without such strong assumptions, approaches
such as the Particle filter allow the tracking of the hidden
state using sampling techniques.

As a final remark, in recursive filtering, we assume the
Markov property for states and measurements, i.e.,

p(xt|x1:t−1, z1:t−1) = p(xt|xt−1) and (5)
p(zt|x1:t) = p(zt|xt). (6)

Intuitively, the previous state contains sufficient information
for prediction to discard all other historical data.

B. Statistical Relational Maps

Statistical Relational Maps (StaR Maps) have been re-
cently introduced to represent uncertain environments con-
sisting of semantic features in a relational and probabilistic
manner [35]. Rather than containing a graphical representa-
tion of the environment, a StaR Map parameterizes hybrid
probabilistic (discrete and continuous) spatial relations.

Using a StaR Map, the so-obtained spatial relations can
be translated to distributional ground atoms in first-order
logic, exemplified by the Listing in Figure 1. Furthermore,
one can visualize the probabilistic spatial relations, e.g., by
computing the expected values across the mapped space as
shown in Figure 2.

Consider the exemplified relations over(x, g) and dis-
tance(x, g) between a point x ∈ RD to a set of environment
features g ∈ G. The specifics, such as the dimensionality of
the mapped space and the sets of features, will depend on
the application. For example, in the aerial mobility scenario
illustrated in Figure 1, G = {park, road, pilot} and D = 2.
Let us discuss how StaR Maps estimate the parameters of
such relations.

Consider a map M = (V, E , ρ) be a triple of vertices V ,
edges E , and a tagging function ρ : V → P(G). The function
ρ(v) ⊆ G annotates vertex v ∈ V with a set of semantic tags.
If a path exists between two vertices in V across edges in E ,
StaR Maps consider them part of the same feature, hence ρ
assigns the same type to each.

To address inaccuracies of the map data, e.g., due to low-
cost sensors or crowd-sourced data, StaR Maps employ a
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Fig. 2: StaR Maps parameters in an Advanced Aerial
Mobility setting: Here, the expected values of two basic
probabilistic spatial relations are shown in an urban environ-
ment, namely over and distance (used in Figure 1).

stochastic error model analogously to prior work [36]. That
is, for each vi,j ∈ V , being the j-th vertex of the i-th feature,
the following generates N ∈ N samples:

Φ(n) ∼ ϕi (Transformation)

t(n) ∼ κi (Translation)

v
(n)
i,j = Φ(n) · vi,j + t(n) (Generation)

Here, ϕi and κi are feature-wise distributions of linear maps
Φ(n), e.g., rotation, scaling or shearing, and translations
t(n). With M(n) being generated by taking the n-th sample
of each vertex and a copy of the edges E , this collection
of randomized maps allows StaR Maps to compute the
statistical moments of its spatial relations.

Let r(M(n),x, g) be a deterministic function evaluating a
spatial relation on map M(n) at location x ∈ Rd limited to
features for which ρ(v) = g. Through this sampling process,
we can empirically estimate statistical moments, e.g., mean
and variance, with respect to the chosen relation r, location
x, and tag g:

µ̂r =
1

N

∑
n

r(M(n),x, g) (7)

σ̂2
r =

1

N − 1

∑
n

(
r(M(n),x, g)− µ̂r

)2

(8)

For example, assume distance(x, g) ∼ N (µd, σ
2
d) to be a

normally distributed random variable with the deterministic
function rd. That is, the function rd(M(n),x, g) computes
the Euclidean distance from x to the closest feature in M(n).

IV. METHODS

We present the Constitutional Filter (CoFi) for tracking
compliant agents with unknown internal control and planning
mechanisms. This includes the discussion of (A) CoFi’s
novel architecture, introducing neuro-symbolic concepts to
recursive Bayesian estimation, (B) the construction and (C)
semantics of the Constitution as a probabilistic reasoning
model, and (D) how to obtain a density of the constitutional
likelihood to be integrated into (E) the constitutional belief
update. Finally, we show how (F) CoFi learns and integrates
a level of trust about how compliant observed agents are.



A. Architecture
As illustrated in Figure 3, CoFi integrates neuro-symbolic

representations of the agent’s internal preferences, physical
limitations, and environment policies, such as traffic laws,
into recursive Bayesian estimation. Hence, CoFi leverages
high-level expert knowledge about the task, environment,
and semantic information beyond simple sensor readings.
Specifically, besides a process model f and observation
model h, CoFi is equipped with the Constitution Ct, allowing
it to map states and measurements into the probability of the
Constitution being satisfied. Through a learned trust ratio τ ,
CoFi automatically regulates the influence the Constitution
has on the belief update, recovering the equations of an un-
constitutional filter if the observed agent proves incompliant.

B. Constitutions as Deep Probabilistic Logic Programs
We encode the Constitution as a deep probabilistic first-

order logic program Ct = Bt ∪ Pt ∪ Et, combined of
sub-programs encoding background knowledge Bt, percep-
tion Pt, and environment representation Et as illustrated in
Figure 1. For CoFi, we assume Bt to be provided by a
domain expert, i.e., by formalizing their knowledge as first-
order logic or by translating natural language descriptions
through, e.g., a Large Language Model. Further, Pt encodes
the semantics of the environment as experienced during the
agent’s lifetime, e.g., information from other agents in the
environment. Finally, Et comprises spatial relations queried
from a StaR Map as outlined in Section III-B.

Constitutions consist of clauses, each being made up of a
head, optional body, and distribution. Consider the following
two clauses.

p :: r1(a1, . . . , an) :- l1, . . . , lm. (Categorical)
r2(a1, . . . , ai) ∼ p(θ) :- l1, . . . , lj . (Continuous)

In the first case, the head r1 is true with a probability p given
that all the literals lk in the body are true. Analogously, in the
second case, head r2 is distributed according to the density
p(θ) with parameters θ if its body is true. If the right-hand
side is empty, the head is regarded as a fact and distributed
independently of any other symbols.

For example, let us consider the running examples from
Section III-B as probabilistic clauses:

0.95 :: over(x, park). (9)
distance(x, road) ∼ normal(100, 1). (10)

This means that at the location referenced with the term x,
there is a park with a probability of 0.95, and the distance
to the nearest road is expected to be about 100m.

A logic program must be solved, i.e., the models under
which a chosen clause is satisfied must be found to perform
probabilistic inference. While details will differ across off-
the-shelf solving pipelines such as Prolog [37] or clingo [38],
the rough process can be described in two steps. First, the
program is grounded, replacing all variables with the pos-
sible values from the program’s domain. Second, the solver
processes the grounded program, enumerating all solutions
consisting of models j ∈ J of ground atoms a ∈ A.

Distributions

Data Sources

Algorithms
Neuro-Symbolic

MeasurementProcessEstimate

Constitution Ct Environment Et
Background
Knowledge Bt

Expert or LLM Perception Pt

Density
Estimation

StaR Map

Constitution

Probabilistic
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Trust Ratio

Fig. 3: The Constitutional Filter’s architecture: CoFi ex-
tends recursive Bayesian estimation using a neuro-symbolic
model of the tracked agent’s decision-making constraints,
integrating background knowledge, perception, and a proba-
bilistic environment representation.

C. Exact Probabilistic Inference

We now aim to compute the probability of a pair (xt, zt)
satisfying the first-order logic program of Ct when solving
for the constitution(X, Y) clause. For exact probabilistic
inference, one needs to assign the probabilities P (a =
j(a)|xt, zt, Ct) of atom a to take on the value assigned
by model j given the current state xt, measurement zt
and constitution Ct. For CoFi, we refer to a StaR Map
(see Section III-B) to provide the distribution parameters to
ground atoms expressing spatial relations as in Eqs. 9 and
10. Further, we assume Bt to be parameterized according to
expert knowledge or learned and Pt to encode uncertainties
associated with the respective perceived properties (see Fig-
ure 1 and Listing 1). In turn, the probability P (Ct|xt, zt) of
the Constitution being satisfied given the state and measure-
ment at time t is then obtained via the sum-product

P (Ct|xt, zt) =
∑

j∈J

∏
a∈A

P (a = j(a)|xt, zt, Ct). (11)

A knowledge compiler is often employed to compress this
sum-product using a heuristic search for a minimal formula,
often leading to substantial inference speedups [39].

D. Density Estimation of the Constitutional Likelihood

Note that P (Ct|xt, zt) of Eq. 11 is a discrete distribution,
encoding the probability of the constitution being satisfied
given a state and measurement. To integrate the Constitution
into a Bayesian belief update in CoFi’s process, we must
find the probability density function p(ct|xt, zt) of a sample
satisfying the Constitution. To do so, we compute the set of
probabilities of the constitution being satisfied

S =
{
P (Ct|x(n)

t , z
(n)
t )

}
n∈{1,...,N}, (12)

where x
(n)
t ∼ p(xt|c1:t−1, z1:t−1) and z

(n)
t ∼ p(zt|xt). One

can then approximate the density p(ct|xt, zt) from S, for
instance, using Kernel Density Estimation [40], [41].

E. Constitutional Bayesian Belief Update

We have shown how one can compute the probability that
the Constitution is satisfied for a state xt and measurement
zt, yielding p(ct|xt, zt). Hence, we can integrate the Con-
stitution into a general Bayesian belief update.
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Fig. 4: Statistical relational maps for marine traffic: Expectations of StaR Map relations employed in Listing 1 at New
York’s harbor, considering land, waterways, anchorage areas, and depth. Distances are shown in kilometers.

CoFi’s prior of the state follows the standard formulation
while considering past evaluations of the agent’s Constitu-
tion, similar to Eq. 2:

p(xt|c1:t−1, z1:t−1) =

∫
p(xt|xt−1)

p(xt−1|c1:t−1, z1:t−1)dxt−1.

(13)

Further, we obtain the posterior of an agent’s location given
the Constitution by plugging Eq. 13 into Bayes’ rule as in
Eq. 3:

p(xt|c1:t, z1:t) =
p(ct, zt|xt)p(xt|c1:t−1, z1:t−1)∫
p(ct, zt|xt)p(xt|c1:t−1, z1:t−1)dxt

.

(14)
Finally, by applying the chain rule of probability to the condi-
tional joint probability p(ct, zt|xt), we get the Constitutional
Bayesian belief update such that

p(xt|c1:t, z1:t)=

Constitution︷ ︸︸ ︷
p(ct|xt, zt)

Measurement︷ ︸︸ ︷
p(zt|xt)

Prediction︷ ︸︸ ︷
p(xt|c1:t−1, z1:t−1)∫

p(ct|xt, zt)p(zt|xt)p(xt|c1:t−1, z1:t−1)dxt
.

(15)

F. Constitutional Trust Ratio

One cannot blindly assume that the proclaimed Constitu-
tion perfectly matches an agent’s behavior. First, the Consti-
tution might be incomplete or erroneous. Second, the agent
might not diligently follow the rules of the environment,
e.g., by disregarding local policies. Hence, we introduce
the trust ratio τ(ψ), allowing CoFi to blend between the
Constitutional likelihood and a uniform distribution:

pτ (ct|xt, zt) = τ(ψt)p(ct|xt, zt)+(1−τ(ψt))U(0, 1) (16)

ψt =
[
ψ1(xt, zt) · · · ψK(xt, zt)

]
(17)

Here, the vector ψ captures trust features, e.g., the type of
a vehicle or its current velocity, that the trust depends on.

The density pτ (ct|xt, zt) can then replace the standard
Constitutional likelihood in Eq. 15. Note that for τ = 1,
we fully trust the correctness of the constitution, and for
τ = 0, we obtain a standard Bayesian belief update that
discards the constitution entirely (unconstitutional baseline).
As demonstrated in Sec. V-E, maximizing CoFi’s accuracy
on real-world data can determine an appropriate trust ratio.

V. EXPERIMENTS

We answer the following questions using real-world
marine localization from Autonomous Identification Sys-
tem (AIS) recordings and official charts.
(Q1) How can we encode expert knowledge about marine

vessels, like traffic regulations, into a Constitution?
(Q2) What are the computational demands of integrating

neuro-symbolic reasoning into Bayesian estimation?
(Q3) Can we learn how much to trust marine vessels given

the Constitution and historical AIS data?
(Q4) Does a trust-calibrated CoFi lead to improved tracking

accuracy compared to the unconstitutional baseline?

A. Experimental Setup

Throughout the experiments, we assume a constant veloc-
ity model xt = (pt,vt) in a two-dimensional space, i.e.,
pt,vt ∈ R2 and ṗt = vt, where only the position pt is
measured. Hence, given the difference δt between time steps,
the dynamic system can be written as

xt =

[
1 δt
0 1

]
xt−1 and zt =

[
1 0

]
xt.

All experiments were conducted on an AMD Ryzen Thread-
ripper 1950X 16-Core processor with 128GB of memory.
Where applicable, we report the means and standard devia-
tions obtained from multiple runs with varying seeds.

B. A Constitution for Maritime Traffic Tracking

We address (Q1) in three steps. First, we integrate mes-
sages retrieved via AIS [42], transmitting navigation and ship
data in marine applications, into the Constitution’s perception
subprogram Pt and trust features ψ. Second, common safety
and navigational constraints considering the vessel’s purpose
were encoded into the agents’ background knowledge Bt.
Finally, the environment Et is represented by a StaR Map
processing official Electronic Navigation Charts (ENC) pro-
vided by the United States National Oceanic and Atmo-
spheric Administration (NOAA) [43]. Figure 4 shows the
resulting spatial relations, detailing geographic and naviga-
tional features surrounding the New York Harbor area. The
composition of Pt, Bt, and Et is shown in Listing 1.

We solve Listing 1 for the constitution(X, Z) clause across
the 20 × 20 km2 area by plugging in the respective StaR



1  % Trust features from (deep) models
2  trust_feature({cargo, towing, sar}, ais_class(z)).
3  trust_feature(on_waterways, waterway_bound(z)).
4  trust_feature(anchoring, anchoring_classifier(z)).
5  
6  % Environment from nautical StaR Map
7  distance(x, land) ~ normal(150, 15).
8  distance(x, waterway) ~ normal(300, 20).
9  0.0 ::over(x, land).
10 0.1 ::over(x, anchorage).
11 depth(x, water) ~ normal(20, 1).
12 
13 % Perception from sensors
14 draught(z) ~ normal(3, 1).
15 
16 % Background knowledge
17 sufficient_depth(X, Z) :-
18 A is depth(X, water), B is draught(Z), 
19     A + B < -1.5, \+ over(X, land).
20 
21 0.95 ::safe(X) :-
22     sufficient_depth(X), distance(X, land) > 50.
23 
24 proper_anchorage(X, Z) :-
25     anchoring(X, Z), over(X, anchorage);
26     \+ anchoring(X, Z), \+ over(X, anchorage).
27 
28 0.90 ::respects_waterways(X, Z) :-
29     on_waterways(Z), distance(X, waterway) < 400;
30     \+ on_waterways(Z).
31 
32 % Compliance with Constitution
33 constitution(X, Z) :-
34     proper_anchorage(X, Z), safe(X), 
35     respects_waterways(X, Z).
36 
37 % Query P(C | x, z)
38 query(constitution(x, z)).

Listing 1: A marine vessel’s constitution, modeling compli-
ance with safety and traffic rules.

Maps parameters and observations. We show how this Con-
stitution successfully models the environment and movement
of vessels in the area in Figure 5. One can see how,
although some trajectories lead through assumed incompliant
areas, the traffic patterns overall follow the model. Similarly,
Figure 6 shows how the probability of agents sticking to the
Constitution depends on, e.g., their employment type. Note
how, for example, towing vehicles are overall less likely
to follow the Constitution, as seen in Figure 5b. We will
revisit this observation in Section V-E when determining
appropriate trust ratios.

C. Resource Requirements

To address (Q2), we (i) break down the costs of computing
a StaR Map from ENCs and (ii) compare the runtime of
tracking vessel motion with a standard Particle Filter and
with CoFi. Computing StaR Maps at a resolution of 100×100
points for each probabilistic spatial relation took 630.69 ±
8.51 seconds. When querying the Constitution, we employ
linear interpolation for parameters not on the grid. While
we compute StaR Maps parameters once in advance, more
dynamic applications may need updates due to environmental
changes, e.g., a distance to a moving target.

The StaR Map parameters have been visualized in Fig. 4,
including the distance and over relations analogously to the
original paper and a new depth relation introduced here.
While both mean and standard deviation were computed as
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Fig. 5: Marine traffic over constitutional probabilities:
Here, we show real-world AIS traces from (a) often compli-
ant cargo and (b) often incompliant towing vessels on top of
the probabilities for each to satisfy the constitution.
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Fig. 6: Trust depending on observations: Not every tracked
agent can be expected to satisfy the assumed constitution.
Here, the average value of P (Ct|xt, zt) is shown aggregated
for different vessel types.

described in Section III-B, we visualized the probabilistic
spatial relations through their expected values.

We implement CoFi as a Constitutional Particle Filter
using sequential Monte Carlo approximation with 2000 par-
ticles. This allows us to compare CoFi to a common baseline,
i.e., we effectively ablate the evaluation of the Constitution
and its guidance for the tracking process by controlling for
the influence of computing the Constitutional likelihood.

Without the neuro-symbolic reasoning of CoFi, a standard
Particle Filter update can be obtained in 0.004 ± 0.001
seconds. By sampling 100 times locally according to the
particle distribution, CoFi can run constitutional belief up-
dates in 0.829 ± 0.024 seconds. Else, one may precompute
the nearby scalar field P (Ct|xt, zt) if the environment and
measurements are sufficiently static. Then, CoFi’s updates
run near baseline speed in 0.007 ± 0.001 seconds. Hence,
while CoFi can easily keep up in the maritime context,
optimizations are necessary for highly dynamic settings.

D. Calibrating the Trust Ratio

We resolve (Q3) by modeling a marine Constitution as laid
out in Section V-B, considering three trust features. Namely,
the type of the vessel extracted from its AIS report, whether
it is bound to waterways through a heuristic rule, and a deep
learning classifier deciding whether it is currently anchoring.
To this end, we access real-world AIS recordings provided
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Fig. 7: A majority of vessels can be trusted: Here, the rate
at which a specific value of τ is optimal (given observed
trust features) is shown for the entire dataset. Note how CoFi
rarely needs to fall back to its internal Particle Filter.

by NOAA detailing, among others, the vessel’s position and
characteristics, such as high-level usage type or draft.

We can henceforth observe the alignment of individual
agents’ tracks with the Constitution as previously discussed
in Section V-B and visualized by Figures 5 and 6. Note how
CoFi decides the trust level τ based on all three trust features,
not only on the shown vessel type. Here, without loss of
generality, we consider the trust features and the appropriate
trust to be time-invariant throughout a recorded journey.

CoFi chooses τ to maximize its tracking accuracy for
agents with the respective trust features. In our experiments,
we perform this computation as an offline learning task on
historical AIS data, comparing performance across discrete
choices for τ . In Figure 7, we demonstrate the distribution
of optimal choices for τ across the entire dataset population.
It becomes evident again that, although simple, the assumed
Constitution matches most agents’ behavior. That is, about
89% of agents are tracked best for a trust τ > 0, benefiting
from CoFi’s improved estimation, as further discussed next.

E. Constitutional Filtering

Finally, to answer (Q4), we employ the obtained optimal
trust τ for respective trust features ψ to assess how CoFi im-
proves estimation accuracy if properly calibrated. Depending
on the learned optimal trust for a vessel’s trust features, the
Constitution of CoFi improves accuracy or recovers baseline
performance. So, if trust features indicate the vessel does not
comply with the assumed model and the optimal τ is 0, the
belief update equals a Particle Filter without Constitution.
As Figure 8 shows, CoFi provides more accurate tracking as
soon as τ > 0, leveraging the information provided by the
Constitutional likelihood in CoFi’s belief update.

Note that there are limitations to these results, considering
the choice of the Constitution. While a trust-calibrated CoFi
clearly can lead to improved results and assures an upper
bound to its error, not every environment and application
will allow for formulating a Constitution that clearly sepa-
rates likely and unlikely states. For example, while roads,
pavements, and traffic lights give way to predicting traffic
participants’ motion in an urban environment, the same
cannot be said for areas where free motion is predominant.
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Fig. 8: CoFi adapting to appropriate trust: We show the
relative mean absolute error, comparing CoFi’s performance
with the baseline Particle Filter. Once a vessel profits from
τ > 0, CoFi achieves greatly improved accuracy.

VI. DISCUSSION

We propose the Constitutional Filter (CoFi), a neuro-
symbolic Bayesian estimation scheme based on a model of
an agent’s internal rules over their behavior. CoFi improves
traditional filtering approaches by reasoning on an agent’s
Constitution. In experiments on real-world map and local-
ization data, we have demonstrated how the Constitution can
substantially improve the filter’s accuracy and how its impact
can be tuned to an agent’s individual behavior. Furthermore,
through the symbolic nature of the Constitution written in
probabilistic first-order logic, an interpretable and adaptable
interface to the filtering process is provided.

Although CoFi brings several advantages, as shown in
Section V, they depend on application-specific background
knowledge which must be obtained first. While we have
shown a hand-crafted Constitution, real-world applications
may need to explore options such as rule-learning or auto-
mated code generation via Large Language Models. Further-
more, prediction with CoFi entails additional computational
costs, possibly prohibiting its application in environments
where particularly rapid inference is key.

In the future, end-to-end learning with the agent’s Consti-
tution, i.e., learning the rules’ conditional probabilities and
bodies from data, as well as the weights of neural models
feeding into the Constitution, could be explored. Similarly,
the automatic discovery of an agent’s reasons for non-
compliance with the assumed Constitution is a promising
direction forward, i.e., learning if the Constitution itself is
faulty or if the agent deliberately does not comply.
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