arXiv:2410.14371v1 [csAl] 18 Oct 2024

Interpretable end-to-end Neurosymbolic
Reinforcement Learning agents

Nils Grandien' Quentin Delfosse!-? Kristian Kersting!34

!Computer Science Department, TU Darmstadt, Germany
2National Research Center for Applied Cybersecurity Darmstadt, Germany
3Hessian Center for Artificial Intelligence (hessian.AI), Darmstadt, Germany
4Centre for Cognitive Science, TU Darmstadt, Germany
SGerman Research Center for Artificial Intelligence (DFKI), Darmstadt, Germany
correspondance to quentin.delfosse@cs.tu-darmstadt.de

Abstract

Deep reinforcement learning (RL) agents rely on shortcut learning, preventing them
from generalizing to slightly different environments [1]. To address this problem,
symbolic method, that use object-centric states, have been developed. However,
comparing these methods to deep agents is not fair, as these last operate from raw
pixel-based states. In this work, we instantiate the symbolic Successive Concept
Bottlenecks Agents (SCoBots) framework [2]. SCoBots decompose RL tasks into
intermediate, interpretable representations, culminating in action decisions based on
a comprehensible set of object-centric relational concepts. This architecture aids
in demystifying agent decisions. By explicitly learning to extract object-centric
representations from raw states, object-centric RL, and policy distillation via rule
extraction, this work places itself within the neurosymbolic Al paradigm, blending
the strengths of neural networks with symbolic AI. We present the first implemen-
tation of an end-to-end trained SCoBot, separately evaluate of its components, on
different Atari games. The results demonstrate the framework’s potential to create
interpretable and performing RL systems, and pave the way for future research
directions in obtaining end-to-end interpretable RL agents.

1 Introduction

Despite ongoing advancements in the field, reinforcement learning (RL) continues to face numerous
challenges. Omne such challenge is the sparsity of rewards [3], where the environment only rarely
provides reward signals for the agent to learn from. A related issue is credit assignment [4; 5],
which refers to the challenge of identifying the specific previous actions responsible for distant future
rewards. Additionally, RL agents are susceptible to learn misaligned goals [6; 1], which occurs
when the objectives optimized by the RL algorithm diverge from the intended goals of the system’s
designers. The black box nature of current deep RL approaches impedes the ability to address these
challenges. Even though there have been attempts of shedding light into the black box via approaches
from the field of eXplainable AI (XAI) [7; 8], there is still room for improvement. The majority of the
developed approaches rely on post-hoc explanations, which frequently result in a lack of faithfulness
of the explanations [9; 10]. This makes it challenging to analyze an agent’s policy.

To address the lack of interpretability, we instantiate the recently proposed SCoBots framework [2].
This approach uses an architecture that achieves interpretability by design. SCoBots decompose the
RL problem via concept bottleneck models [11] with intermediate interpretable representations. The

final action selection operates on a set of interpretable relational concepts and uses an inherently
interpretable model, in our implementation a rule set policy. SCoBots facilitate human understanding
of the agent and can, thereby, aid in the development and training of performing RL agents. As a
side benefit, the interpretability of the model can improve trust into the RL agent, which can be
crucial for deployment in the real world. Additionally, by training the RL algorithm on a set of
relational concepts instead of a sequence of raw input images the complexity of the problem is being
reduced, thereby improving sample efficiency [12].

By instantiating the SCoBots framework, we cover the fields of object representation learning,
object-centric RL and policy distillation. Overall, this leads to a neurosymbolic Al system that
combines the strengths of neural networks with symbolic AI. Neural networks are used for object
representation learning and the initial RL algorithm. The utilization of structured object-centric
intermediate representations and the final step of transforming a neural policy into a rule set policy
also renders the approach symbolic.

Previous work has led to components that could be suitable for the steps in the SCoBots framework [13;
14; 15]. However, these components have not yet been combined and the SCoBots framework has so
far only been evaluated using ground truth detection of the objects. In this work, we introduce
the first end-to-end Concept bottleneck agents that employs unsupervisedly trained
components'. As part of this, we evaluate the individual components that were presented in
previous works. The experimental setting, in which we evaluate the SCoBots, are Atari games.
OCAtari [16] provides access to many such games including ground truth detection of objects.

2 Background

2.1 SCoBots

In the Successive Concept Bottlenecks Agents (SCoBots) framework [2] (¢f. Figure 1), the policy
of an agent is decomposed into distinct steps with intermediate interpretable concept bottlenecks
(ICBs) inspired by concept bottleneck models [11].

we 0 pPo
St —1) Qt —}_)Ft —2> Q¢

This differs from the standard deep RL approach, in which the raw input is processed to directly
derive the selected action without any structured intermediate steps.

Object Extractor: s; 2, Q; The object extractor, denoted as wg, (), extracts objects and their

properties from the n most recent frames, represented by s; = {xi}gztf(nfl). As a result, a collection

of object representations is returned: wy, (s;) = Q = {0{};;1. Here, ¢; refers to the number of

detected objects. The object representations o are tensors that capture a multitude of properties of

each object (e.g., position).

Relation Extractor: Q, % I', In this step, relational concepts are derived from the previous
output via the relation extractor: px(-). Here, F parameterizes a set of relational functions
that includes general object relations like distance and speed. Formally, we denote this step as
ur(y) =T = {gf}i‘zl, where d; quantifies the relational concepts.

Action Selector: T'; LEN a; Finally, the action selector, denoted as py,, determines the action,
at, from the relational concepts. In contrast to the earlier stages where ICBs provided sufficient
interpretability, in this stage the action selector itself must be interpretable to enable overall
interpretability (e.g., by using decision tree or rule set policies).

LCode at https://github.com/nlsgrndn/SCoBots/tree/dev, https://github.com/k4ntz/SCoBots/tree/space_ detector

https://github.com/nlsgrndn/SCoBots/tree/dev
https://github.com/k4ntz/SCoBots/tree/space_detector

. dist(player, ball).x
ball: {x,y,R,G,B} .
enemy: {x,y,R,G,B} dist(player, enemy).x

player: {x,,R,G,B} I speed(ball).x

— 000
Q, Object I Relational

Representations Concepts A Action

Figure 1: Overview of the SCoBots framework. SCoBots decompose the policy into 3 consecutive
steps: object extraction, relation extraction, and action selection using intermediate Interpretable
Concept Bottlenecks (ICBs). This enables external users to inspect how the SCoBot agent selects its
action. Figure adapted from [2].

2.2 SPACE

SPACE [13] is Variational Autoencoder (VAE)-basedarchitecture for unsupervised object-oriented
scene representation learning (c¢f. Figure 2). Its latent space is designed to represent location-related
information (i.e. the object position) and the feature-related information (i.e. the object visualization)
of each object, and an encoding of the background information separately. SPACE is trained using a
standard VAE reconstruction loss.

2.3 MOC

To address the insufficient performance of both object localization and representation learning of
SPACE, a follow up work has added 2 loss terms within the Motion and Object Continuity (MOC)
training scheme [14]. This is an approach that can be applied to any base detection model to improve
the object locations (loc) and encodings (enc). The motion supervision loss utilizes additional motion
information to improve localization variables (i.e. loc and pres). The object continuity loss is
designed to gather object encodings of the same entity across successive frames, and to separate
encodings of the different objects. The MOC training scheme is depicted in Figure 2.

2.4 ECLAIRE

ECLAIRE [15] is a rule extraction method for deep neural networks. The input for ECLAIRE
is a set of unlabeled training instances X = {z(¥ € R™}¥ | and a pre-trained neural network
fo : R™ — [0,1]F. The function fs(z) outputs a probability distribution over labels in the set
Y = {li,l2,...,ir}. The output is a set of IF-THEN rules, denoted as R,_,3. These rules are
designed to collectively predict the outcome that corresponds to the maximum value in the output
vector of the network fy when subjected to a majority vote given the input x. A single rule is
formalized as follows:

IF ((z; > vi) A (xj < vj) Ao A(xn > vy,)) THEN [,

In this structure, z; represents the i-th feature of an input instance z, while v; is a threshold value
determined through the learning process. These rules are composed of premises that are conjunctions
of conditions like (x; > v;) or (z; < v;).

Reconstruction
Loss

Sequence of Detection
! Input Images Reconstructions Model
EOpticaI Flow

i
on Supervision i
. Loss !
i
i
—>‘ Object Continuity | |

‘ Loss

Information) -

Figure 2: Overview of MOC applied to SPACE. SPACE learns to extract objects using a VAE
architecture. The reconstruction problem is split into foreground and a background components.
The foreground latent space is composed of positional and feature information about the objects in
the image. The MOC training scheme adds the motion supervision loss and the object continuity
loss to improve a base detection model, SPACE in this case. The motion supervision loss is designed
to enhance the localization capabilities by guiding the locations (loc) with motion data of the input
image. The object continuity loss is applied to feature encodings (enc) of the objects in consecutive
images with the goal of ensuring consistency of the encodings representing the same entity.

3 Implementation

Let us introduce our DINSA method (¢f. Figure 3). DINSA uses the SPACE [13] architecture,
trained with the motion and object consistency (MOC) loss of [14]. It then use a k-mean classifier
to classify each object, then uses a simple object tracking algorithm to stabilize the detection. The
object-centric space is then augmented with relations, provided to an neural action selector (distilled
in a set of rules). Let us now detail each component.

3.1 Object Extractor

The object extractor receives the last n frames of the game as input. It returns the objects of the
current frame together with their properties. These properties can be time-related, which is why a
sequence of images is given as input.

3.1.1 SPACE-+MOC for Object Representation Learning

This component receives an image as input and produces two key outputs: a bounding box for each
detected object and an encoding for each object. We use the SPACE architecture and enhance it
using the MOC training scheme. The desired outputs are obtained from the latent space of the VAE
architecture of SPACE.

During inference, a set of objects with bounding box and encoding information must be obtained.
To this end, only the encoder parts of the foreground module of the SPACE model are required.
The other components of SPACE and the MOC training scheme are only needed for training. The
variables zPT¢* | zwhere and zwhet are extracted from the SPACE architecture. The value of zP7¢*
is thresholded, resulting in a binary variable indicating the presence of an object. For the cells in
which an object is present, the z**7¢ information is transformed into a bounding box and the z*hat
encoding is saved. For implementation details and hyperparameter values, see App. A.1.2.

Tracking classifier Relation extractor Action Selector Action

| UP: dist(Pacman,Cherry).y >
Class X y .

: 1 (]

dist(Pacman,Cherry) : ! & dist(Pacnan,Cherry).x >-3
b] dist(Pacman,Ghost) ! & dist(Pacnan,Cherry) .x < 3
.1 | Cherry 52| (36 I | UP: dist(Pacman,Ghost1).y > ;
‘ r 3

: color(Ghost)] ¢ & dist(Pacnan,Ghostl).x >- 4]
] - & dist(Pacnan,Ghost1) x < —
“| 'Pacman @ 64 6 || speed (Pacman) T2 & vulnerable(Ghostl) o

1 speed (Ghost) : | LEFT: dist(Pacman,Ghost3).x < 0 1 1
: i] & dist(Pacnan,Ghost3).y >-3 |]

Ghost 14| [31] |: i color(Fruit) @ : | & dist(Pacnan,Ghost3).y < 3 { : * >
. Lo 1 & vulnerable(Ghost3) 1 :

Figure 3: Overview of the DINSA implementation The input images are fed consecutively into
the object extractor. The resulting objects represented by location and encoding are classified into
a specific object class of the respective game. Also, object identity between consecutive frames is
inferred via object tracking. This results in a set of objects with properties, including time-related
ones. The relation extractor computes inter- or intra-object relations. Finally, the action selector
decides, which action to take using an interpretable algorithm.

3.1.2 Object Classification

This component is designed to classify objects based on their feature encodings as inputs. In the
context of the SPACE+MOC model, these encodings are provided by the 2"t latent variable. The
output of the classification component is a label assigned to each object.

The classifier should be unsupervised in order to not break the overall unsupervised setting. Similar
to [17] and [18], we classify the representation of an object based on its distance to the centroids
that result from applying k-means clustering to a training set of encodings. A full description of the
algorithm can be found in the Appendix at A.1.3.

3.1.3 Object Tracking

The property position history is usually required as part of the object representations, as it is
essential for computing time-related relational concepts such as speed in the downstream relation
extractor. In order to include this property, the number of image frames n to be contained in the
state s; = {@;}/_ t—(n—1) must be set to (at least) two. Moreover, it is necessary to determine which of
the localized objects represent the same entity across the sequence of frames. In [2], this information
was provided implicitly as part of the ground truth detection via OCAtari. Our solution approach is
to use a simple tracking algorithm on top of the single frame localizations by SPACE+MOC. More
details are provided in the Appendix at A.1.4.

3.2 Relation Extractor

The relation extractor uses the extracted objects’ properties from the current frame as input, and
outputs a vector containing the values of the relational concepts for the detected objects.

The SCoBots framework includes a complete implementation of the relation extractor. In this
implementation, the number of detectable objects per class are specified in advance, resulting a in a
set of unique identifiers for potentially detected objects. The relational concepts are then defined
relative to these identifiers using straightforward functions, such as Euclidean distance, to generate
scalar values for each concept. During inference, detected objects are mapped to an identifier by
sorting them based on their proximity to a key object (e.g., the player), with excess objects discarded
and missing ones assigned zero values. For a more detailed description, see App. A.2.

3.3 Action Selector

The action selector component receives the feature vector from the relation extractor and returns an
action. The learning phase for our implementation of this component is divided into two steps. First,
a neural policy is learned using standard deep RL techniques. Then, this policy is transformed into
an interpretable representation that uses a set of rules. This transformation is a trade-off between
maintaining the policy’s similarity and finding a small, easily interpretable set of rules.

3.3.1 Deep Reinforcement Learning

This component learns a neural policy based on the relational concepts. This neural policy determines
the actions or decisions made in a given context based on the input information. We utilize Proximal
Policy Optimization (PPO) [19] to learn the neural policy. Other RL algorithms that can handle
continuous state spaces and discrete action spaces could have also been used. Details on the choice
of the hyperparameters are provided in App. A.3.2.

3.3.2 Policy Distillation via ECLAIRE

In this step, we transform the neural policy into a rule set policy using ECLAIRE [15]. Applied to
our case, the training instances X in ECLAIRE are the one-dimensional vectors, which the relation
extractor provides. The neural network fy is the policy network learnt using the PPO algorithm. Y’
is the discrete action space of the respective game.

4 Experimental Evaluation

In our experiments, we successively evaluate the
different components of our SCoBots [2] instan-
tiation. First, the object extraction is evaluated.
As the relation extractor only applies determinis-
tic functions to object properties, it is not inves-
tigated separately. Second, the action selector is
analyzed including both the preliminary neural
policy and the final rule set policy.

AN

The Pong, Boxing and Skiing environments (de- Figure 4: Visualization of the games used
picted in Figure 4) were used in the experiments in our experimental evaluation. The Boxing,
for the object extractor. Only Pong and Boxing = Skiing and Pong Atari environment are shown from
remained for the action selector experiments, as left to right. While Boxing and Pong were also used
Skiing is a difficult credit assignment problem, for RL evaluation, the difficult credit assignment

that requires additional techniques to be solved game Skiing is only used for object detection.
(¢f. App. A.1.1). The object extractor focuses

on the moving objects of the games, only considering the relevant objects for playing the games
(i.e. excluding e.g., scores or the timer in Boxing). This was realized by applying a filter based on
potential detection areas of the moving objects (c¢f. App. A.1.2).

4.1 Object Extractor

In this subsection, we present the evaluation of our object extractor. However, we only included
the localization and encoding component plus the classifier, but did not include the object tracker.
The scores were calculated relative to all ground truth objects and not only relative to the localized
objects. This allowed us to obtain a better understanding of how the object extractor would behave
for the downstream task.

Overall, the F-score was the best for Boxing (cf. Figure 5). Pong had a slightly lower F-score due to
the poor recall for the localization of the ball object. Both are likely to be suitable for the downstream
task. Skiing performed the worst, which can be explained by the poor classifier performance. The
average correct detection of only four out of five ground truth objects is unlikely to be sufficient
for the downstream task. In particular, when we examined the confusion matrix (cf. Figure 6), we
observed that the detection of the player object was problematic, arguably the most important object.
Many trees were classified as the player. This behavior would confuse the downstream RL algorithm.

Confusion Matrix for Pong Confusion Matrix for Boxing Confusion Matrix for Skiing

Ball Flag o 13 o 0o 9

Enemy

Mogul{ 0 30 o0 [56
Enemy

Player{ 0 0o 435 o0 0 77

Tree{ O 30 | 444 REELE O 98

not_an_object { 2 2 23 9 0 0

Player

True label
True label
True label

not_an_object
not_an_object

not_detected not_detected

not_detected { 0 [0 0 0 0

<~ <~
Predicted label Predicted label Predicted label
Figure 6: Confusion matrices for each object type per game. not_an_ object refers to bounding

boxes returned by SPACE+MOC that do not correspond to a ground truth object. not_detected
refers to objects provided by OCAtari that were not localized by SPACE+MOC.

Detection Performance

4.2 Action Selector 100
Let us here evluate the action selection process. 80

4.2.1 Deep Reinforcement Learning]

Metric in %

This experiment assesses the performance of RL 40

agents equipped with neural policies, with object-

centric state input that are provided via the com- 207 - =
| \ecal
ponents of the SPACE+MOC object extractor == F-Score
and relation extractor. 0 Boxing Skiing Pong

The results for Pong reveal that an agent em- Figure 5: Object extractors for Boxing and
ploying the SPACE+MOC object extractor can Pong demonstrate high performance, while
achieve comparable performance to an agent util- Skiing shows lower performance. Precision, re-
ising a ground truth object extractor, provided call, and F-score for the combined object extractors
that the two hidden layer configuration is used of SPACE+MOC and classifier are shown. Results
(¢f. Figure 1). The outcomes of the Boxing ex- are averages with standard deviations across five
periment indicate that the SPACE+MOC object SPACE+MOC models trained with different seeds
extractor is too inaccurate for use in competi- and their corresponding classifiers.

tive object-centric agents. The agents using the

SPACE+MOC data achieve poor performance compared to the agents using ground data. The
latter agents perform well in particular for both of the unpruned configurations. To summarize, the
experiment indicates that the SCoBots framework’s modular design which enhances interpretability
and allows for incremental component upgrades, can come at the cost of error accumulation.

4.2.2 Policy Distillation

The goal of this experiment was to ascertain the final performance score for our SCoBots imple-
mentation. Additionally, we sought to determine the extent to which performance is diminished by
extracting the rule set policy from the neural policy. We also aimed to understand how the size of
the neural network and of the feature vector for the relational concepts affect the performance.

The findings suggest the benefits of using the pruned and two-layer configuration for distillation via
ECLAIRE, although the trends are not entirely clear (¢f. Figure 1). Notably, a configuration for a
SCoBot using SPACE4+MOC input and a rule set policy was identified that achieved a respectable
average reward of 14.4 in the game Pong. The best configuration for Boxing using SPACE+MOC input
and a rule set policy achieved an average reward of 51.8, although using the unpruned configuration.

Pong unpruned pruned

2 layer 1 layer 2 layer 1 layer
neural ground truth objects 17.4+1.6 17.0£2.3 19.0£1.9 14.6 £ 1.0
rule set ground truth objects 4.8 +5.7 —15.8+3.1 15.0 £3.0 10.6 +2.4
rule set SPACE+MOC objects —7.6+9.2 -3.2+6.3 14.4+ 2.6 —-3.8+34
neural SPACE+MOC objects 16.8 £1.5 5.4+ 3.1 16.8 £2.3 —-1.0+6.6
image data 16.4
random -20.7
human 9.3
Boxing unpruned pruned

2 layer 1 layer 2 layer 1 layer
neural ground truth objects 93.0£3.9 97.0+£2.5 78.8 £ 4.7 47.4+£10.1
rule set ground truth objects 91.2+ 7.7 77.4+14.3 67.2+6.7 46.0 £ 5.7
rule set SPACE+MOC objects 51.8 8.2 9.2+ 11.5 37.84+16.8 38.2+6.0
neural SPACE+MOC objects 65.0£11.3 56.8 £ 4.4 39.8 £12.9 38.4+9.3
image data 90.3
random 0.1
human 4.3

Table 1: Overview of PPO and rule extraction experiments results. Results using PPO with
object-centric input from either the SPACE-+MOC object extractor or a ground truth object extractor
based on OCAtari and results using rule set policies with input from either the SPACE+MOC object
extractor or a ground truth object extractor based on OCAtari. Average rewards with standard
deviations across five differently seeded evaluation episodes. PPO agents using image input [2],
random agents, and human scores [20] are provided for comparison. Pong and Boxing have a
maximum achievable reward of 21 and 100 respectively.

Overall, the action selector generated interpretable rule set policies with performance nearly matching
neural policies under certain conditions.

5 Limitations

The current approach relies on strong assumptions about the training environment, such as the
availability of training images showing all object variations and motion data from optical flow
estimation. The first aspect can be problematic in environments where objects appear only after
certain thresholds, requiring pre-trained agents to collect data. Furthermore, it is uncertain whether
valuable motion data can be obtained in more complex scenarios than Atari games.

Currently, the extracted properties only concern the location and the class of the objects. More
advanced properties such as the orientation of an object are currently not extracted, even though
they can be highly relevant in some Atari games (e.g., in Skiing).

The rule set representation of the policy lacks interpretability due to a large number of generated
rules, complex premises with many terms and the fact that the premises of multiple rules with
conflicting outputs can be satisfied for the same input data point.

6 Future Work

Replacing the implementation of the object extractor with unified object detection and tracking
methods (e.g., YOLO [21; 22]) could be promising, although this would lead to a limited set of
properties. Keeping the multi-step implementation of the object extractor, alternative models
to SPACE+MOC could be investigated such as SlotAttention [23] or CutLER [24]. In addition,

leveraging the sequential nature of the images, beyond the MOC framework, could improve the
robustness and reliability of the object extractor (e.g., by incorporating a Kalman filter in the object
tracking step). Another avenue for further investigation is enhancing the object extractor’s capacity
to identify additional properties.

Further investigation into the action selector’s interpretability, including tuning ECLAIRE’s hyperpa-
rameters for simpler rule sets, analyzing actions from a human perspective, and exploring alternative
policy distillation methods, could be promising.

Expanding the SCoBots framework to a wider variety of games and three-dimensional environments
could provide valuable insights, particularly by testing the effectiveness of optical flow estimation for
motion supervision, and is essential for advancing toward real-world applications.

7 Related Work

7.1 Explainable and Interpretable Reinforcement Learning

Explainable Reinforcement Learning (XRL) is a prominent area within the field of XAI, focusing
on giving human insights into the decision-making processes of Al agents. Key publications such
as [25; 26; 27; 28; 29] have extensively reviewed the field of XRL. These works propose frameworks
for categorization, highlight complexities, and emphasize ongoing issues that require resolution.

SCoBots can be categorized as an intrinsic approach as it directly allows humans to grasp how the
model reaches its predictions without requiring any additional computation as post-hoc approaches
would [27]. However, they are only truly an intrinsic approach if an appropriate action selector is
chosen, as in our case a rule set policy. The explanations provided by a SCoBot are usually local as
they are focused on a single input instance, in contrast to global explanations, which would enable
understanding the overall input-output behavior [27]. Again, the choice of the action selector is
the main determining factor. Our instantiation via a rule set policy leads to local explanations.
The SCoBots framework falls under the feature importance method category as defined by [25],
emphasizing the identification of crucial input features that influence decisions. SCoBots provide
zero-order explanations according to the framework by [26], focusing on the agent’s immediate
response to inputs. The SCoBots approach aligns with model explaining as outlined in [29], with the
focus on elucidating the model’s rationale. According to the categorization by [30], SCoBots learn
Symbolic Representations and use Object-Recognition. That categorization focuses solely on intrinsic
approaches, for which the authors reserve the term interpretable. With regard to Interpretable
Decision-Making, the SCoBots framework itself does not fall into a specific category. However, our
use of policy distillation via rule extraction classifies as an Indirect Approach in the subcategory
Decision Trees and Variants.

7.1.1 Policy Distillation

Policy distillation [31; 32|, a specialized form of knowledge distillation [33], involves training a highly
performing teacher model and subsequently distilling this knowledge into a simpler student model.
By selecting an appropriate student model architecture with sufficient constraints on complexity, an
interpretable yet still performing model can be derived. Policy distillation is particularly advantageous
when the desired final model architecture is challenging to create independently due to less performing
optimization algorithms.

One notable implementation of this concept is VIPER [34], which utilizes imitation learning to
extract decision tree policies from a neural policy and Q-function. MoET [35] extends this approach
by incorporating a mixture of expert trees. MAVIPER [36] adapts VIPER to a multi-agent setting.
Furthermore, approaches from the field of rule extraction can be used for policy distillation. These
approaches transform the teacher model into a set of explicit IF-THEN rules. ECLAIRE [15]
exemplifies this approach and is used in our instantiation of the SCoBots framework. NUDGE [37] is
an approach from the domain of Neural Logic Reinforcement Learning [38]. This approach uses a

neural policy to guide the search for a promising rule set. Furthermore, it can leverage the Q-function,
if available, to initialize the critic in its actor-critic RL algorithm. EXPIL [39] integrates predicate
discovery, to reduce the reliance on experts, and BlendRL [40] uses a mixture of deep and logic policies,
to overcome the potential lack of available concepts. Another approach is INTERPRETER [41].
This method creates interpretable programs by using the concept of oblique decision trees.

7.2 Object Representation Learning

If the properties obtained by the object extractor only include the location and object class, as in
our experiments, an object detection system suffices. In this case, models such as CutLER [24]
and LOST [17] could be considered. These have demonstrated strong performance by leveraging
features obtained through self-supervised learning combined with vision transformers [42]. However,
perspectively the goal is to extract more properties. Hence, our choice of using an approach from
the field of object representation learning. SPACE [13] follows a line of work that started with
AIR [43]. AIR introduced a sequential attention mechanism that iteratively attends to and infers
objects in a scene, using a recurrent neural network to propose object regions and a VAE to generate
object representations. SPAIR [44] modified by introducing spatial invariance, utilizing a grid-based
attention mechanism to enhance computational efficiency. Other approaches that operate on the
pixel level, rather than with bounding boxes, include with Tagger [45] and NEM [46]. Notably,
some works have demonstrated the ability to generate representations with dimensions that can be
associated with specific features of the objects (e.g., color, shape) [47; 48; 49]. Recently, approaches
have emerged that employ the concept of optical flow to benefit from the consecutive nature of the
images [50; 51], as does MOC [14], which is used in our work together with SPACE. In supervised
settings, automatic concept finding to extend the object-centric representations has been developed
for explanation [52; 53; 54], or automatised with lambda calculus based concepts [55]. Interpretable
concept can also be revised by expert in case of misalignment [56; 2]. Related to RL, concept revision
has also been used in the domain of time series [57].

8 Conclusion

We instantiated the SCoBots framework [2] and successfully demonstrated its application to Atari
games. The SCoBots used a trained object detection component instead of the ground truth
detection used in previous work. In the process, we explored several critical areas, including object
representation learning, which involves simplifying a scene into an object-centric representation,
and object-centric RL, which focuses on learning policies based on the representations of objects.
Additionally, we covered policy distillation by applying rule extraction, which transforms a neural
policy into a more interpretable rule set policy. Through this work, we hope to contribute to the
improvement of interpretability in RL. We believe that by improving interpretability, RL agents can
be analyzed and designed more successfully, which can facilitate addressing pervasive challenges in
the field of RL. We also identified promising future research directions that could further enhance
the framework’s potential for advancing the field.

10

References

[1]

2]

[10]

[11]

[13]

[14]

Quentin Delfosse, Jannis Bliuml, Bjarne Gregori, and Kristian Kersting. Hackatari: Atari
learning environments for robust and continual reinforcement learning, 2024.

Quentin Delfosse, Sebastian Sztwiertnia, Wolfgang Stammer, Mark Rothermel, and Kristian
Kersting. Interpretable concept bottlenecks to align reinforcement learning agents. Advances in
Neural Information Processing Systems, 2024.

Marcin Andrychowicz, Dwight Crow, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Joshua Tobin, P. Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
Neural Information Processing Systems, 2017.

David Raposo, Samuel Ritter, Adam Santoro, Greg Wayne, Théophane Weber, Matthew M.
Botvinick, H. V. Hasselt, and Francis Song. Synthetic returns for long-term credit assignment.
ArXiv, 2021.

Yue Wu, Yewen Fan, Paul Pu Liang, Amos Azaria, Yuanzhi Li, and Tom Mitchell. Read and
reap the rewards: learning to play atari with the help of instruction manuals. In Proceedings of
the 37th International Conference on Neural Information Processing Systems, 2024.

Lauro Langosco di Langosco, Jack Koch, Lee D. Sharkey, Jacob Pfau, and David Krueger.
Goal misgeneralization in deep reinforcement learning. In International Conference on Machine
Learning, 2021.

Riccardo Guidotti, Anna Monreale, Franco Turini, Dino Pedreschi, and Fosca Giannotti. A
survey of methods for explaining black box models. ACM Computing Surveys (CSUR), 2018.

Gabrielle Ras, Ning Xie, Marcel van Gerven, and Derek Doran. Explainable deep learning: A
field guide for the uninitiated. Journal of Artificial Intelligence Research, 2022.

Sara Hooker, D. Erhan, Pieter-Jan Kindermans, and Been Kim. A benchmark for interpretability
methods in deep neural networks. In Neural Information Processing Systems, 2018.

Chun Sik Chan, Huanqi Kong, and Guanging Liang. A comparative study of faithfulness metrics
for model interpretability methods. In Annual Meeting of the Association for Computational
Linguistics, 2022.

Pang Wei Koh, Thao Nguyen, Yew Siang Tang, Stephen Mussmann, Emma Pierson, Been
Kim, and Percy Liang. Concept bottleneck models. In Proceedings of the 37th International
Conference on Machine Learning, 2020.

Jaesik Yoon, Yi-Fu Wu, Heechul Bae, and Sungjin Ahn. An investigation into pre-training
object-centric representations for reinforcement learning. In International Conference on Machine
Learning, 2023.

Zhixuan Lin, Yi-Fu Wu, Skand Vishwanath Peri, Weihao Sun, Gautam Singh, Fei Deng, Jindong
Jiang, and Sungjin Ahn. Space: Unsupervised object-oriented scene representation via spatial
attention and decomposition. In International Conference on Learning Representations, 2020.

Quentin Delfosse, Wolfgang Stammer, Thomas Rothenbédcher, Dwarak Vittal, and Kristian
Kersting. Boosting object representation learning via motion and object continuity. In Machine
Learning and Knowledge Discovery in Databases: Research Track, 2023.

Mateo Espinosa Zarlenga, Zohreh Shams, and Mateja Jamnik. Efficient decompositional rule
extraction for deep neural networks. In eXplainable AI approaches for debugging and diagnosis.,
2021.

Quentin Delfosse, Jannis Bliiml, Bjarne Gregori, Sebastian Sztwiertnia, and Kristian Kersting.
Ocatari: Object-centric atari 2600 reinforcement learning environments. ArXiv, 2023.

11

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[30]

[31]

32]

Oriane Siméoni, Gilles Puy, Huy V. Vo, Simon Roburin, Spyros Gidaris, Andrei Bursuc, Patrick
Pérez, Renaud Marlet, and Jean Ponce. Localizing objects with self-supervised transformers
and no labels. In Proceedings of the British Machine Vision Conference (BMVC), 2021.

Sandra Kara, Hejer Ammar, Florian Chabot, and Quoc-Cuong Pham. Image segmentation-based
unsupervised multiple objects discovery. 2028 IEEE/CVF Winter Conference on Applications
of Computer Vision (WACV), 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. ArXiv, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G.
Bellemare, Alex Graves, Martin A. Riedmiller, Andreas Kirkeby Fidjeland, Georg Ostrovski,
Stig Petersen, Charlie Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Ku-
maran, Daan Wierstra, Shane Legg, and Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 2015.

Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi. You only look once:
Unified, real-time object detection. 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2015.

Chien-Yao Wang, I-Hau Yeh, and Hongpeng Liao. Yolov9: Learning what you want to learn
using programmable gradient information. ArXiv, 2024.

Francesco Locatello, Dirk Weissenborn, Thomas Unterthiner, Aravindh Mahendran, Georg
Heigold, Jakob Uszkoreit, Alexey Dosovitskiy, and Thomas Kipf. Object-centric learning with
slot attention. In Advances in Neural Information Processing Systems, 2020.

Xudong Wang, Rohit Girdhar, Stella X. Yu, and Ishan Misra. Cut and learn for unsupervised
object detection and instance segmentation. 2023 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), 2023.

Stephanie Milani, Nicholay Topin, Manuela Veloso, and Fei Fang. Explainable reinforcement
learning: A survey and comparative review. ACM Computing Surveys, 2023.

Richard Dazeley, Peter Vamplew, and Francisco Cruz. Explainable reinforcement learning for
broad-xai: a conceptual framework and survey. Neural Computing and Applications, 2021.

Agneza Krajna, Mario Bré¢i¢, Tomislav Lipi¢, and Juraj Doncevic. Explainability in reinforcement
learning: perspective and position. ArXiv, 2022.

George A. Vouros. Explainable deep reinforcement learning: State of the art and challenges.
ACM Computing Surveys, 2022.

Yunpeng Qing, Shunyu Liu, Jie Song, and Mingli Song. A survey on explainable reinforcement
learning: Concepts, algorithms, challenges. ArXiv, 2022.

Claire Glanois, Paul Weng, Matthieu Zimmer, Dong Li, Tianpei Yang, Jianye Hao, and Wulong
Liu. A survey on interpretable reinforcement learning. Mach. Learn., 2024.

Andrei A. Rusu, Sergio Gomez Colmenarejo, Caglar Giilcehre, Guillaume Desjardins, James
Kirkpatrick, Razvan Pascanu, Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell. Policy
distillation. CoRR, 2015.

Wojciech M Czarnecki, Razvan Pascanu, Simon Osindero, Siddhant Jayakumar, Grzegorz
Swirszcz, and Max Jaderberg. Distilling policy distillation. In The 22nd international conference
on artificial intelligence and statistics, 2019.

Geoffrey E. Hinton, Oriol Vinyals, and Jeffrey Dean. Distilling the knowledge in a neural network.
ArXiv, 2015.

12

[34] Osbert Bastani, Yewen Pu, and Armando Solar-Lezama. Verifiable reinforcement learning via
policy extraction. In Neural Information Processing Systems, 2018.

[35] Marko Vasic, Andrija Petrovié¢, Kaiyuan Wang, Mladen Nikolic, Rishabh Singh, and Sarfraz
Khurshid. Moét: Interpretable and verifiable reinforcement learning via mixture of expert trees.
ArXiv, 2019.

[36] Stephanie Milani, Zhicheng Zhang, Nicholay Topin, Zheyuan Ryan Shi, Charles A. Kamhoua,
Evangelos E. Papalexakis, and Fei Fang. Maviper: Learning decision tree policies for interpretable
multi-agent reinforcement learning. In ECML/PKDD, 2022.

[37] Quentin Delfosse, Hikaru Shindo, Devendra Dhami, and Kristian Kersting. Interpretable
and explainable logical policies via neurally guided symbolic abstraction. Advances in Neural
Information Processing Systems, 2024.

[38] Zhengyao Jiang and Shan Luo. Neural logic reinforcement learning. In International Conference
on Machine Learning, 2019.

[39] Jingyuan Sha, Hikaru Shindo, Quentin Delfosse, Kristian Kersting, and Devendra Singh Dhami.
Expil: Explanatory predicate invention for learning in games. arXiv, 2024.

[40] Hikaru Shindo, Quentin Delfosse, Devendra Singh Dhami, and Kristian Kersting. Blendrl: A
framework for merging symbolic and neural policy learning. arXiv, 2024.

[41] Hector Kohler, Quentin Delfosse, Riad Akrour, Kristian Kersting, and Philippe Preux. Inter-
pretable and editable programmatic tree policies for reinforcement learning. In Seventeenth
European Workshop on Reinforcement Learning, 2024.

[42] Mathilde Caron, Hugo Touvron, Ishan Misra, Herv’e J’egou, Julien Mairal, Piotr Bojanowski,
and Armand Joulin. Emerging properties in self-supervised vision transformers. 2021 IEEE/CVF
International Conference on Computer Vision (ICCV), 2021.

[43] S. M. Ali Eslami, Nicolas Heess, Theophane Weber, Yuval Tassa, David Szepesvari, koray
kavukcuoglu, and Geoffrey E Hinton. Attend, infer, repeat: Fast scene understanding with
generative models. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, 2016.

[44] Eric Crawford and Joelle Pineau. Spatially invariant unsupervised object detection with
convolutional neural networks. In AAAI Conference on Artificial Intelligence, 2019.

[45] Klaus Greff, Antti Rasmus, Mathias Berglund, Tele Hotloo Hao, Harri Valpola, and Jirgen
Schmidhuber. Tagger: Deep unsupervised perceptual grouping. In Neural Information Processing
Systems, 2016.

[46] Klaus Greff, Sjoerd van Steenkiste, and Jiirgen Schmidhuber. Neural expectation maximization.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, 2017.

[47] Klaus Greff, Raphaél Lopez Kaufman, Rishabh Kabra, Nick Watters, Christopher Burgess, Daniel
Zoran, Loic Matthey, Matthew Botvinick, and Alexander Lerchner. Multi-object representation
learning with iterative variational inference. In International conference on machine learning.
PMLR, 2019.

48

Christopher P. Burgess, Loic Matthey, Nicholas Watters, Rishabh Kabra, Irina Higgins,
Matthew M. Botvinick, and Alexander Lerchner. Monet: Unsupervised scene decomposition
and representation. ArXiv, 2019.

[49] Martin Engelcke, Adam R Kosiorek, Oiwi Parker Jones, and Ingmar Posner. GENESIS:
Generative Scene Inference and Sampling with Object-Centric Latent Representations. In
International Conference on Learning Representations (ICLR), 2020.

13

[50]

[51]

Dong Lao, Zhengyang Hu, Francesco Locatello, Yanchao Yang, and Stefan 0 Soatto. Divided
attention: Unsupervised multi-object discovery with contextually separated slots. ArXiv, 2023.

Thomas Kipf, Gamaleldin Fathy Elsayed, Aravindh Mahendran, Austin Stone, Sara Sabour,
Georg Heigold, Rico Jonschkowski, Alexey Dosovitskiy, and Klaus Greff. Conditional object-
centric learning from video. In International Conference on Learning Representations, 2022.

Felix Friedrich, David Steinmann, and Kristian Kersting. One explanation does not fit xil. arXiv,
2023.

Wolfgang Stammer, Felix Friedrich, David Steinmann, Manuel Brack, Hikaru Shindo, and
Kristian Kersting. Learning by self-explaining. arXiv, 2023.

Wolfgang Stammer, Antonia Wiist, David Steinmann, and Kristian Kersting. Neural concept
binder. Advances in Neural Information Processing Systems, 2024.

Antonia Wiist, Wolfgang Stammer, Quentin Delfosse, Devendra Singh Dhami, and Kristian
Kersting. Pix2code: Learning to compose neural visual concepts as programs. arXiv preprint
arXiv:2402.08280, 2024.

David Steinmann, Wolfgang Stammer, Felix Friedrich, and Kristian Kersting. Learning to
intervene on concept bottlenecks. arXiv, 2023.

Maurice Kraus, David Steinmann, Antonia Wiist, Andre Kokozinski, and Kristian Kersting.
Right on time: Revising time series models by constraining their explanations. arXiv preprint
arXiw:2402.12921, 2024.

Aditya M. Deshpande. Multi-object trackers in python. https://github.com/adipandas/
multi-object-tracker, 2020.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan
Deleu, Manuel Gouldo, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente,
Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis.
Gymnasium, 2023.

Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew J. Hausknecht,
and Michael Bowling. Revisiting the arcade learning environment: Evaluation protocols and
open problems for general agents (extended abstract). In International Joint Conference on
Artificial Intelligence, 2018.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah
Dormann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of
Machine Learning Research, 2021.

14

https://github.com/adipandas/multi-object-tracker
https://github.com/adipandas/multi-object-tracker

A Appendix

This appendix presents supplementary information on our research experiments and results. It
includes details on the data set used, model configurations, and evaluation metrics.

A.1 Object Extractor
A.1.1 Data Set

The data set was generated using OCAtari [16]. For generation, a random agent was used. A total
of 2048 training, 128 validation, and 128 test image sequences were collected, each comprising four
consecutive frames. The reason for collecting four consecutive frames was that consecutive images are
required to calculate the object continuity loss. For each frame, the ground truth object detections
were also stored. A deliberate pause of at least 16 steps between sequences was implemented to
ensure data diversity. The frames were downscaled to 128x128 pixels for compatibility with the
SPACE [13] model.

Games

Pong, Boxing and Skiing were used in the experiments for the object extractor. These games cover
different levels of difficulty for the object extractor. Pong and Boxing only contain a very small
number of objects in each frame. The shapes of the objects in Boxing are more complex and can
vary in shape, depending on whether the boxers are punching or not. Skiing contains more objects
and the visual appearance of objects can vary within the same object class. An image of each game
is depicted in Figure 4. In the experiments for the action selector, only Pong and Boxing were used.
Skiing is too challenging even for end-to-end deep RL approaches due to its extremely delayed reward
signal.

Optical flow

The optical flow method involved the collection of a mode image based on 100 images. A manual
check was conducted to ensure that the background of the respective game was accurately represented.
The optical flow and motion data were then calculated using the background subtraction approach
outlined in [14].

A.1.2 SPACE+MOC Details

In general, the hyperparameters from [14] were reused with a few modifications (c¢f. Table 2). Overall,
the hyperparameters related to SPACE are largely consistent with those presented in the original
work [13].

The MOC loss was applied using the dynamic scheduling approach proposed in [14]. This approach
dynamically balances the motion supervision loss and the object continuity loss depending on the
ability to correctly localize the bounding boxes. For more details, please refer to to [14]. In contrast
to [14], no bootstrapping of the decoder with the help of the motion information was used. The
training was repeated using five different seeds, and the resulting data was used to calculate the
mean and standard deviation for the metrics.

Filtering SPACE+MOC Localizations

The evaluation of the object extractor was focused on the moving objects of the games, only
considering the relevant objects for playing the games. Consequently, static objects that are also
provided via OCAtari were removed from the ground truth data (e.g., the clock object). Furthermore,
the predicted objects by the model for localization underwent filtering based on potential detection
areas of the moving objects. Practically, this was implemented by discarding localized objects that
have bounding box coordinates clearly outside of the areas where moving objects can appear in the
game. For the games that were considered in our experiments, this approach is sufficient because

15

Parameter Value
batch size 16
gradient steps 5000
Foreground / Background Ir 3-107°/1073
Zpres Prior probability 0—5000:0.1 - 10~ 10
Zscale PTiOr mean 0 — 5000: -2 — —2.5
Zscale Prior std 0.1-1I
Zshift / Zwhat / Zdepth Priors N(0,1)/N(0,T)/N(0,T)
7 (gumbel-softmax-temperature) 2.5
Foreground / Background stds 0.2/0.1
Background Components 3
Grid Size 16
fixed a & boundary loss removed
Motion Kind Mode
Ui 0.5
Ao/ Apres/Awhere 100 / 1000 / 10000
)\guid 0 —3000:1.0— 0.0
ﬁmismatcha ﬂunderestimation 0-17 1.25
Baiffer 5
A /Aoc 100 / 10

Deviations - Boxing:
Zscale Prior ‘ -1

Deviations - Pong:
ﬂunderestimation ‘ 1.5

Table 2: SPACE and MOC shared parameter values for training, SPACE base parameter values,
MOC parameter values, Deviations from SPACE+MOC base parameters for Pong and Boxing as
in [14]

Game Rule

Boxing | 0.148 < Ymin A Ymaz < 0.859
Pong 0.164 < ymaz N 0.031 < Ymin
Skiing True

Table 3: Region filters for SPACE+MOC localizations

non-moving objects can only be found outside of this area. The same approach was also used in [14].
The rule for Pong differs from the rule used in [14].

A.1.3 Classifier Details

The creation of the classifier involves multiple steps. First, k-means clustering is performed to obtain
the centroids. For each Atari game, the value for k is given by the number of object classes as
specified in OCAtari [16]. Second, descriptive labels are assigned to the obtained centroids, since the
k-means clustering only returns enumerated class labels. For this, a k-nearest neighbors classifier is
used, where k does not refer to the same number as in k-means. The initialization is based on object
encodings extracted by SPACE4+MOC from a small image data set. These objects have been assigned
a descriptive label based on the object names of the ground truth detections provided by OCAtari.
The descriptive labels for the centroids are finally assigned via the k-nearest neighbors classifier. It is
important to note that this approach is not entirely in accordance with the unsupervised setting, but
the supervised data is only used for assigning names to the classes. Third, the final classifier is given
by a 1-nearest neighbor classifier initialized only with the centroids.

16

In k-means clustering, the parameter k was set to the number of relevant object types, and only one
run was conducted with random initialization of the centroids. For determining descriptive labels for
the centroids, the k-nearest neighbors classifier was employed with k set to 24. In all three steps, the
Euclidean distance was utilized as the distance metric.

The classifier was trained using latent variables extracted from a SPACE+MOC model, which
was applied to the validation set images. The model used was the SPACE4+MOC model from the
localization experiments with the highest F-score. The training set was not used to avoid data
leakage. Only the first of each sequence of consecutive images was used, as the images and extracted
latents for images in a sequence would be too similar. For the purposes of testing, the test set was
employed, with the remaining aspects left unchanged.

A.1.4 Tracking Algorithm Details

In the initial pass of the tracking algorithm through a video frame, each detected object is added
to a tracking list. Each object is identified by the bounding box that encapsulates it, and at this
stage, there are no previous tracks to compare against, so all detections are treated as new objects.
From the second frame onwards, the algorithm calculates the distances between the centroids of the
currently tracked objects and the centroids of the new detections. The matching scores, derived from
the distance calculations, are used to determine which new detections correspond to which existing
tracks. A detection is assigned to the closest tracked object, thereby ensuring continuity in tracking.
New detections that do not closely match any current track—either because they are too far from
existing tracks or are only the second-best match—are initiated as new tracks. This step accounts
for new objects entering the scene. Conversely, objects that have been previously tracked but do not
find a match in the new detections are removed from the tracking list. This addresses objects that
leave the scene or become occluded.

The algorithm’s simplicity can result in failure when objects cross paths or even overlap for multiple
consecutive frames. While the former may result in incorrect features for a single frame, the latter
can lead to significant issues. The current implementation is based on [58].

A.1.5 Combined Object Extractor Experiments

The results were generated using the SPACE+MOC models with the highest F-score from five
differently seeded runs, in conjunction with a corresponding classifier trained based on the encodings
of that model.

The utilized F-score metric is a well-established and widely accepted standard. However, the
evaluation of the localizations is heavily reliant on the manner, in which the localized and ground
truth bounding boxes are assigned to one another. Therefore, further details on this are provided
below.

How to match bounding boxes?

Pairwise Matching Scores - How to measure the similarity between a predicted and a ground
truth bounding box?

The authors of [14] argue that the intersection over union (IoU) metric, which is arguably the most
common metric in this context, is not ideal for assessing performance for the downstream task of RL
for Atari games. This is due to the architecture of SPACE, which tends to return bounding boxes
of similar sizes for a game. Consequently, in games such as Pong where the ball and player objects
differ in size, at least one of the object classes will have a bounding box that is either too large or
too small. This will result in low IoU scores. However, since the objects are (mostly) of constant
size in the games that we consider, the downstream RL algorithm can implicitly infer the size. In
fact, the object-centric input representation returned by the relation extractor only contains the
center coordinates of the objects in our implementation. As an alternative to IoU, the authors of [14]
introduce the center divergence metric. This metric focuses on the distance of the center coordinates

17

of the bounding boxes. For details, we refer to [14]. The center divergence metric was employed in
the calculation of precision, recall, and the derived F-score.

Matching - How to assign predicted bounding boxes to ground truth bounding boxes based on the
pairwise matching scores?

The first condition is that the matching score of a predicted bounding box to a ground truth bounding
box must exceed a specified threshold. We employed a threshold of 0.5 for the matching score
computed via center divergence. In addition to the first condition, further conditions are required
because two predicted bounding boxes might have a sufficient matching score with the same ground
truth bounding box or a single predicted bounding box might have a sufficient matching score with
two ground truth bounding boxes. Due to the relatively simple nature of the images, we applied a
straightforward greedy approach. The predicted bounding boxes that met the first condition were
sorted by confidence and then were assigned greedily to the ground truth bounding boxes. In more
complex scenarios, the use of Hungarian matching is advisable.

Joint treatment of Localization and Classification

In the event that a localized object cannot be matched with a ground truth object, it is labeled as
"no object." Conversely, if a ground truth object does not correspond to any localized object, it is
designated as "not detected." This classification system allows for a more nuanced understanding of
the detections.

In order to evaluate the performance of the object extractor, we calculated the precision, recall, and
F-score. It is necessary to be precise with the definition of these metrics. This is due to the two-step
approach in which the classifier, in the second step, can receive localized objects that do not have
a ground truth object associated with them. At the same time, the classifier does not necessarily
receive all of the ground truth objects. Our calculated precision score addresses the following question:
What proportion of all the detected objects corresponds to a ground truth object and is correctly
labeled? In other words, when looking at the confusion matrix (c¢f. Figure 6), the "not_ detected"
column is removed, and then the micro precision is calculated. Analogous to the precision score, our
recall score answers the following question: What proportion of all the ground truth objects has been
localized and has received the correct label? This is achieved by removing the "not_an_ object" row
from the confusion matrix and then calculating the micro recall.

A.2 Relation Extractor

Algorithmic description

The relational concepts are specified in advance. To this end, the number of objects of each class
to be considered must be specified at first. Objects of the same class are given unique identifiers
by enumeration. Then, the relational concepts to be computed based on these objects are defined.
A relational concept is characterized by the input objects and the relational function applied to
their properties. The relational functions themselves are straightforward (e.g., calculating Euclidean
distance). This approach specifies clear computational instructions that yield a single scalar value
for each defined relational concept. Each relational concept is assigned a fixed position in the output
vector.

During inference, the detected objects must be mapped to the enumerated objects from the predefined
computational instructions. For this purpose, the detected objects are sorted in ascending order
based on their distance to the player object. The player object is defined as the object controlled by
the agent (e.g., the right paddle in Pong). Objects within each class are then enumerated according
to this order. If the object extractor detects more objects for a class than specified in advance, those
with identifiers exceeding the maximum number are discarded. Conversely, if a predefined object of a
class remains unassigned due to fewer detected objects, the relational concepts dependent on this
object are assigned a scalar value of zero.

Selection of relational concepts

18

o Full set: All relational concepts as detailed in Table 3 of [2] were included. This set considers
all possible combinations of objects for n-ary relations, including symmetric ones like distance,
where both directions (e.g., d(Balll, Playerl) and d(Playerl, Balll)) are accounted for,
resulting in six combinations. For the linear trajectory relation, combinations with the
object itself are included, e.g., leading to nine combinations for three objects.

e Pruned set: The pruned set of relational concepts only includes the subset of relational
concepts that are presumed to be relevant for the game as listed in Table 4 of [2]. The
selection of relational concepts is based on human understanding of the games.

Both the full set and the pruned set stem from [2].

A.3 Action Selector

A.3.1 Experiment Design

We designed the experiments to encompass different levels of complexity of the model for the neural
policy. This was done with the rationale that the rule set extraction would probably work more
reliably the simpler the neural network (NN) structure and the policy is. Therefore, we varied the
depth of NN architecture in the PPO [19] algorithm. The NNs were instantiated with either 1 or 2
hidden layers of 64 neurons. Additionally, the set of relational concepts was varied. Either the full
set of relations or a pruned version was used (c¢f. App. A.2).

Different versions for the Atari games are available in OCAtari via the underlying Gymnasium
library [59]. Following the recommendations of [60] and for better comparability with [2], v5 of the
games was used.

A.3.2 Deep Reinforcement Learning Experiments

The hyperparameters for PPO [19] mostly stem from [2], with a few minor exceptions. Specifically,
10M frames were used instead of 20M, and only a single training seed was used. In contrast to [2], the
policy and value networks were initialized with either 1 or 2 hidden layers of size 64. One important
aspect to point out is that the advantages in the experiments were normalized as in [2]. The existing
implementation of PPO in the package stable-baselines3 [61] was used.

A.3.3 Policy Distillation Experiments

For ECLAIRE [15], we retained the default hyperparameter settings. The main hyperparameter
that could be tuned for better performance is u. This parameter specifies the minimum number of
samples that are required for C5.0 to have before splitting a node. As mentioned in the Method
chapter, the training instances must be diverse enough. For this purpose, we used the PPO policy,
with a random action taken in 25% of cases. A total of 50,000 training instances were collected using
this strategy, from which the rules were extracted. For inference, the conclusion of the rule with the
highest confidence was chosen among all the rules whose premises are satisfied by the input data
point.

19

