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Abstract

Causal inference in hybrid domains, characterized
by a mixture of discrete and continuous variables,
presents a formidable challenge. We take a step
towards this direction and propose Characteristic
Interventional Sum-Product Network (χSPN) that
is capable of estimating interventional distributions
in presence of random variables drawn from mixed
distributions. χSPN uses characteristic functions in
the leaves of an interventional SPN (iSPN) thereby
providing a unified view for discrete and continu-
ous random variables through the Fourier–Stieltjes
transform of the probability measures. A neural
network is used to estimate the parameters of the
learned iSPN using the intervened data. Our ex-
periments on 3 synthetic heterogeneous datasets
suggest that χSPN can effectively capture the inter-
ventional distributions for both discrete and contin-
uous variables while being expressive and causally
adequate. We also show that χSPN generalize to
multiple interventions while being trained only on
single intervention data.

1 INTRODUCTION

Most real-world data, irrespective of the underlying domain,
consists of variables originating from multiple distributions
such as continuous, discrete and/or categorical. In the realm
of statistical modeling, understanding and accurately char-
acterizing such data poses formidable challenges. Mixed
distributions, arising from the amalgamation of distinct sub-
populations within a dataset, exhibit a complexity that tra-
ditional statistical methodologies often struggle to capture.
This can lead to machine learning models becoming either
inapplicable or producing incorrect results during inference.
This applies not only to correlation-based methods but can
also have adverse effects on causality-based methods.
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Figure 1: Correct Mixing of Distributions via χSPN. Clas-
sical mixedSPN naïvely multiply discrete probabilities and
continuous densities, leading to an ill-defined probability
measure. For practical applications, large density values can
possibly outweigh normalized discrete probabilities, bias-
ing parameter estimation. χSPN overcome this problem by
transforming discrete and continuous variables into a shared
spectral domain. Sum and product operations on the spectral
representations are well defined. (Best viewed in color.)

Causal inference [Pearl, 2009, Spirtes, 2010], the study
of cause-and-effect relationships, is a fundamental pursuit
in statistics, yet its application to mixed distributions in-
troduces unique challenges. Whether the data stems from
diverse demographic groups, heterogeneous environments,
or multifaceted systems, the ability to infer causal relation-
ships in presence of mixed distributions is crucial for ad-
vancing our understanding of causal phenomena in various
real-world domains.

Several probabilistic methods, such as hybrid Bayesian net-
works [Monti and Cooper, 1998, Murphy, 1998], Gaussian-
Ising mixed model [Lauritzen et al., 1989, Cheng et al.,
2017] and variants of Markov random fields [Fahrmeir and
Lang, 2001, Fridman, 2003], have been proposed to han-
dle hybrid domains. A major drawback of these methods is
the difficulty of inference [Lerner and Parr, 2001] as it can
quickly become intractable. This becomes a glaring issue in
widespread adoption of these methods for causal inference
which in itself is a challenging problem [Peters et al., 2017].
To overcome the problem of intractable inference, a lot of
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work has been done on probabilistic circuits (PCs) [Jaeger,
2004, Lowd and Domingos, 2012], specifically sum-product
networks [Domingos and Poon, 2012, Gens and Domingos,
2013], which guarantee inference in linear time under some
specific conditions. There have been efforts within the PCs
to handle hybrid data with development of methods such as
mixed SPN [Molina et al., 2018] and Bayesian SPN [Trapp
et al., 2019]. These methods are restrictive as they fail to
model leaves with distributions that do not have closed-form
density expressions and rely on a histogram or density func-
tion representation of the probability measures. A recent
approach [Yu et al., 2023], proposes the use of characteristic
functions to provide a unified formalization of distributions
over heterogeneous data in the spectral domain.

SPNs have also been successfully applied to different rungs
of the causal ladder [Zečević et al., 2021, Busch et al., 2023].
We specifically consider interventional SPN (iSPN) [Zeče-
vić et al., 2021] that learns interventional distributions us-
ing SPNs over-parameterized by neural networks. In this
work, we propose χSPN (Characteristic Interventional Sum-
Product Networks), the first causal models that are capa-
ble of efficiently inferring causal quantities i.e., interven-
tional distributions in presence of mixed data. Methods such
as mixedSPN naïvely multiply discrete probabilities and
continuous densities, leading to an ill-defined probability
measure as large density values can possibly outweigh nor-
malized discrete probabilities biasing parameter estimation.
χSPN overcome this problem by transforming discrete and
continuous variables into a shared spectral domain using
characteristic functions in the leaves of iSPN (see Fig.1).
Overall, we make the following important contributions:

1. We present the first causal model capable of performing
inference on hybrid domains in a tractable fashion.

2. We demonstrate the effectiveness of combining char-
acteristic functions with iSPN’s to naturally handle
mixed data i.e. data containing random variables with
discrete and continuous distributions.

3. We show that χSPN can generalize to multiple inter-
ventions without any retraining.

We make our code publicly available at: https://
github.com/harpoonix/chi-SPN. We will pro-
ceed as follows: we first present the required preliminaries
and discuss the related work and then define χSPN. We then
present extensive experiments on mixed domains before
concluding.

2 PRELIMINARIES & RELATED WORK

Before diving into the proposed χSPN model, we present
some necessary background on SPNs, causal models and
characteristic functions.

2.1 SUM-PRODUCT NETWORKS

Sum-Product Networks [Domingos and Poon, 2012] are a
class of deep tractable models, which belong to the family of
probabilistic circuits. SPNs facilitate a wide range of exact
and efficient inference routines. In particular, marginalisa-
tion and conditioning can be done in time which is linear
in the size of the network [Zhao et al., 2015, Peharz et al.,
2015]. Formally, an SPN is a rooted directed acyclic graph,
comprising of sum, product and leaf (or distribution) nodes
to encode joint probability distributions p(X). Given an
SPN S = (G,w) with positive parameters w and a DAG
G = (V,E), the values at sum (S) and product (P) nodes
can be computed by

S(x) =
∑

C∈ch(S)

wCC(x) P(x) =
∏

C∈ch(P)

C(x) (1)

where ch(P ) are the children of P . The SPN outputs are
computed at the root node, SR(x). The scope of a leaf node
is the random variable X that it models. The scope of an
internal node is the union of scopes of all its children. SPNs
satisfy the properties of completeness and decomposability.
An SPN S is complete if for every sum node u in S the
scopes of its children are all the same. An SPN S is decom-
posable if for every product node u in S the scopes of its
children are pairwise disjoint.

Gated or Conditional SPNs are deep tractable models for
estimating multivariate conditional densities p(Y |x) [Shao
et al., 2022], by conditioning the parameters of vanilla SPNs
on the input using DNNs as gate functions. They introduce
gating nodes where the weights gi(X) are parameterized by
the provided evidence X to encode functional dependencies
on the input.

2.2 CAUSAL MODELS

Structural Causal Models provide a framework to formalize
a notion of causality via graphical models [Pearl, 2009].

Definition 2.1 (SCM). A structural causal model is a tu-
ple M := ⟨V,U,F, PU⟩ over a set of variables X =
{X1, . . . , XK} taking values in XXX =

∏
k∈{1...K} Xk sub-

ject to a strict partial order <X, where

• V = {X1, . . . , XN} ⊆ X, N ≤ K is the set of en-
dogenous variables,

• U = X \V = {XN+1, . . . , XK} is the set of exoge-
nous variables,

• F = {f1, . . . , fN} is the set of deterministic structural
equations, i. e. Vi := fi(X

′) for Vi ∈ V and X′ ⊆
{Xj ∈ X|Xj <X Vi},

• PU is the probability distribution over the exogenous
variables U.

https://github.com/harpoonix/chi-SPN
https://github.com/harpoonix/chi-SPN


The relationships between the variables as described by F
induce the directed graph G(M) which by definition is
acyclic due to <X. The exogenous variables U are usually
unobserved. We say that an SCM M entails the probability
distribution PM

V over the set of endogenous variables V.

Interventions do(X) change the way variables are deter-
mined by replacing their respective structural equation fi.
In particular perfect interventions do(Xi = v) replace the
unintervened fi by the constant assignment Xi := v. Every
intervention induces a new intervened graphG(Mdo(Vi=vi))

to which we will refer to as Ĝ for notational brevity. Like-
wise, every intervened causal model Mdo(Vi=vi) entails a

new probability distribution P
Mdo(Vi=vi)

V .

Often times only a subset of all possible interventions is
considered. If not silently omitted, this restriction can be
made explicit by modeling SCM with a set of allowed in-
terventions I [Halpern, 2000, Beckers and Halpern, 2019,
Rubenstein et al., 2017]. In this paper, we will usually eval-
uate our models over the set of single perfect interventions:

I = {{do(Xi = vi)}}i⊆{1...N}. (2)

Note that for further practical application of our model,
training is not restricted to any particular choice of I. We
provide additional evaluations inspecting multi-intervention
generalization of the model.

Probabilistic Circuits and Causality. Several types of prob-
abilistic models exist as of today that allow for varying de-
grees of tractable inference. Classical SCM as extensions of
Bayesian Networks [Pearl, 1985] as well as their neural real-
izations [Xia et al., 2021] suffer from #P-hard time complex-
ity for exact (and NP-hard complexity for approximate) in-
ference [Eiter and Lukasiewicz, 2002]. To alleviate parts of
this problem, other model choices such as normalizing flows
[Papamakarios et al., 2021] are picked to approximate the
causal distributions [Khemakhem et al., 2021, Melnychuk
et al., 2023, Javaloy et al., 2023]. These models, however,
are not able to perform tractable marginal inference. When
required to perform such queries, Sum-Product-Networks
pose a suitable model class.

2.3 CHARACTERISTIC FUNCTIONS

Characteristic functions (CF) provide a unified view for
discrete and continuous RVs through the Fourier–Stieltjes
transform of their probability measures. Let X ∈ Rd be a
random vector, the CF ofX for t ∈ Rd is given as:

φX(t) = E
[
exp

(
it⊤X

)]
=

∫
x∈Rd

exp
(
it⊤x

)
µX(dx),

(3)
where µX is the distribution/probability measure ofX . The
following properties of CFs are relevant for the remaining
discussion:

1. φX(0) = 1 and |φX(t)| ≤ 1
2. any two RVs X1 and X2 have the same distribution iff
φX1

= φX2

3. two RVs X1, X2 are independent iff φX1,X2
(s, t) =

φX1(s)φX2(t)

We refer to Sasvári [2013] for more details of CFs.

Theorem 2.2 (Lévy’s inversion theorem [Sasvári, 2013]).
Let X be a real-valued random variable, µX its probability
measure, and φX : R → C its characteristic function. Then
for any a, b ∈ R, a < b, we have that

limT→∞
1

2π

∫ T

−T

exp(−ita)− exp(−itb)

it
φX(t)dt

= µX [(a, b)] +
1

2
(µX(a) + µX(b)) ,

(4)
and, hence, φX uniquely determines µX .

Corollary 2.3. If
∫
R |φX(t)|dt <∞, then X has a contin-

uous probability density function fx given by

fX(x) =
1

2π

∫
R
exp(−itx)φX(t)dt. (5)

Note that not every probability measure admits an analytical
solution to Eq. 5, e.g., only special cases of α-stable distri-
butions have a closed-form density function [Nolan, 2013],
and numerical integration might be needed.

3 χSPN

We build upon the construction of interventional sum-
product networks (iSPN) by Zečević et al. [2021]. We esti-
mate p (Vi | do (Uj = uj)) by learning a function approxi-
mator f(G;θ) (e.g. neural network), which takes as input
the (mutilated) causal graph G ∈ {0, 1}N×N encoded as
an adjacency matrix, to predict the parameters ψ of a SPN
g(D;ψ) that estimates the density of the given data matrix
{Vi}Ki=1 = D ∈ RK×N .

When the iSPN is trained end to end on the log likelihood of
the training data, the log densities computed at leaves mod-
eling both discrete and continuous variables are propagated
up the network to the root of the SPN. When a common
class of leaves is used, say one parameterized by a normal
distribution, it acts as a suboptimal way to model discrete
variables that do not quite fit this class of normals. Even
different distributions at the leaves may not fully be able
to capture the joint distribution of a heterogeneous group
of variables, since a sum-product combination of different
kinds of discrete and continuous densities is likely to re-
sult in some variables overshadowing the others in the value
computed at the root of the SPN. Moreover, we are restricted
to using only those parametric distributions at the leaves
that have a closed form density function. This is true only
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Figure 2: χSPN parameters are provided by intervention information (Left). χSPN accounts for interventions that
change the graph structure and –in consequence– the intervened probability distribution. The parameterization of the SPN
leaves and weights (θ) is predicted by a neural network conditioned on intervention information. Training Setup (Right).
Parameters θ of the χSPN are trained by matching the predicted χ distribution at the root node against the χ distribution
computed from interventional data. (Best viewed in color.)

in the case of special α-stable distributions [Nolan, 2013].
We aim to address these problems with our proposed χSPN
that can be defined as follows:

Definition 3.1 (χ Sum-Product Network). A χSPN C is the
joint model C(G,D) = (gφ, gµ)(D;ψ = f(G;θ)), where
g(·) is a SPN that learns the population characteristic
function φ during training and estimates the interventional
density µ during inference. f(·) is a function approximator
and ψ = f(G) are shared parameters.

A χSPN is capable of answering interventional queries and,
most importantly, allow working with mixed data i.e., where
variables of both discrete and continuous distributions are
present. Fig. 2(left) shows the overall process of the under-
lying probability prediction by χSPN. The parameterization
of the χSPN leaves and weights is predicted by a neural
network conditioned on intervention information.

3.1 χSPN STRUCTURE

Inspired by Yu et al. [2023], we modify our iSPN to learn
the characteristic function φX(t) of the joint density. To
this end, we make the leaves of the network learn the CF
of a univariate distribution, to model a particular random
variable. We modify the calculations at the product and sum
nodes as follows.

Product Nodes. Decomposability of χSPN implies that
a product node encodes the independence of its children.
Let X and Y be two RVs. Following property (3) of CFs,
the CF of X,Y is given as φX,Y (t, s) = φX(t)φY (s), if
and only if X and Y are independent. Therefore, since the
children of a product node all have different scopes, with
t =

⋃
N∈ch(P) tsc(N), the characteristic function of product

nodes is defined as:

φP(t) =
∏

N∈ch(P)

φN

(
tsc(N)

)
, (6)

where sc denotes the scope of a node.

Sum Nodes. Completeness of χSPN implies that a sum
node encodes the mixture of its children. Let the parameters
of S be given as

∑
N∈ch(S) wS,N = 1 and wS,N ≥ 0,∀S,N.

Since all the children of a sum node S have the same scope,
the CF at a sum node is:

φS(t) =

∫
x∈Rd

exp
(
it⊤x

) ∑
N∈ch(S)

wS,NµN(dx)


=

∑
N∈ch(S)

wS,N

∫
x∈RpS

exp
(
it⊤x

)
µN(dx)︸ ︷︷ ︸

=φN(t)

.
(7)

Leaf Nodes. For discrete RVs, we utilize categorical dis-
tributions and for continuous RVs, we use α-stable distribu-
tions. A more detailed discussion on the leaf types can be
found in Appendix B.

3.2 EXPRESSIVITY

The shared parameters ψ of the χSPN allow learning of
the joint distribution for any dataset DĜ conditioned on the
mutilated causal graph Ĝ, that contains information about
the interventions. Neural networks have been shown to act
as causal sub-modules e.g. Ke et al. [2019] used a cohort of
neural nets to represent a set of structural equations which
in turn represent an SCM, providing grounding to the idea
of having parameters being estimated from f .

The χSPN also can model any interventional distribution
pG (V | do (U)), permitted by an SCM through interven-
tions to construct the mutilated causal graph Ĝ by mod-
elling the conditional distribution pĜ (V | U). This follows
from Pearl [2009] since pG (Vi = vi | do (Uj = uj)) =
pĜ (Vi = vi | Uj = uj). The SPN can learn the joint prob-
ability p(X1 . . . Xn) on the DĜ generated post-intervention
and is thus causally adequate. The question of availability of
experimental data is an orthogonal one. While in many ap-
plications we do not have access to sets of experiments e.g.,



because of monetary or ethical reasons, many other applica-
tions in science can in fact provide said sets of experiments
e.g., high-throughput biology.

3.3 LEARNING

The χSPN is learned from a set of mixed distribution hetero-
geneous samples generated from simulating interventions
on the underlying SCM. Instead of maximising the log-
likelihood, which is not guaranteed to be tractable, we aim
to learn the CF for the distribution corresponding to a given
intervention. We use the Empirical Characteristic Function
(ECF) [Feuerverger and Mureika, 1977] which has been
proven to be an unbiased and consistent estimator of the
population characteristic function. Given data {xj}nj=1 the
ECF is given as

φ̂P(t) =
1

n

n∑
j=1

exp
(
it⊤xj

)
. (8)

The overall goal of learning, as shown in Fig. 2(right) is
to approximate, as closely as possible, the underlying char-
acteristic function of the intervened data (which we call χ
distribution1).

Evaluation Metric. A measure of the closeness of two
distributions represented by their characteristic functions
is the squared characteristic function distance (CFD). The
squared CFD between two distributions P and Q is defined
as

CFD2
ω(P,Q) =

∫
Rd

|φP(t)− φQ(t)|2 ω(t; η)dt, (9)

where ω(t; η) > 0 is a weighting function parameterized
by η that guarantees the integral in Eq. 9 converges. When
ω(t; η) is a probability density function, Eq. 9 can be rewrit-
ten as an expectation over t sampled from ω:

CFD2
ω(P,Q) = Et∼ω(t;η)

[
|φP(t)− φQ(t)|2

]
. (10)

Sriperumbudur et al. [2010] showed that using the unique-
ness theorem of CFs,CFDω(P,Q) = 0 iff P = Q which
motivates our choice of this distance metric. We refer to
Ansari et al. [2020] for a detailed discussion on CFD.

Our learning objective is then to minimise the squared char-
acteristic function distance between the characteristic func-
tion estimated at the root of χSPN and the ECF of the
intervened dataset:

1Not to be confused with the Chi distribution, which is the
positive square root of a sum of squared independent Gaussian
random variables

CFD2(C, P̂I) = Et[φC(t)− ExI
exp (itTx)]2

=
1

k

k∑
j=1

∣∣∣∣∣φC (tj)−
1

n

n∑
i=1

exp
(
it⊤j xi

)∣∣∣∣∣
2

,
(11)

where n is the number of data points, k is the num-
ber of MCMC samples to estimate the expectation from
Eq. 10, and tj are samples from ω(t; η) which we
use N

(
0,diag

(
η2
))

throughout this paper. Applying
Sedryakyan’s Inequality to Eq. 11, the parameter learning
can be operated batch-wise [Yu et al., 2023]. A parameter
update step backpropagates through the CFD evaluated on a
batch corresponding to single intervention I .

It is important to note here that our contribution, in the form
of structure and algorithm, for χSPN isn’t a straightforward
combination of interventional SPNs with Characteristic Cir-
cuits (CCs). The training of CCs and iSPNs are very dif-
ferent. iSPN accepts conditional input about interventions
whereas the parameters of a CC are not conditioned on any
input. In order to adapt iSPNs to the spectral domain, we
need the model to learn the joint interventional density, and
for that we make the root of the χSPN learn the character-
istic function of the interventional distribution. We cannot
simply introduce characteristic leaves in an iSPN and later
transform it into density (through inversion, Section 3.4) for
the purpose of learning with log-likelihood of the observed
interventional data.

3.4 TRACTABILITY OF INFERENCE

Through their recursive nature, χSPN allow efficient com-
putation of densities in a high dimensional setting even if
closed form densities don’t exist. To get the joint probability
density over all random variables in the SCM, we perform
inversion of the characteristic function at the root of the
network, for which we use an extension of Corollary 2.3.

Lemma 3.2 (Inversion). Let C be a χSPN modeling the
distribution of RVs X = {Xj}dj=1 and employing univariate
leaf nodes. If

∫
R |φL(t)|dt < ∞ for every leaf L, then X

has a continuous probability density function fx given by
the integral on the d-dimensional space Rd, i.e.,

fX(x) =
1

(2π)d

∫
t∈Rd

exp
(
−it⊤x

)
φC(t)λd(dt)︸ ︷︷ ︸

=f̂C(x)

, (12)

where φC(t) denotes the CF defined by the root of the χSPN
and λd is the Lebesque measure on

(
Rd,B

(
Rd

))
.

We can recursively compute Eq. 12 for every node. Thus,
inversion at every inner node reduces to inversion at its
children. We can invoke Corollary 2.3 to obtain density
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Figure 3: Evaluated Mixed Datasets. All χSPN are trained and evaluated on three mixed type data sets. Hiring and Student
data sets contain a mix of continuous (indicated via black circles) and discrete (indicated via green squares) within an
exemplary causal process. Causal Health Classification features the important special case of a categorization process
resulting in three discrete diagnosis variables which are derived from all-continuous observations. (Best viewed in color.)

measures at leaves, since they model a univariate distribu-
tion:

f̂L(x) = 2πfL(x) =

∫
R
exp(−itx)φX(t)λ(dt). (13)

Let pN be the number of variables in the scope of node N.

Sum Nodes. Using the completeness property of SPNs, for
a sum node S:

f̂S(x) =

∫
t∈Rp

exp
(
−it⊤x

)
φS(t)λp( dt)

=
∑

N∈ch(S)

wS,N

∫
t∈RpS

exp
(
−it⊤x

)
φN(t)λpS(dt)︸ ︷︷ ︸

=f̂N(x)

,

(14)

which is the weighted sum of inversions at its children.

Product Nodes. Using the decomposability property of
SPNs, and the fact that a product node P models a product
distribution assuming independence among its children,

f̂P(x) =

∫
t∈RpP

exp
(
−it⊤x

)
φP(t)λpP

(dt)

=
∏

N∈ch(P)

∫
s∈RpN

exp
(
−is⊤x[sc(N)]

)
φN(s)λpN

(ds)︸ ︷︷ ︸
=f̂N(x[sc(N)])

,

(15)

where x[sc(N)] is the subset of dimensions in x that belong
to the scope of its child N. The product appears as an ap-
plication of Fubini’s theorem [Fubini, 1907] for product
measures.

Numerical integration may be needed for such measures
when there is no closed form density at the leaves. A good
approximation technique for the inversion at α-stable leaves
is the Gauss-Hermite quadrature [Hildebrand, 1987], since
the integral over the entire domain [−∞,∞] is intractable.
We approximate the integral

∫
R exp(−itx)φX(t)dt with a

weighted sum (wi of function values at certain sampled
points (ti) as

∫ +∞

−∞
e−t2

et2 exp(−itx)φX(t)︸ ︷︷ ︸
h(t)

 dt ≈
n∑

i=1

wih (ti) ,

(16)
where n is the number of sample points used (typically
< 100). This is tractable since the closed form of φX(t)
and by extension h(t) for the α-stable leaf is known.

3.5 χSPN IS A UNIVERSAL FUNCTION
APPROXIMATOR

The weights of the χSPN are parameterised by gating func-
tions and distribution parameters and this allows them to in-
duce universal approximators. By using threshold functions,
θ+I(xi ≥ c)+ θ− · ¬I(xi ≥ c), c ∈ R, one can encode test-
ing arithmetic circuits [Choi and Darwiche, 2018] , which
are proven universal approximators. This renders χSPN to
be universal approximators by design. Moreover, use of
characteristic functions allows the leaves of the network to
theoretically model all probability distributions, including
those that do not have a density function.

4 EXPERIMENTAL EVALUATION

χSPN are tailored towards handling causal graphs with hy-
brid data i.e. graphs consisting of random variables drawn
from both discrete and continuous distributions. Our exper-
iments thus focus on capturing the interventional distribu-
tions within such exemplary causal processes. We aim to
answer the following questions:

(Q1) Can χSPN effectively estimate the joint probability of
the heterogeneous variables conditioned on arbitrary
interventions?

(Q2) How well does χSPN capture individual interventional
distributions?
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for different interventional distributions. Marginalized ground truth distributions (plotted as bar diagrams) and χSPN
approximations (red line) are shown. Modes of the distributions are generally well matched across most plots. Deviations
from ground truth show at distribution boundaries as artifacts of the χ function discretization. (Best viewed in color.)

(Q3) Does χSPN generalize to multiple interventions?

Before presenting our results and answering these questions
we briefly describe the data generating process.

Data Generating Process. To evaluate χSPN’s ability to
model arbitrary interventional distributions on heteroge-
neous data, we curate 3 synthetic datasets, comprising of an
extension to the causal health dataset from Zečević et al.
[2021] and two new causal datasets themed around hiring
practices and student performance. The SCMs for the 3
datasets are outlined with the variables and their correspond-
ing domains in Fig. 3. We generate 100,000 data points for
the extended causal health dataset and 120,000 for the hiring
and student datasets. We also use different types of distribu-
tions for the noise, such as Gaussian and Pareto noise across
all datasets. The train/test split is 80%/20%. A detailed de-
scription of the datasets with the underlying distributions
can be found in Appendix A.

Underlying model. We use the RAT-SPN [Peharz et al.,
2020] as a structural base upon which we build our own
model. We do not perform structure learning of the χSPN

and instead adopt a randomised splitting strategy at the
nodes. We chose RAT-SPN as it follows a simple random-
ized procedure for structuring an SPN, thus providing a
significant computational advantage over explicit structure
learning. The shared parameters ψ of the χSPN are pre-
dicted from a fully connected neural network with 2 hidden
layers, with different final layer for gate and leaf parameters.
We choose n = 50 as the number of sample points used in
the Gauss-Hermite quadrature.

Capability of χSPN for handling hybrid domains (Q1).
We test our χSPN on the 3 synthetic datasets described
above with interventions on both discrete and continuous
variables. We compare χSPN with the baseline model of
iSPN [Zečević et al., 2021] for the continuous case. Fig. 4
shows the captured interventional distributions for the con-
tinuous variables. Note that, due to lack of space, we show
only 2 variables per dataset here with the complete results
shown in the Appendix D in Figs. 9, 10 and 11. It can be
seen that our χSPN captures the modes of the distributions
well matched across the datasets. Deviations from ground
truth at the distribution boundaries can be attributed to the



Causal Health Classification

Interv. D1 D2 D3
Observ. 76.8% 69.4% 53.8%
do(A) 76.6% 69.6% 53.8%
do(F) 83.3% 63.0% 53.7%
do(H) 78.9% 64.0% 57.0%
do(M) 84.7% 46.0% 69.3%

Hiring

Interv. E D
Observ. 64.2% 85.9%

do(I) 64.1% 65.2%
do(E) N/A 84.0%
do(Sk) 64.5% 61.1%
do(B) 64.6% 86.7%

Student

Interv. S
Observ. 58.6%
do(Q) 56.5%
do(M) 54.6%
do(C) 59.5%
do(T) 56.4%

Figure 5: Accuracies of Discrete Variable Prediction. Tables contain the prediction accuracies over all discrete variables of
the data sets. Results for observational and interventions on the remaining (unintervened) continuous variables are presented.

artifacts of the χ function discretization. The baseline iSPN
generally over or underestimates the underlying distribu-
tions. This is expected since iSPN’s cannot handle mixed
distributions.

Furthermore, Fig. 5 shows the accuracies of discrete vari-
able prediction after intervention on the continuous vari-
ables. Since we consider the discrete variables to be the
target variables we calculate the accuracies of the discrete
value being correctly predicted. Please note that the discrete
variables are not always binary. For instance, in the hiring
dataset the variable E (education) can take 7 values and
in the student dataset the variable S (selection) can take 3
values. For education (E) prediction in the hiring dataset,
the top-3 accuracy is reported. The results show that χSPN
can effectively capture the discrete variable values after
intervening on then continuous variables. We can thus an-
swer (Q1) affirmatively: χSPN can handle interventions on
mixed datasets, thereby making them applicable to hybrid
domains.

Observational vs Interventional (Q2). In the following
we inspect the ability of our χSPN to truthfully capture
individual interventional distributions. Depending on the
number of variables in a graph, every individual interven-
tional distribution is only seen in a small fraction of the
samples. For the Hiring and Causal Health Classification,
which both contain 7 variables, each intervention is only
visible in ∼ 14% of the training data. Even within these
samples all causal mechanisms –except the intervened one–
are computed in the standard ‘observational’ behaviour, in-
creasing bias towards observational behaviour. While being
powerful density approximators, there exists a chance that
χSPN overfit to the observational distribution in practice for
the stated reasons.

Comparing observational (Fig. 4) and interventional (Fig. 8
in the appendix) density estimates we find that no strong
degradation in performance is observed when switching
from observational to interventional estimation. In particular,
the modes of all distributions seem to be estimated matched
well. For Hiring and Causal Health data sets slight biases in
mode prediction (Hiring variables W, Sk, I; Causal Health
variables F, H) are learned for observational data. Qualita-

tively, we find that the discretization artifacts –present at
boundaries of the interventional distributions– are strongly
reduced for observational data. Like previously, this can be
a consequence of the higher supply of observational data.

For discrete variables we compare observational results in
the first rows of Fig. 5 against the accuracies of intervention
graphs. Recall, that intervening on any variable in the graph
does change the actual underlying distribution. Depending
on the intervened variable, predictions might, therefore, be-
come easier or harder to predict. While accuracies vary
across different interventions, we observe no severe per-
formance degradations. Overall, we can now answer (Q2):
χSPN do not suffer from sampling bias towards observation
data and predict interventional distributions equally well.

Multiple Interventions (Q3). To test the generalization ca-
pabilities of χSPN, we test the model trained on a single
intervention to estimate the distributions captured from mul-
tiple interventions. Fig. 6 shows the results for the Student
dataset with the application of intervention on two variables
simultaneously. For example, the top left 2 graphs show
capture the distributions after intervention on the cultural
activities and test scores variables (C,T) while the top right
2 graphs capture the distributions after intervention on moti-
vation and cultural activities (M,C). As it can be seen χSPN
is able to faithfully capture the interventional distributions
thereby showing the generalization capability of our ap-
proach. Additional results, found in Fig. 7, for the Hiring
dataset confirm this finding. As before, there are slight bi-
ases in the captured distributions but can be attributed to
the discretization of the characteristic function. This an-
swers (Q3) affirmatively: χSPN can efficiently generalize
to multiple interventions.

A question might arise here: how does χSPN generalize to
unseen interventions? As the SCM structure is not enforced
within the NN, relations have to be learned from a suitable
data presentation. Clearly, if a variable is never intervened,
the NN can not correlate the input of the intervention signal
to an appropriate weight vector for the SPN. Assuming that
interventions on a variable are trained, but novel values are
observed, general assumptions about neural networks ex-
trapolating/generalizing to novel out-of-distribution values
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Figure 6: Generalization to multi-intervention. Although only trained on single intervention data, χSPN can generalize to
multi intervention estimation. The plots show six combinations of density predictions under two simultaneously applied
interventions for the Student data set. As with the single intervention case, modes are generally matched well or offset
slightly. Distribution shapes generally match, but show increased errors as distributions flatten out. (Best viewed in color.)
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Figure 7: Multi-Intervention Density Estimation (Hiring Data Set). The plots show four combinations of density
predictions under two simultaneously applied interventions for the Hiring data set. As with the single intervention case,
modes are generally matched well with occasional slight offsets. However, in contrast to the Student dataset some intervention
combinations (B,E and Sk,B) feature an increased mismatch to ground-truth for ‘Work Experience’. (Best viewed in color.)

apply [Zhang et al., 2021, Liu et al., 2021].

As far as SPN’s are concerned, they can be made robust to
out-of-distribution data by modeling uncertainty quantifica-
tion [Ventola et al., 2023]. This is achieved by a tractable
dropout inference (TDI) procedure to estimate uncertainty
by deriving an analytical solution to Monte Carlo dropout

through variance propagation. Thus, χSPN can be extended
to be more robust towards unseen interventions.



5 CONCLUSION

We presented χSPN, the first causal models that are ca-
pable of efficiently inferring causal quantities (i.e., inter-
ventional distributions) in presence of mixed data. χSPN
transforms discrete and continuous variables into a shared
spectral domain using characteristic functions in the leaves
of the interventional SPN. This enables χSPN to capture
the interventional distributions effectively. In addition, we
show that χSPN are able to generalize to multiple interven-
tions while being trained only on a single intervention data
thereby showing the generality of our proposed approach.

As most real-world data is mixed by nature, immediate fu-
ture work includes testing the χSPN on such real world data
sets. Incorporating rich expert domain knowledge, along-
side observational data, proves crucial for achieving robust
causal inference. Extending our method to integrate such
expertise becomes imperative for enhancing the accuracy
and reliability of causal models. Also, scaling χSPN to very
large data sets is essential for their adaptation to complex
real world scenarios.
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A DESCRIPTION OF SYNTHETIC HETEROGENEOUS CAUSAL DATASETS

Structural equations to the corresponding graphs shown in Fig. 3 used for the experimental evaluation of this paper.

A.1 CAUSAL HEALTH CLASSIFICATION

A = U(0, 100)

F =
1

2
A+N (10, 10)

H =
1

100

(
100−A2

)
+

1

2
F +N (40, 30)

M =
1

2
H +N (20, 10)

// helper variables (used for brevity of notation)

D′
1 :=

{
0.00108A3 − 0.08862A2 + 1.337A+N (25, 10) ifA ≤ 4.09837

N (5, 10), otherwise

D′
2 := 0.0175F + 0.525M +N (0, 5)

D′
3 := 0.00013857A3 − 0.0135A2 + 0.2025A+ 0.2025H +N (17.1714, 0.2A)

// actual diagnose variables

Di∈{1..3} :=

{
true ifargmax({D′

i}i∈{1..3}) = i

false otherwise

A.2 HIRING DATASET

Sc = U [0, 9]),Discrete

W =
1

2
ChiSquared(df = 4)

E = U [0, 6],Discrete

Sk = 0.8 ∗ E + 1.2 ∗W + Pareto(a = 2.75)

B = Sc+N (0, 1.5)

I = 3 ∗ Sk − 1

2
B +N (0, 4)

D = I[3 ∗ I + Sk ≥ Cutoff],Binary

A.3 STUDENT DATASET

Sc = U [0, 4],Discrete

Q = N (2.5, 3)− Sc

M = N (10, 3)

C = 0.8 ∗Q+ 0.2 ∗M + Pareto(a = 3)

T = 0.4 ∗Q+ 0.6 ∗M +N (0, 1)

D = I[T + C ≥ RegionalCutoff] + I[T + C ≥ NationalCutoff], 3 categories



B LEAF TYPES

Here we describe the leaf types that are used in the χSPN, by following their definitions in Yu et al. [2023].

Parametric leaf for continuous RVs. We can assume that the RV at a leaf node follows a parametric continu-
ous distribution e.g. normal distribution. With this, the leaf node is equipped with the CF of normal distribution
φLNormal (t) = exp

(
itµ− 1

2σ
2t2

)
, where parameters µ and σ2 are the mean and variance.

Categorical leaf. For discrete RVs, if it is assumed to follow categorical distribution (P (X = j) = pj), then the CF at the
leaf node can be defined as φLCategorical (t) = E[exp(itx)] =

∑k
j=1 pj exp(itj).

α-stable leaf. In the case of financial data or data distributed with heavy tails, the α-stable distribution is frequently employed.
α-stable distributions are more flexible in modelling e.g. data with skewed centered distributions. The characteristic
function of an α-stable distribution is φLα-stable (t) = exp (itµ− |ct|α(1− iβ sgn(t)Φ)), where sgn(t) takes the sign of t

and Φ =

{
tan(πα/2) α ̸= 1
−2/π log |t| α = 1

. The parameters in α-stable distribution are the stability parameter α, the skewness

parameter β, the scale parameter c and the location parameter µ.

C OBSERVATIONAL DISTRIBUTIONS

Figure 8: Approximation of Observational Densities. Plots feature the approximated densities of continuous variables
for all observational data set distributions. Marginalized ground truth distributions (plotted as bar diagrams) and χSPN
approximations (red lines) are shown. Modes of the distributions are generally matched. Within the Hiring dataset (variables
W, Sk and I) as well as Causal Health (variables F, H) predicted modes are offset to the ground truth. Discretization artifacts
as observed at the boundaries of interventional distributions are strongly reduced. (Best viewed in color.)



D χSPN CAPTURES INTERVENTIONAL DISTRIBUTIONS: EXTENDED RESULTS
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Figure 9: Approximation of Interventional Densities (Causal Health Data Set).
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Figure 10: Approximation of Interventional Densities (Student Data Set).
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Figure 11: Approximation of Interventional Densities (Hiring Data Set).
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