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Abstract

While transformers have gained recognition as a versatile
tool for artificial intelligence (AI), an unexplored challenge
arises in the context of chess — a classical AI benchmark.
Here, incorporating Vision Transformers (ViTs) into
AlphaZero is insufficient for chess mastery, mainly due to
ViTs’ computational limitations. The attempt to optimize
their efficiency by combining MobileNet and NextViT
outperformed AlphaZero by about 30 Elo. However, we
propose a practical improvement that involves a simple
change in the input representation and value loss functions.
As a result, we achieve a significant performance boost of
up to 180 Elo points beyond what is currently achievable
with AlphaZero in chess. In addition to these improve-
ments, our experimental results using the Integrated
Gradient technique confirm the effectiveness of the newly
introduced features.

Keywords: Transformer, Input Representation, Loss
Formulation, Chess, Monte-Carlo Tree Search, AlphaZero

1 Introduction

Transformers, a neural network architecture introduced in
2017 by Vaswani et al. [30], have become one of the most
dominant paradigms in modern Artificial Intelligence (AI).
Their range of applications has rapidly expanded, making
them prevalent in tasks related to many areas of AI, in-
cluding natural language processing, computer vision, and

multimodal context learning. By employing self-attention
mechanisms, they differentiate themselves from traditional
Convolutional Neural Networks (CNNs). This distinctive
attribute allows the network to dynamically assess the sig-
nificance of individual elements within the input sequence,
providing an alternative to the limitations of sequential pro-
cessing or fixed-size context windows. The rise in popu-
larity of transformers can be attributed to their proficiency
in handling long-range dependencies, a crucial characteris-
tic of computer vision. For this reason, transformer models
are now favored over classical CNN approaches in various
domains, including computer vision [5].

In the field of Reinforcement Learning (RL), transformers
hold great promise for creating robust models that can solve
complex decision problems [2, 13]. These models can de-
pict the connections and correlations between sequences of
observations, actions, and rewards in the context of RL.
They can be used to model the state representation, pol-
icy, and value function objectively [11, 17]. In addition,
they showcase superior performance as general world mod-
els [18].

The Transformer architecture is known for its impressive
performance and versatility and has been compared to the
“Swiss Army Knife” of AI. However, the question remains:
does it really live up to this analogy? Relying on trans-
formers solely due to their growing popularity across var-
ious domains does not necessarily lead to improvements.
As demonstrated by Siebenborn et al. [23], the effect of
transformer architecture on specific applications, including
continuous control tasks, can result in differing outcomes.
Their research found superior results by replacing the trans-
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Figure 1. Architectural Overview of the Predictor Network in AlphaVile. The Mobile Convolutional Block (MCB)
is inspired by Sandler et al.’s work [22], while the Next Transformer Block (NTB) is integrated from Li et al.’s re-
search [16]. The parameter B denotes the number of hybrid blocks within the architecture, offering scalability to the
model. Our standard AlphaVile model employs ten MCBs in Stage 1 (N1 = 10) and two Stage 2 Blocks (B = 2).
Each Stage 2 Block consists of seven MCBs (N2 = 7) and one NTB.

former with a Long Short-Term Memory network (LSTM).
This emphasizes the nuanced nature of the transformer’s
suitability. While their capabilities are undeniable, the sub-
stantial scale of transformers, demanding billions of param-
eters for peak performance, imposes additional constraints.
Substantial computational resources and memory are re-
quired, resulting in high latency and efficiency maintenance
challenges [20, 32]. These limitations become particularly
significant in scenarios such as chess, where minimizing la-
tency is crucial for computational efficiency. This paper as-
sesses the capabilities of transformers in playing chess, a
benchmark game in the field of AI. A popular SOTA chess
AI architecture is AlphaZero, as introduced by Silver et
al. [25, 24]. The methodology seamlessly integrates neu-
ral networks with Monte-Carlo tree search (MCTS) [14].
AlphaZero is appealing because it can learn from scratch,
adapt to new challenges, and consistently perform well. In
this paper, we present AlphaVile1, a novel convolutional
transformer hybrid network. Incorporating a ViT within the
AlphaZero system enables testing of the potential of utiliz-
ing transformers and CNNs together to enhance chess per-
formance.
Although it is commonly believed that “deep learning re-
moves the need for feature engineering”, as argued by Fran-
cois Chollet in his book [3], we believe that modifications to
feature representation can generate improvements for meth-
ods such as AlphaZero. It can help us in achieving similar
goals as “exploring the agent state space and having diverse
agents with a heterogeneous skill set”, which can lead to
”creative”, broader and more diverse agent behavior [26].

1For more exhaustive information regarding our network architectures,
input representations, and value loss formulations, please check our sup-
plementary material and code on GitHub: https://github.com/
QueensGambit/CrazyAra/releases/tag/1.0.4, accessed on
2023-10-26.

Further, adding useful information to the features, i.e., the
moves left in a chess game, can play a crucial role in making
progress on an advanced chess task, outperforming much
larger neural networks [26].
In addition to making architectural changes, we are investi-
gating potential enhancements regarding the feature repre-
sentation. We begin by introducing AlphaVile and provid-
ing the necessary context. We then discuss the improved
input representation and value loss, followed by presenting
our empirical evaluation, which highlights the significant
impact of our extended representation. Finally, we go over
related work and draw a conclusion.

2 AlphaVile: Integrating transformers into
AlphaZero

AlphaZero, as introduced by Silver et al. [25, 24], repre-
sents a well-established model-based RL approach. Its pri-
mary strength is rooted in its ability to make predictions
about the likely course of a given situation through the use
of Monte-Carlo Tree Search (MCTS) [14] with an innova-
tive integration of neural networks. Specifically, we make
use of Prediction Upper Confidence bounds for Trees algo-
rithm (PUCT) that was later refined in AlphaZero. For a
detailed description of the PUCT algorithm, see [26].
Our approach centers on the substitution of the residual
network architecture (ResNet) [9], a framework heavily re-
liant on convolutional layers, with a transformer-based ar-
chitecture. Notably, elements such as the Monte-Carlo Tree
Search (MCTS) algorithm and the loss function:

ℓ = α [z − v]
2 − π⊤ log p+ c · ∥θ∥22 , (1)

remain consistent with the original AlphaZero design. Here,
[z − v]2 quantifies the mean squared error between the ac-
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tual game outcome, denoted as z, and the predicted value
v. Similarly, π⊤ log p represents the cross-entropy between
the target policy vector π and our predicted vector p, a con-
figuration adopted from Silver et al. [25]. To further re-
fine our model, we use the scalar parameter α, serving as a
weighting factor for the value loss. In our experiments, we
set α to 0.01, a choice made to mitigate the risk of overfit-
ting.

As can be seen in Figure 1, AlphaVile is the result of
a synergistic fusion of components from AlphaZero [25],
NextViT [16], and MobileNet [10]. Our approach is based
on the Next Hybrid Strategy as explained by Li et al. [16].
In this strategy, a single transformer block is coupled with
multiple convolutional blocks. The architectural configura-
tion is further trimmed for optimal performance using Ten-
sorRT by combining different blocks and operations into a
single block. This is motivated by the work of Dosovitskiy
et al. [5] who conducted a comparative analysis that placed
their vision ViT architecture in competition with SOTA
ResNet [9] and EfficientNet [28] architectures, both reliant
on CNNs. Their evaluation yields results that showcase
ViT’s superior performance in image classification tasks,
particularly on well-established benchmark datasets such
as ImageNet and CIFAR. Subsequently, Han et al. [8] ex-
tend this exploration with another comprehensive evalua-
tion, once again comparing ViT architectures to contempo-
rary CNN-based counterparts. However, their study also
highlights the concern of efficiency. Transformer models,
by design, tend to be extensive and computationally more
demanding than their CNN-based counterparts, often re-
quiring extensive datasets for training. Han et al. empha-
sizes the symbiotic relationship that emerges when CNN
and transformer models are combined. Efforts are also be-
ing made to tackle the efficiency issues of ViTs, with a fo-
cus on improving performance. Innovations such as Ten-
sorRT as well as specially tailored architectures such as Trt-
ViT [32] and NextViT [16] are contributing to the ongoing
search for efficiency improvements.

In the context of CNNs, the MobileNet architecture was
developed by Howard et al. [10]. MobileNet innovatively
combines depthwise separable convolutions with point-
wise convolutions to reduce the computational overhead
and memory demands typically associated with traditional
CNNs, all while preserving high accuracy. MobileNets have
consistently demonstrated their capability to achieve accu-
racy across a spectrum of computer vision tasks, all the
while exhibiting significantly enhanced speed and memory
efficiency compared to conventional CNNs. These charac-
teristics make MobileNet a particularly well-suited choice
for integration within the AlphaZero framework. Various it-
erations of MobileNet have been introduced, including Mo-
bileNetV2 and MobileNetV3, each bringing additional op-
timizations and enhancements to the original architecture.

Conv 1x1  DW 3x3 Conv 1x1 

Mobile Convolutional Block

Conv 3x3 Conv 3x3

Classical Residual Block

Group Conv 3x3 Conv 1x1 MLP

Next Convolutional Block

Figure 2. Comparing Architectural Components of
Convolution-Based Blocks. This diagram utilises
”DW” to denote Depthwise Convolution. Batchnorm
and ReLU layers have been omitted for clarity. The
conventional residual block, initiated by He et al. [9],
is substituted in AlphaVile with the mobile convolu-
tion block, found in MobileNet, as stated by Sandler
et al. [22]. Additionally, we make use of the next con-
volution block originally introduced in NextViT by Li
et al. [16]

For our work, we leverage the mobile convolution block, as
presented in MobileNetV2 and reutilized in MobileNetV3.
Further, we employ stochastic depth techniques [12]. This
strategy serves a dual purpose, accelerating the training pro-
cess while enhancing convergence. Additionally, we imple-
ment a scaling technique adapted from EfficientNet [28],
which facilitates the generation of networks in varying sizes
to suit our needs. More details on this can be found in the
supplementary materials section.
To assess the performance of AlphaVile, our evaluation be-
gins with a comparative analysis of the MobileNet block
compared to ResNet [9] and the “Next Convolution Block”,
a component that outperformed the ConvNext Transformer,
PoolFormer, and Uniformer blocks in the study conducted
by Li et al. [16]. These three convolutional blocks are vi-
sually represented in Figure 2. Notably, the mobile convo-
lutional block [22] demonstrates a slightly superior perfor-
mance compared to the classical residual block [9], while
the next convolutional block [16] exhibits notably inferior
results under equivalent latency constraints. Consequently,
based on experimental results in Table 1, we select the mo-
bile convolutional block as the default convolutional base
block for AlphaVile.
Our investigation regarding the combination of convolu-
tional base blocks with transformer blocks covers different
sets of transformer blocks according to the integration strat-
egy presented in Table 2. Following the proposal by Li et
al. [16], we place a single transformer block after a given
number of convolutional blocks, rather than grouping all
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Table 1. Training Results for Comparing Convolutional Blocks in the Core of the Model. The mobile convolutional
block, with an expansion ratio of three, outperforms the classical residual block and notably surpasses the next convolu-
tional block. Furthermore, all three configurations exhibit similar latency on the GPU. The best results are highlighted
in bold.

Convolutional Block Blocks Channels Combined Loss Policy Acc. (%) Latency (µs)

Classical residual block [9] 10 192 1.2350 ± 0.0031 57.50 ± 0.14 36.17
Mobile conv. block [22] 9 256 1.2343 ± 0.0023 57.53 ± 0.05 34.78
Next conv. block[16] 10 256 1.2411 ± 0.0009 57.33 ± 0.05 34.84

transformer blocks at the end of the network. For archi-
tectures with 15 convolutional blocks, our study shows that
sparsity predominates. Smaller quantities of transformer
blocks show better results compared to their more numerous
counterparts. The configuration with precisely two trans-
former blocks is the optimal choice and yields the best re-
sults. After introducing the AlphaVile architecture, we now
turn to the importance of representation.

3 AlphaVile-FX: The importance of repre-
sentation

In AlphaZero, the traditional representation of the game
state is a nuanced art. It manifests as a stack of planes, each
of which encodes a particular facet of the complex state of
the chessboard. These planes are structured as an 8 × 8
grid, with each cell serving as a single square on the chess-
board. Within this framework, there are two distinct plane
types: bool and int. The first type describes planes where
the value of each square is restricted to binary limits, i. e. 0
or 1. As an illustrative example, the first plane indicates the
areas occupied by the first player’s pawns, where the value
1 indicates their presence and 0 their absence. In contrast,
the int planes deal with integer numbers and provide a range
of values instead of a binary contrast, e. g. the no-progress
counter value is set on the entire 22nd plane. To improve
computational robustness and numerical stability, these int
features are thoughtfully scaled to cover the floating point
range from −1 to 1, using the extreme feature values as the
reference points. The original representation (Inputs V1.0)
and can be found in Table 3. In total, Inputs V1.0 comprises
39 planes and gives our input a multidimensional structure:
a tensor with dimensions 39× 8× 8.

3.1 Expanding the input representation

It is a generally accepted principle that the role of represen-
tation is central to traditional machine learning, but there
is an ongoing discussion about its importance in the field
of deep learning. In this paper, we present a novel inter-
pretation, as shown in both the top and bottom segments

of Table 3, of the input by introducing additional features
into the existing framework while also removing two fea-
tures. We exclude the color information as this can dis-
tort the evaluation in favor of the White player regardless
of the underlying position, as White has often an advantage
in chess positions. The differentiation between the active
player to move and the opponent player still persists. More-
over, we remove the current move number, but not the no-
progress counter for the 50 move rule. Additionally, we add
several features including two masks for all pieces of each
player, a checkerboard pattern, the relative material differ-
ence, a boolean map signaling if there are opposite color
bishops, all checking pieces and the overall material count
of the current player. The new input definition brings signif-
icant improvements, particularly regarding policy and value
loss functions. We argue that these supplementary features,
though derivable from existing features, enhance the net-
work’s capacity by providing essential information in ad-
vance, thereby eliminating the need for in-network compu-
tations. Table 4 presents evidence that highlights the sig-
nificance of feature engineering, leading to an advantage of
about 100 Elo and demonstrating its continued relevance in
the realm of deep neural networks.

3.2 Redefining the value loss representation

In order to boost the performance of chess engines, it is
necessary to improve the quality of chess engines’ abil-
ity to evaluate a given position. Taking inspiration from
[26], where it was shown that the approach led to perfor-
mance improvements on a dataset called chess fortresses,
we explore an inventive method advocated by Henrik
Forstén, embodied by the Win-Draw-Loss-Head (WDL)
framework2. This framework accurately predicts the per-
centage distribution of winning, drawing, and losing scenar-
ios, while also introducing the Moves Left Head3 to forecast
the remaining number of moves until the game’s comple-

2Further information can be found at https://github.com/
LeelaChessZero/lc0/pull/635, accessed on 2022-11-11.

3Further details can be accessed at https://github.com/
LeelaChessZero/lc0/pull/961, accessed on 2022-11-11.
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Table 2. Grid Search Results for Different Transformer Block Configurations within the AlphaVile Model, as Shown
in Figure 1. Optimal performance, highlighted in bold, is achieved by including two level 2 blocks (B). The number
of mobile blocks (N1, N2) is adjusted carefully to ensure the comparability of the models. The number of Transformer
Blocks (NTBs) is set according to B.

#Stage 2 Blocks (B) N1 N2 Combined Loss Policy Acc. (%) Latency (µs)

0 18 0 1.1901 ± 0.0049 58.67 ± 0.17 53.54
1 8 8 1.1920 ± 0.0021 58.57 ± 0.17 54.40
2 5 5 1.1887 ± 0.0065 58.67 ± 0.12 54.86
3 5 4 1.2061 ± 0.0140 58.30 ± 0.43 54.67
4 4 3 1.2327 ± 0.0045 57.57 ± 0.47 52.68

tion. To achieve this, we have incorporated an additional
output into the value head. This enhanced model, dubbed
the WDLP Value Head, accurately predicts the number of
half moves left until the conclusive end of the game. Orig-
inally developed for finishing off won endgames, Stein-
grimsson [26] discovered that the WDL approach is suitable
more generally for complex chess tasks.

The following equation derives the classic value output (v).
The parameter is bounded within the interval [−1,+1] and
derived from the interplay of Loutput and Woutput:

v = −Loutput + Woutput . (2)

In this formulation, Loutput indicates the likelihood of ex-
periencing a defeat in the game, while Woutput depicts the
probability of achieving victory. To validate our findings
empirically, we refer to the information extracted from Ta-
ble 5. The results clearly demonstrate the advantages of this
novel weight loss approach, leading to a 33 Elo improve-
ment.

In this redefined framework, we employ a consistent value
policy loss, which is accompanied by an auxiliary goal of
the remaining number of plies. This results in a significantly
transformed loss function

ℓ = −α(WDL⊤
t logWDLp)−π⊤ log p+β(plyt−plyp)

2+c∥θ∥22
(3)

employing WDLp, a probability distribution that predicts
the probabilities of win, draw, or loss, while WDLt defines
the target distribution. Within this framework, the scalar
parameters α and β allow weighting each loss component.

Our experiments reveal that the incorporation of input fea-
tures and optimization of the loss function enhance perfor-
mance, leading to an improvement in both loss and accu-
racy. Therefore, we introduce the ”FX” suffix to indicate
our Feature eXtension — a combination of the expanded
input representation and the WDLP value head.

4 Investigating the significance of representa-
tion in chess mastery

This section presents an empirical study of the AlphaZero,
AlphaVile models and their “-FX” variants. We test these
across the dimensions of accuracy, latency, and overall
playing strength while providing comprehensive context
through comparative assessments against other baseline
models. Each experimental investigation adheres to a care-
fully defined set of training hyperparameters, as detailed
in the supplementary materials. Our research efforts are
strengthened by using three different seeds in our different
configurations. We utilize the KingBase Lite 2019 dataset4

as for training chess networks. This extensive collection
of chess data comprises of more than one million games
played by expert human players since 2000, each with an
Elo rating of over 2200. Furthermore, our scientific explo-
ration includes an ablation study in the field of alternative
chess variations, in particular atomic and crazyhouse. Uti-
lizing the lichess.org variant database5, we extract and ex-
amine data from the top decile of players. This approach
provides a valuable perspective on model performance in
diverse and challenging chess scenarios. The latency eval-
uation is performed on a NVIDIA GeForce RTX 2070 OC,
using a batch size of 64 and benefiting from the advanced
TensorRT-8.0.1.6 backend for accelerating throughput.

4.1 Trade-off between efficiency and accuracy

As Han et al. [8] demonstrate that the integration of trans-
formers is widely praised for its versatility, but also presents
inherent latency concerns. This is particularly noticeable
in competitive contexts where precision and swift process-
ing of large datasets are of importance. To decrease la-
tency without sacrificing accuracy, we suggest combining

4https://archive.org/details/KingBaseLite2019,
accessed on 2022-11-02

5https://database.lichess.org/#variant_games, ac-
cessed on 2023-10-23
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Table 3. Plane-based Feature Representation for Chess (Inputs V1.0). Features are encoded as binary maps, and specific
features are indicated with ∗ as single values applied across the entire 8× 8 plane. The historical context is captured as
a trajectory spanning the last eight moves. The table begins with traditional input features (listed above the horizontal
line). The extended input representation (Inputs V.2.0) incorporates additional features below the horizontal line, while
omitting two features marked with strike-through.

Feature Planes Type Comment

P1 pieces 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
P2 pieces 6 bool order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN, KING}
Repetitions* 2 bool how often the board positions has occurred
En-passant square 1 bool the square where en-passant capture is possible
Color* 1 bool all zeros for black and all ones for white
Total move count* 1 int integer value setting the move count (UCI notation)
P1 castling* 2 bool binary plane, order: {KING SIDE, QUEEN SIDE}
P2 castling* 2 bool binary plane, order: {KING SIDE, QUEEN SIDE}
No-progress count* 1 int sets the no progress counter (FEN halfmove clock)
Last Moves 16 bool origin and target squares of the last eight moves
is960* 1 bool if the 960 variant is active

P1 pieces 1 bool grouped mask of all P1 pieces
P2 pieces 1 bool grouped mask of all P2 pieces
Checkerboard 1 bool chess board pattern
P1 Material difference* 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Opposite color bishops* 1 bool if they are only two bishops of opposite color
Checkers 1 bool all pieces giving check
P1 material count* 5 int order: {PAWN, KNIGHT, BISHOP, ROOK, QUEEN}
Total 39 / 52

convolutional base blocks and transformer blocks in our ar-
chitecture. We present four different configurations of our
AlphaVile architecture to illustrate the impact of network
size on latency, as detailed in Table 6.

We begin our investigation by examining the performance
of a fully transformer-based neural network, the ViT [5],
when integrated with AlphaZero. In order to ensure a fair
comparison of latency, we trimmed these ViT models to
match the latency of our AlphaVile architecture, as employ-
ing a ViT model with an equivalent number of blocks would
considerably increase latency. A comparison of these net-
works is and depicted in Figure 3. These networks display
a relatively high loss and decreased accuracy when com-
pared to AlphaZero. Consequently, we start incorporat-
ing convolutional and transformer blocks. This assessment
incorporates LeViT [7], NextViT [16], and our proposed
AlphaVile design. These strategies offer a better solution
than the ViT-based approach and deliver better outcomes
than AlphaZero.

4.2 Comparative assessment of playing strength

In order to evaluate the playing strength of our ViT models,
we conducted a comprehensive round-robin tournament, in
which we pitted AlphaVile, ViT, and AlphaZero* against
each other. AlphaZero* here relates to a reimplementa-
tion of AlphaZero in the form of ClassicAra using the same
model architecture as AlphaZero. The results of this tourna-
ment are graphically illustrated in Figure 4. The ViT model
falls short of matching the playing strength achieved by Al-
phaZero* and AlphaVile. This outcome is consistent with
the results presented in Figure 3, which highlights the com-
putational disparities between ViTs and our other models.
AlphaVile-FX slightly outperform the AlphaZero*-FX ver-
sion by about 30 Elo. Elo is a metric that measures the
relative playing strength difference. We set our baseline
Elo rating to 0 Elo, which refers to the weakest participant,
here ViT, in our tournament. We refrain from using a base-
line Elo rating from ClassicAra from engine rating lists, be-
cause we were testing on a different hardware than used
for creating the engine list. ClassicAra-1.0.1 participated
at the Top Chess Engine Championship (TCEC) season 23
and achieved an Elo rating of 3279, compared to Stockfish-
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Table 4. Understanding the Impact of Input Representations on Performance Metrics. This table presents experimental
results from different input representations, highlighting their impact on value and policy loss. The adapted Inputs
V.2.0 is shown to be the most sophisticated, signaling the ongoing quest for optimization.

Input Representation Combined Loss Policy Acc. (%) Value Loss Latency (µs) Elo Difference

Inputs V.1.0 1.1918 ± 0.0028 58.63 ± 0.05 0.4448 ± 0.0007 52.08 -
Inputs V.2.0 1.1901 ± 0.0049 58.67 ± 0.17 0.4371 ± 0.0002 53.54 96.7 ± 30.4

Table 5. Finding the Optimal Value Head for Chess Engines. This table reveals the results of two value head types.
The Win-Draw-Loss-Ply (WDLP) value head emerges as the winner.

Value Head Type Combined Loss Policy Acc. (%) Value Loss Latency (µs) Elo Difference

MSE 1.1933 ± 0.0021 58.50 ± 0.08 0.4406 ± 0.0002 53.35 -
WDLP 1.1901 ± 0.0051 58.73 ± 0.12 0.4356 ± 0.0006 53.38 33.2 ± 19.0
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Figure 3. A comparison between AlphaVile and other
efficient neural network architectures, with a focus on
achieving an optimal balance between accuracy and la-
tency. The results were obtained from three indepen-
dent seed runs.

dev16 (3625), LCZero-0.30 (3599). We also add Stockfish
16.1-NNUE (15k nodes per move) and FairyStockfish 14-
NNUE (50k nodes and 40k per move) as horizontal lines to
Figure 4 to make the results more comparable. The modi-
fications to the input and loss representations in our study
are substantial, leading to a significant increase in playing
ability. In particular, the modification improves the perfor-
mance of AlphaZero* by 180 Elo points in chess. A less-
ened increase is evident in chess variants, such as crazy-
house (Figure 4b) and atomic chess (Figure 4c). This em-
phasizes the significance of these changes, which are appar-
ent in the enhanced playing strength across chess variants.
Opening suites were incorporated into the gameplay to in-
troduce a range of game scenarios.

Table 6. Architectural Configurations of AlphaVile in
Different Sizes. Note: All versions feature a channel
expansion ratio of 2 and use a combination of 50 %
3×3 and 50 % 5×5 convolutions. We use base chan-
nel counts that are dividable by 32 for faster inference.

Size B N1 N2 # Blocks Base Channels

AlphaVile (tiny) 1 8 6 15 192
AlphaVile (small) 1 11 10 22 192
AlphaVile (normal) 2 10 7 26 224
AlphaVile (large) 2 13 11 37 224

4.3 Interpretability of FX-features

Next, we investigate the interpretability of the FX features
and their influence on the model. To determine the impor-
tance of each feature channel, we use the Integrated Gradi-
ents (IG) method, a widely accepted technique in the field
of neural networks’ interpretability [27]. We calculate the
average attribution of each channel to the model’s output
value. It is crucial to establish an appropriate baseline for
computing gradients. In Figure 5, we utilize the mean of all
validation input features.
Our analysis shows that the newly introduced feature chan-
nels within the FX representation have significant utility.
Some feature channels display positive attribution, while
others exert a negative influence. This observation supports
the logical assumption that a greater number of the oppo-
nent’s pieces corresponds to a lower value loss. Our analy-
sis suggests, interestingly, that the color channel and move
history information are of limited importance, as shown in
the second graph. Additionally, it seems that the king’s po-
sition is of low relevance. This may be misleading, as the

7



250 500 750 1000 1250 1500
Movetime [ms]

0

200

400

600

800

1000
R

el
at

iv
e 

E
lo

Stockfish 16.1-NNUE
(15k Nodes) AlphaVile-FX

AlphaVile
AlphaZero*-FX
AlphaZero*
ViT-FX
ViT

(a) Performance evaluation in chess.

250 500 750 1000 1250 1500
Movetime [ms]

0

200

400

600

800

1000

R
el

at
iv

e 
E

lo

FairyStockfish 14-NNUE
(50k Nodes)

(b) Assessment of playing strength in crazyhouse.

250 500 750 1000 1250 1500
Movetime [ms]

0

200

400

600

800

1000

R
el

at
iv

e 
E

lo

FairyStockfish 14-NNUE
(40k Nodes)
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Figure 4. The AlphaZero-FX network showcases ex-
cellent performance in chess (4a), crazyhouse (4b),
and atomic chess (4c), surpassing the vanilla ver-
sion using Input Representation Version 1 without the
WDLP head. The performance increase in chess is
noteworthy, with an increase of 180 Elo point. The
performance level of the AlphaVile network is com-
parable to that of the AlphaZero network, especially
at longer move times.

king is always present, and a weak or strong king’s posi-
tion has either a positive or negative influence on the value
target. The IG method highlights the significance of the
player 1 and player 2 masks as the most influential feature
channels of the FX-Features. Their integration, in conjunc-
tion with the refined value loss representation, significantly
improves the evaluation of endgames with opposite-colored
bishops, as further elaborated in the appendix.

5 Related Work

Originally created for supervised learning tasks, transform-
ers have been widely adopted across multiple domains, such
as natural language processing and computer vision. In the
realm of RL, where sequential decision-making is crucial,
the usage of transformers has become an active area of re-
search [13]. The primary goal of combining transform-
ers and RL is to model and, in several instances, improve
decision-making by utilizing attention mechanisms. The se-
quential nature of RL tasks makes transformers a flexible
framework for addressing them. Several approaches have
been suggested to overcome the gap between transformers
and RL, including enhancements in architecture and trajec-
tory optimization strategies [11].
Currently, the Trajectory Transformer [13] and Decision
Transformer [2] are among the prominent paradigms. For a
thorough comprehension of the combination of transform-
ers and RL, we suggest studying the insightful surveys by
Li et al. [17] and Hu et al. [11].
Recent work [6] has shown that utilizing classification-
based approaches is generally superior to alternative
regression-based approaches. Game-specific features have
also been found to be beneficial for the game of Go [31].
The utilization of transformers in chess-related tasks has
previously been explored in the literature [4, 19, 29], al-
beit these investigations differ significantly from our ap-
proach. Previous studies mainly utilized Large Language
Models (LLMs) and analyzed chess problems from a lin-
guistic perspective. They particularly relied on techniques
like Portable Game Notation (PGN) and area-specific ter-
minology to represent chess positions textually. A recent
paper [21] explores the utilization of transformer without
search and achieves grandmaster-level performance. Al-
though these attempts succeeded in teaching the regulations
of chess, they did not achieve the playing skills demon-
strated by AlphaZero. In another line of research, the use
of transformers in chess has also been envisioned to pro-
duce annotations on chess positions, with the objective of
enhancing the comprehensibility and traceability of chess
analysis [15]. Steingrimsson [26] demonstrated through rig-
orous experiments on an advanced chess benchmark which
SOTA chess architectures still struggle with, the crucial
role of neural architecture improvements. This consisted
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Figure 5. The newly introduced FX-features demonstrate significant usage, highlighted by the Integrated Gradients
(IG) method for feature importance analysis. In the conventional input representation (5a), both positive and negative
feature attributions are predominantly related to piece maps. In the enhanced input representation presented in (5b),
supplementary features are incorporated, while two features marked with strike-through are omitted. The IG method
uses the average of all inputs as a baseline for the attribution calculation.

of broader output variables. They also emphasized the im-
portance of behavioral diversity among agents, which led
to creative and varied chess strategies and experiments with
additional heads. In this work, we take the next step, ex-
ploring input features and their representation.

6 Conclusion

Our study has shown that an optimized input representation
and value loss definition significantly enhance the playing
strength of chess AIs. Despite the prevailing belief that fea-
ture engineering has decreased in relevance with the emer-
gence of deep learning networks, our findings challenge this
assumption. Our new input representation includes novel
characteristics that arise from the combination of existing
features, including material difference and material count.
Additionally, there are implicit features derived from the ba-

sic rules of chess, such as pieces giving check and the iden-
tification of bishops of opposite colors. Transformers are a
versatile tool for AI recognized for their ability to process
global features and effectively handle extended input se-
quences, thanks to their use of attention mechanisms. How-
ever, their applicability in specific domains such as timed
competitive games, like chess, leads to unique challenges
beyond accuracy. In such contexts, efficiency is paramount.
Efforts to improve the performance of ViTs in chess AI by
fusing them with CNNs aimed to exploit the latter’s efficient
pattern recognition capabilities. Addressing the latency is-
sues typically associated with transformers, these hybrid
models generated slightly superior results compared to the
pure convolutional network baseline, AlphaZero. Further-
more, custom-made transformers that cater to the specific
requirements of chess may improve performance. Ongo-
ing experiments carried out by the Lc0 developer team in
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this area demonstrate potential, although further study is
required and is outside the scope of this paper. We main-
tain that transformers hold substantial promise for advanc-
ing the field of computer chess. Particularly, their potential
applications in areas such as multimodal inputs [33] and
retrieval-based approaches [1] may open new avenues for
enhancing the capabilities of computer chess engines. Our
findings underscore the enduring importance of feature en-
gineering, negating any suggestion of its becoming obsolete
and proposing that it remains “forever young”.
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A Supplementary Materials

A.1 Final Performance Overview of AlphaVile

Table 7 provides a detailed report on the performance met-
rics of the AlphaVile architecture compared to other effi-
cient neural network architectures.

A.2 Preliminary Experiments for Building Al-
phaVile

The AlphaVile architecture was developed in stages, com-
mencing with preliminary experiments to evaluate the effec-
tiveness of utilizing pure transformer-based neural networks
for standard chess. Initial results, outlined in Table 3, in-
dicated that these networks exhibited sluggish performance
and relatively high rates of loss. As part of our study, we en-
deavored to create a hybrid architecture that integrates both
convolutional and transformer components to boost both ef-
ficiency and performance.
The process involved several stages. First, we commenced
by determining the appropriate convolutional base block.
Afterwards, we investigated the best scaling factors for the
network’s depth and width. Finally, the convolutional stem
and transformer block were cleverly combined to create the
hybrid CNN-transformer architecture that powers AlphaV-
ile.
In the study by Li et al. [16], various convolution blocks,
such as the “Next Convolution Block”, ConvNext, Trans-
former, PoolFormer and Uniformer block, are comprehen-
sively compared. However, this comparison omitted two
critical components: the classical residual block that uti-
lizes two 3×3 convolutions, observed in the conventional
AlphaZero network, and the mobile convolution block that
uses group depthwise convolution. Thus, our primary aim
is to establish which of these blocks, portrayed in Figure 2,
functions optimally under equal latency constraints. The
objective is to select this block as our standard convolu-
tional block after conducting an initial experiment.
The data presented in Table 1 shows that the mobile con-
volutional block [22] outperforms the classical residual
block [9] to a slight extent. However, the subsequent con-
volutional block [16] demonstrates noticeably lower perfor-
mance under equivalent latency constraints.

A.3 Optimizing Scaling Ratios for Network

After identifying the most suitable convolutional base
block, we explore the optimal scaling ratios for our network.
Our approach is in alignment with the compound scaling
methodology described in the EfficientNet framework [28].
The compound scaling method, introduced in the Efficient-
Net framework, utilizes a compound coefficient, denoted as

ϕ, to adjust the network width, depth, and resolution in a
systematic manner based on the following principles:

depth: d = αϕ

width: w = βϕ

resolution: r = γϕ

s.t. α · β2 · γ2 ≈ 2

α ≥ 1, β ≥ 1, γ ≥ 1

(4)

In our experiment, we maintain a constant input resolution
of an 8×8 grid, thus we set γ to 1. However, we have no-
ticed that increasing the width (β) does not entirely meet
our criteria:

α · β2 ≈ 2 (5)

This is evident in the “Latency (µs)” column of Table 8,
where we observe increased latency as we raise β in com-
parison to α. Our results are consistent with previous stud-
ies, including Zagoruyko and colleagues’ work [34], which
suggests that widening the network is more effective on
GPU architectures than on CPU and is not aligned with the
number of floating-point operations.
To achieve an optimal balance in response to network la-
tency variations, we have formulated an adjusted criterion.
This refined criterion is defined as follows:

α · β1.6 ≈ 2 (6)

This adjustment aligns more accurately with our latency
considerations, as shown in Table 9. Our exhaustive grid
search indicates that the optimal configuration involves an
expansion ratio of α = 1.8 and β = (10/9)

5/8.
It should be noted that alterations to the network structure
have a direct effect on latency, which can result in either
an increase or decrease in latency. Therefore, this refined
scaling ratio has been adopted for subsequent experiments
to maintain consistent latency levels across different config-
urations.

A.4 GPU Utilization

As high GPU utilization is generally desired, it is note-
worthy that the pure convolutional ResNet architecture em-
ployed by AlphaZero shows the maximum GPU utilization,
peaking at 100 %. On the other hand, a range of ViT ar-
chitectures demonstrate GPU utilization rates between 89 %
and 97 %, as shown in Figure 6.
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Table 7. A Comparison of Neural Network Architectures Using Extended Input Representation and WDLP Value Loss
Formulation. The largest AlphaVile model provides the most favorable results, but with higher latency. The normal-
sized AlphaVile model achieves comparable accuracy and latency to the ResNet architecture.

Network Architecture Combined Loss Policy Acc. (%) Latency (µs) Flops

AlphaZero-FX [25] 1.1673 ± 0.0040 59.43 ± 0.09 68.25 1.494 G
LeViT-FX [7] 1.2596 ± 0.0040 56.93 ± 0.09 57.90 0.413 G
NextViT-FX [16] 1.1725 ± 0.0040 59.10 ± 0.08 54.59 0.364 G
ViT-FX [5] 1.6866 ± 0.0014 47.40 ± 0.16 70.72 20.82 M
AlphaVile-FX (large) 1.1323 ± 0.0053 60.20 ± 0.16 87.15 0.508 G
AlphaVile-FX (normal) 1.1531 ± 0.0037 59.63 ± 0.13 67.18 0.374 G
AlphaVile-FX (small) 1.1861 ± 0.0082 58.80 ± 0.22 49.66 0.232 G
AlphaVile-FX (tiny) 1.2193 ± 0.0101 57.87 ± 0.25 38.92 0.171 G

Table 8. Results from a grid search experiment analyzing various scaling parameters to adhere to the principles of
efficient net design [28]. The experiment systematically varied the depth scaling factor α and channel size scaling
factor β. The best performance was attained with a depth scaling factor of α=1.8 and a channel size scaling factor of
β =

√
10/9. It is noteworthy that scaling along β yielded a more favorable latency-to-FLOPS ratio than anticipated.

α β Depth Channels Combined Loss Policy Accuracy (%) Latency (µs)

1.0
√
2 10 272 1.21497 58.1 45.40

1.2
√

5/3 12 248 1.21381 58.0 44.55
1.4

√
10/7 14 229 1.19888 58.5 47.88

1.6
√

5/4 16 215 1.20036 58.5 50.64
1.8

√
10/9 18 202 1.19084 58.6 51.15

2.0 1 20 192 1.19559 58.4 50.20
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Figure 6. An in-depth analysis of GPU usage across
different model structures, highlighting the exceptional
performance of the standard AlphaZero-FX network
compared to its competitors.

A.5 Case Study: Opposite Color Bishop Positions

Opposite color bishop positions are widely recognized as
complex endgame scenarios in chess, often leading to draws
even when one player has a material advantage. This sec-
tion aims to determine whether the use of FX representa-
tion improves the evaluation of these challenging positions.
To conduct this analysis, fully trained neural networks were
subjected to a series of tests covering 20 different opposing
color bishop positions. Details are shown in Table 11. For
Figure 8, an all-zero input is used as the baseline. The neu-
ral network integrated with the FX-representation, shown
in the representative position in Figure 7a, produces value
estimates that tend to approach zero for drawn positions.
On the other hand, the same network assigns significantly
higher value scores for positions that represent decisive vic-
tories, as demonstrated in Figure 8a.
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(d) Average feature importance for the default input representation.
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(e) Average feature importance for the FX-features.

Figure 7. Chess endgame position from the historic game N. Miller vs. A. Saidy, 1971, along with the corresponding
feature importance analyses for both the standard AlphaZero-Resnet and the AlphaZero-FX Resnet. White resigned
in this drawn position (Forsyth–Edwards Notation (FEN)): 8/3k4/8/2pK4/8/4b1p1/8/5B2 w). Single value
evaluation by the default network: -0.4940, while the FX-Network evaluates it as -0.2304. Values are presented with
respect to the current player to move. Integrated gradient analysis employed all-zero inputs as the baseline.
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(a) Kotov vs. Botvinnik. Black to move.
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(d) Average feature importance for default input representation.
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(e) Average feature importance for FX-features.

Figure 8. Visualization of a chess endgame position from the historic Kotov vs. Botvinnik game in 1955. The
associated feature importance of both the standard AlphaZero-Resnet and the AlphaZero-FX Resnet models is dis-
played. Black secures victory by sacrificing both the g- and d-pawns, creating a new passed-pawn in the process.
Forsyth–Edwards Notation (FEN): 8/8/4b1p1/2Bp3p/5P1P/1pK1Pk2/8/8 b. Single-value evaluations by
the default network: 0.4053 vs. FX-Network: 0.4225. All-zero inputs serve as the baseline for the Integrated Gradient
method.

15



Table 9. Results of a grid search experiment with scaling parameters adapted according to the principles of efficient
net design [28]. The best performance was achieved with a depth scaling factor of α = 1.8 and a channel size scaling
factor of β = (10/9)

5/8. It is worth noting that latency measurements remain consistent across all configurations.

α β Depth Channels Combined Loss Policy Accuracy (%) Latency (µs)

1.0 25/8 10 296 1.21062 ± 0.00117 58.133 ± 0.047 49.19
1.2 (5/3)

5/8 12 264 1.19977 ± 0.00263 58.333 ± 0.124 51.26
1.4 (10/7)

5/8 14 240 1.19820 ± 0.00791 58.500 ± 0.216 49.01
1.6 (5/4)

5/8 16 221 1.20031 ± 0.00924 58.400 ± 0.216 51.67
1.8 (10/9)

5/8 18 205 1.19009 ± 0.00488 58.667 ± 0.169 53.54
2.0 1 20 192 1.19039 ± 0.00740 58.600 ± 0.308 50.20

Table 10. Results of a grid search exploring different ratios of 5 × 5 kernel filters. The best outcome is achieved by
combining 50 % 5×5 convolutions with 50 % 3×3 convolutions, and using an adjusted expansion ratio of 2.04 instead
of the traditional 3.0.

5× 5 Kernel Filter Ratio (%) Depth Channels Combined Loss Policy Accuracy (%) Latency (µs)

0 16 221 1.20031 ± 0.00924 58.400 ± 0.216 51.67
25 16 221 1.18016 ± 0.00594 59.000 ± 0.216 50.66
50 16 221 1.17336 ± 0.00472 59.199 ± 0.141 51.57
75 16 221 1.18521 ± 0.00758 58.766 ± 0.205 52.41

100 16 221 1.18435 ± 0.00514 58.833 ± 0.124 52.32
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Table 11. Comparison of evaluations between the FX-network and AlphaZero for opposite color bishop endgames.
The evaluations are presented based on the current player’s perspective. The chess positions are sourced from
https://en.wikipedia.org/wiki/Opposite-colored bishops endgame as of October 19, 2023.
Ground truth evaluations indicate whether the position should result in a draw (DRAW) or a win for White (WHITE
WIN) or Black (BLACK WIN). Net Eval and FX-Net Eval are the evaluations produced by AlphaZero’s default and
FX-network, respectively. Abs. Net Eval and Abs. FX-Net Eval indicate the respective absolute values. Values close
to 0 are better for drawn positions, while values close to −1 or 1 are better for winning positions. The best evaluation
in comparison to the absolute ground truth evaluation are denoted in bold.

FEN Ground Truth Net Eval Abs. Net Eval FX-Net Eval Abs. FX-Net Eval

8/2k1b3/2P5/3KP2B/8/8/8/8 w - - 0 56 DRAW 0.3332 0.3332 0.2025 0.2025
8/3k4/8/2pK4/8/4b1p1/8/5B2 w - - 0 56 DRAW −0.4940 0.4940 -0.2304 0.2304
5k2/8/8/7p/1b1p4/8/B7/5K2 b - - 0 56 DRAW 0.4385 0.4385 0.2500 0.2500
8/2b1k3/8/1B1PP3/3K4/8/8/8 w - - 0 56 DRAW 0.4313 0.4313 0.4561 0.4561
8/2k5/4Bp2/2b1p1p1/4K2p/7P/8/8 b - - 0 56 DRAW 0.1648 0.1648 0.2121 0.2121
8/8/8/5B2/1p3b2/2k1p3/8/5K2 w - - 0 56 DRAW −0.6412 0.6412 -0.4157 0.4157
8/3k4/p2P4/2P4p/2bB4/P6P/5K2/8 w - - 0 56 DRAW 0.3874 0.3874 0.4465 0.4465
7b/4k2P/6K1/2p2P2/7P/1B6/8/8 b - - 0 56 DRAW −0.6286 0.6286 -0.6233 0.6233
4k2b/7P/5PK1/7P/8/1B6/8/8 w - - 0 56 DRAW 0.7649 0.7649 0.8562 0.8562
8/5pK1/4k3/6B1/5PbP/6P1/8/8 b - - 0 56 DRAW −0.4810 0.4810 -0.4294 0.4294
2r3k1/5ppp/p7/5q2/3P4/b2B2P1/P1R2P1P/5QK1 b - - 0 56 DRAW -0.5099 0.5099 −0.5594 0.5594
5k2/5pp1/p6p/5B2/3P4/6P1/P3KP1P/2b5 w - - 0 56 DRAW 0.3222 0.3222 0.4718 0.4718
3b4/p4B1p/8/6k1/6P1/8/1P3PK1/8 w - - 0 56 DRAW 0.2920 0.2920 0.0783 0.0783
6B1/4b3/7p/3Pk2P/6PP/7K/8/8 w - - 0 56 DRAW 0.4867 0.4867 0.5590 0.5590
8/8/8/7p/2p5/5K1k/2Bb4/8 w - - 0 56 DRAW −0.3318 0.3318 -0.1916 0.1916
3R4/4BK1k/r5p1/2P2bP1/8/8/8/8 w - - 0 56 WHITE WIN 0.8304 0.8304 0.8714 0.8714
8/2k1b3/2P5/3K1P1B/8/8/8/8 w - - 0 56 WHITE WIN 0.4072 0.4072 0.3321 0.3321
3k1b2/8/3PP3/1B1K4/8/8/8/8 w - - 0 56 WHITE WIN 0.7121 0.7121 0.8229 0.8229
8/2k5/2P1K3/6p1/5p2/2b2B1P/6P1/8 b - - 0 56 WHITE WIN -0.2412 0.2412 −0.1441 0.1441
8/8/4b1p1/2Bp3p/5P1P/1pK1Pk2/8/8 b - - 0 56 BLACK WIN 0.4053 0.4053 0.4225 0.4225

Mean values for draws ↓ 0 0.4472 0.3988
Mean values for wins ↑ 1 0.5192 0.5186
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Table 12. Hyperparameter Configuration for Experi-
mental Settings. This table provides a comprehensive
overview of the essential hyperparameters utilised in
our experimental design.

Hyperparameter Value Hyperparameter Value

max learning rate 0.07 value loss factor 0.01
min learning rate 0.00001 policy loss factor 0.988
batch size 1024 wdl loss factor 0.01
max momentum 0.95 plys to end loss factor 0.002
min momentum 0.8 stochastic depth probability 0.05
epochs 7 pytorch version 1.12.0
optimizer NAG
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